
5. Synchronization
Figure: Fully synchronized state.

for all i,j and t.

• Simulation initial condition:
Oscillators are perturbed from the fully 
synchronized state:               for all i. 
Perturbation ~ Uniform[-,] where  < /2    (*)

• Re-synchronization 
occurs due to:

 (*)

  and k constant
across nodes

 concavity of U():

phases contract

3. Neuron Oscillator Model

Figure: Neuron communication
Adapted from: cwx.prenhall.com/bookbind/pubbooks/morris5/chapter2/deluxe.html

• State of neuron i is given by phase, i :

1. Introduction
Many complex real-world systems exhibit synch-
ronization of their components. Examples include
audiences applauding, cardiac pacemaker cells
and fireflies flashing in synchrony. Mathematically
they are often modelled as networks where the
nodes represent the individual dynamical com-
ponents and the edges represent interactions. An
important question is how the topology of such
networks affects synchronization. We focus on
synchronization time: the time it takes for the
system to re-synchronize after being perturbed
from a fully synchronized state.
In particular, we look at pulse-coupled oscillators
on directed networks with topology based on the

Watts-Strogatz small-world network model [1]. A
primary topological network property affecting
synchronization is the average distance between
nodes [2]. We numerically study networks with
this quantity fixed and we anticipate that in the
small-world regime synchronization is slower than
for regular networks. This is surprising because
studies so far have indicated that small-world
networks have a better synchronizability [3].
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4. Network Topology
• We consider directed networks since neurons 

may communicate in one direction only.

• Four important properties of networks are:

1. Number of nodes, N.

2. Average path length, L.
Lij = shortest distance (number of edges) 

between nodes i and j. 

3. Clustering coefficient, C.

4. Average in-degree, k.

ki =number of edges

entering node i. 

• Method used to produce networks of varying   
topology (based on Watts-Strogatz small-world model [1]):

Result: Mean average path length <L> and mean cluster-
ing coefficient <C> (both normalised) as a function of p:

6. Results
• N = 1000

Result : <L> as a function of p for varying in-degree k
using Watts-Strogatz based method:

• We numerically determine the average 
synchronization time as p varies for networks 
with <L> = 4 (figure inset). We use the plot to 
choose appropriate k and p.

• k is fixed as p varies so the total pulse 
received by an oscillator each period is fixed.

• We choose a reference oscillator i. When             
, we measure the distance d(t) from the 

fully synchronized state:

where 

Preliminary Result :  One realization of d(t) for 4 
values of p. Gradient gives synchronization time:

• The preliminary results show that the 
synchronization is slower in the small-world 
regime than for a regular network but is faster 
for a random network. In particular, we see a 
non-monotonic dependence.

Expected result:

Further work:
• Compare with analytical results [5].
• Investigate reason for shape of curve.
• Investigate transient behaviour.
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Figure: Left: Fireflies flashing Right: Simple network model
Left image from:  www.dosomethingdifferent.com/experiences/kuala_selangor_fireflies_phenomena
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2. Model Motivation
Our oscillator model (based on [4]) is motivated
by neurons. Networks of neurons in the brain are
known to show synchronized behaviour. It is
thought this enables functions such as infor-
mation transmission but it could also be related
to diseases such as epilepsy.

Figure: Neural networks have a
complex topology, possibly with
small-world characteristics.

Image from: news.bbc.co.uk/1/hi/programmes/click_online/4165420.stm
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Means estimated from 100 network 
realisations. 38 values of p used. 
Parameters: N=1000, k=10.

p

Parameters: N = 1000, <L> = 4, 

C = 1.01,  = -0.2/k,  = 0.1,  = 0.01 

Start with 
regular network

Rewire the tail of each 
edge with probability, p

ki=k for all i and 
doesn’t change with p

Contact: steven.hill@warwick.ac.uk
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