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Abstract

We numerically study the effects of topology on the synchronization time of directed pulse-coupled
oscillator networks. Using an adapted version of the Watts-Strogatz small-world model, we initially
show that small-world networks synchronize quicker than regular networks when the in-degree is
fixed. In particular, we see a monotonically decreasing dependence of the synchronization time
on the rewiring probability, which can be intuitively explained by the corresponding decrease in
characteristic path length. Motivated by this, we instead fix the average characteristic path length.
Our main result is that, in this case, small-world networks synchronize slower than regular networks
and a non-monotonic dependence on the rewiring probability is observed. We also produce analytical
results by studying the linearized dynamics and show that they are in good agreement with our
numerical results.

1 Introduction

Motivated by empirical studies on the Internet, social and biological networks, the study of complex
networks has become of considerable importance for the understanding of complex systems [1, 2]. Many
studies are concerned with the structure of these networks and their evolution over time [3, 4]. Also of
increasing interest is the collective behaviour of interacting dynamical systems on networks and the effect
of the network structure on the dynamics [1, 5, 6].

One of the simplest and most studied types of collective dynamics on networks is synchronization (for
an overview see [7, 8]). Many real-world systems, both artificial and natural, are known to exhibit this
phenomenon. Examples include Josephson junction arrays [9], fireflies flashing [10] and neural networks
[11]. Neural networks are the basis of the model discussed in this paper.

Neurons in the brain communicate by sending and receiving brief electrical pulses called spikes or
action potentials [12]. A spike causes a change in the membrane potential of the recipient neuron. Hence
we consider pulse-coupled networks in which the interactions take place at discrete instances in time
only. These have already received much interest [13, 14, 15, 16] due to their applicability to many natural
systems. Unlike many of these studies, our model incorporates a delay between a neuron firing (sending
a spike) and a connected neuron receiving the spike. This arises due to the spikes finite propagation
speed. We also consider directed networks as a pair of neurons don’t necessarily communicate in both
directions.

It is important to study synchronization on neural networks since it is known to be involved in
information transmission, pattern recognition and learning. However, it could also be a factor in diseases
such as epilepsy and Parkinson disease [17].

The topology of networks is known to influence synchronization, but many studies consider only either
regular or random coupling only [18, 19, 20]. One area that has been investigated with varying topology
is the synchronizability of networks [6, 21]. This is a measure of how easily a network can be synchronized
in terms of the coupling parameters. It is shown in [6] that small-world networks (regular locally clustered
networks with the addition of a few long-range edges [5]) are more synchronizable than regular networks.
Topology is particularly important for synchronization on neural networks as here the connectivity is
very complex [22] and the networks may even have small-world properties (for example, the C.elegans
neural network [23]).

In this paper we numerically study the effect of topology on the synchronization time of pulse-coupled
directed neural networks. Synchronization time is a measure of how quickly the network re-synchronizes
after being perturbed from a synchronized state. It has been studied analytically for fully random
networks only [20]. We produce networks of different topologies using an adapted version of the Watts-
Strogatz small-world model [5]. Firstly, it is shown that for networks with a fixed number of edges,
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those in the small-world regime synchronize quicker than regular networks. This is expected due to
the result for synchronizability mentioned above and the dependence can be intuitively explained by
the shorter average characteristic path length between nodes in a small-world network. However, other
factors are important for synchronization other than the characteristic path length [24]. Hence, we fix
the average characteristic path length and again investigate the dependence of synchronization time on
topology. We find that, for a fixed average characteristic path length,networks in the small-world regime
synchronize slower than regular networks. In particular, we see a non-monotonic dependence on the
rewiring probability. Finally, we make a comparison with analytical results.

The paper is organised as follows. Section 2 outlines the neural dynamics, basic network topology
definitions and introduces the directed small-world network model. The synchronized state is also ex-
plained here. In Section 3 we identify when the small-world networks occur and give the result for the
dependence of synchronization time on topology for networks with a fixed number of edges. Section 4
explains the method for fixing the average characteristic path length and the simulation and analytical
methods are outlined. Synchronization time is defined here also. In Section 5 we give the results and
discuss them. A comparison is made between the simulated and analytical results. We close in Section
6 with a summary and a discussion of further work.

2 Model and Definitions

2.1 Neuron dynamics model

We consider a pulse-coupled directed network of N neural oscillators with delayed interactions. The
model described below is based on that of Mirollo and Strogatz [13] and was also used by Timme et al.
[20].
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Figure 1: Neuron Dynamics. (a) A schematic depicting how neurons communicate. (b) Neuron i spikes at time
t = 0 and neuron j receives this spike at time t = τ , causing a decrease in its phase. (c) The membrane potential
function determines the size of the phase decrease.

The simple schematic example in Figure 1 explains how the neurons behave and interact. Figure 1(a)
shows a neuron i in communication with a neuron j. It is assumed neuron i has no incoming spikes (i.e.
no pre-synaptic oscillators) and neuron j receives spikes from neuron i only.

The state of a neuron i at time t is given by a phase-like variable φi(t) ∈ (−∞, 1]. In the absence of
interactions this phase increases linearly with time, dφi

dt = 1.
When a threshold is reached, φi

(
t̃f
)

= 1, the phase is instantaneously reset to zero (see Figure
1(b), where we have taken t̃f = 0). At this moment the neuron fires and sends a spike along its axon
and across the synapse to connected (post-synaptic) neurons. These post-synaptic neurons receive the
incoming signal after a time delay τ (i.e. at t̃f + τ). The effect of this interaction is an instantaneous
change of size ε in the membrane potential U(φ) of the post-synaptic neurons . As in [20] we consider
only inhibitory coupling (ε< 0) and we also take it to be homogeneous across all couplings. A decrease
in membrane potential by an amount ε causes the phase of a post-synaptic oscillator to instantaneously
jump from φ

(
t̃+ τ

)
to U−1

(
U
(
φ
(
t̃+ τ

))
+ ε
)

as seen in Figure 1(c).
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The function U is assumed to be monotonically increasing (U ′>0), concave down (U ′′<0) and satisfies
U(0) = 0, U(1) = 1. In this work we use the well-known leaky integrate-and-fire type dynamics [13] given
by

U (φ) = C
(
1− e−γφ

)
where γ = log

(
C

C − 1

)
, C > 1. (1)

We choose this function as it greatly simplifies the analytics of the linearised dynamics, which we use to
produce our analytical results (see Section 4.3).

2.2 Network topology

We study networks with varying topology. Firstly, we give some basic definitions. Recall that N is the
number of nodes (neurons) in the network (in all our simulations we used N = 1000).

We define L to be the characteristic path length of a network. This is the number of edges in the
shortest directed path between two distinct nodes, averaged over all N(N − 1) ordered node pairs. Note
that this implies that we must only consider strongly connected networks (that is, networks in which a
directed path exists between all pairs of nodes).

Another important quantity is the clustering coefficient, C. The clustering coefficient of an individual
node i is found by counting the number of actual triplets containing node i and then dividing this number
by the number of possible triplets containing node i (see Figure 2). The clustering coefficient is the result
after averaging over all nodes. It is a measure of the local structure in the network.

i i

i i

Figure 2: Actual triplets containing node i. The two white nodes are arbitray and so can be interchanged along
with their attached edges. For example, in the top left triplet all the edges can be reversed and this is equivalent
to the triplet already displayed (to see this imagine picking up the top white node and moving it below the other
two whilst keeping the edges attached).

The above two definitions are based on those in [5] but adapted for directed networks. The clustering
coefficient definition is taken from [26]; a full explanation of how to calculate it can be found there.

A final definition is for the average in-degree of a network, k. This is the number of edges entering an
individual node, averaged over all nodes. This is a standard definition in graph theory [27].

To produce networks of varying topology we use a model based on that of Watts and Strogatz [5]
but adapted for directed networks. We start with a ring of N nodes, each of which is connected to its k
nearest neighbours via k directed edges (k is chosen to be even). Hence we have Nk edges in the network
and every node has the same in-degree of k. This obviously means the average in-degree of the network
is also k. With probability p, the tail/base of each edge is rewired to another node chosen uniformly at
random from the whole network, but duplicate edges and edges from a node to itself are not allowed. We
do however allow the edge to be ‘rewired’ back to its original position.

An important observation here is that as p varies the in-degree of each node (and the average in-degree
of the network) is still k. This is due to the fact we only rewire tails. So in what follows we only refer to
this single quantity k.

As the rewiring probability p is changed from 0 to 1 the network interpolates between regular and
random topologies (see Figure 3). In Section 3.1 we show that for small values of p we see small-world
networks as in the original Watts-Strogatz model. These networks are characterised by a large clustering
coefficient and small characteristic path length.

2.3 The synchronized state

There are many different levels and types of synchronization on a network. For example only part of
the network may be synchronized, the network may synchronize in distinct clusters [14] or the neurons
may fire in a periodic firing pattern [28]. In this work we study global synchronization, which is the
strongest and possibly simplest form of synchronization on pulse-coupled oscillator networks (see Figure
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Figure 3: The transition from regular to random networks for the original Watts-Strogatz model. p is the rewiring
probability. Our model is similar but for every edge displayed here, we have two edges; one in each direction. We
only rewire the tails of these directed edges.

4(a)). This is when all the neurons have identical phases and hence all fire at the same time, i.e.

φi (t) = φj (t) ∀i, j ∈ {1, 2, . . . , N} , ∀t ∈ R (2)
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Figure 4: (a) The globally synchronized state. (b) An intuitive explanation for asymptotic stability of the globally
synchronized state. Two neurons receiving spikes at the same moment experience a contraction of their phases:∣∣∣φ̃j − φ̃i

∣∣∣ < |φj − φi|.

In order for the globally synchronized state to exist, all the neurons need to receive spikes at the same
time and the total effect of these spikes on the membrane potential has to be the same for all neurons.
This latter property is referred to as normalized coupling in the literature [20] and in general is given by
the constraint∑

j

εij = α for all i (3)

where εij is the coupling strength of spikes sent from neuron j to neuron i (if there is no edge from neuron
j to i then εij = 0) and α is a constant. Hence the sum gives the total coupling strength for all spikes
received by neuron j each period. Our model satisfies these properties since we consider a homogeneous
delay time τ and coupling strength εij = ε across all connected neuron pairs and the in-degree of each
node is always k. So after a time τ from all the neurons firing, they all receive k spikes causing the
membrane potential of each neuron to decrease by α = kε.

An important question is whether this globally synchronized state is stable to small perturbations
and moreover, if it is asymptotically stable. Indeed, we are interested in synchronization time which is a
measure of how quickly the network re-synchronizes after being perturbed away from this state. Hence
we need asymptotic stability for this to make sense. It has been proven by Timme and Wolf [25] that,
for inhibitory normalised coupling, this state is indeed asymptotically stable under the mild condition
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of the network being strongly connected. As mentioned above, we already only consider networks with
this property. An intuitive explanation for this asymptotic stability can be seen in Figure 4(b). Due
to the concavity of the membrane potential function U , two neurons receiving a spike at the same time
experience a contraction of their phases.

A final question relating to the synchronized state is how small the perturbations have to be for
re-synchronization to occur. We deal with this question in Section 4.2.

3 Preparatory results

3.1 Identification of the small-world regime

We see that for our adapted Watts-Strogatz model, the dependence of the normalised average clustering
coefficient 〈C(p)〉

C(0) and normalised average characteristic path length 〈L(p)〉
L(0) on the rewiring probability p

is the same as that seen in the original model [5]. Here, the averages are over realizations of networks.
Figure 5 shows the numerical results for a couple of k values. Note that we always plot p on a logarithmic
scale to resolve the fast drop in 〈L (p)〉. It is this fast drop that gives a range of p values where, on
average, the networks have small characteristic path lengths (i.e. near the value for a fully random
network) but the clustering coefficient is still high (i.e. almost the same as its value for a fully regular
network). Networks with this property are known as small-world.

Small-world

rewiring probability p

a

Small-world

rewiring probability p

b

Figure 5: Normalised average characteristic path length 〈L(p)〉
L(0)

and normalised clustering coefficient 〈C(p)〉
C(0)

against

rewiring probability p for networks with in-degree k fixed at: (a) k = 20, (b) k = 58. (N = 1000. Plots produced
with 38 values of p. Averages are over 100 realizations of networks produced by the rewiring process described in
Section 2.2).

The fast decrease in the characteristic path length of a network is a result of the creation of a few
long-range edges in the rewiring process. However, the local structure remains largely unchanged and so
there is little effect on the clustering coefficient. We see that the small-world region (which isn’t rigorously
defined) varies with k, but only in a minor way. It is worth noting that work has been done on identifying
when the crossover from regular to small-world occurs [29] but the focus has been on the system size N
rather than the nodal degree k.

3.2 Synchronization time for networks of fixed in-degree

In this Section we present the numerical results for the dependence of average synchronization time
〈τsync (p)〉 on the rewiring probability p for networks of fixed in-degree k. The simulation method and
definition of synchronization time are in Section 4.2. For now, recall that synchronization time is a
measure of how quickly a network re-synchronizes after being perturbed from a globally synchronized
state. We present this result here as it motivates studying the average synchronization time of networks
with fixed average characteristic path length 〈L (p)〉.

The result is displayed in Figure 6 for one value of k. The averages are over realizations of networks
and perturbations. We see that 〈τsync (p)〉 is monotonically decreasing with p. In particular, small-world
networks re-synchronize quicker than regular networks and random networks re-synchronize the quickest.
This dependence can be explained by the average characteristic path length. Indeed, the dependence of
〈L (p)〉 on p is also monotonically decreasing in a similar fashion (see Figure 5(a)). It is intuitive that as the
characteristic path length decreases, neurons on one side of the network can communicate more efficiently
with neurons on the opposite side and this leads to quicker and more efficient re-synchronization.

We now fix the average characteristic path length 〈L (p)〉 as it is known this is not the only topological
factor in synchronization [24] but appears to be the dominating one in the synchronization time result for
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Figure 6: Average synchronization time 〈τsync (p)〉 against rewiring probability p for networks with in-degee fixed
at k = 20. Error bars are standard errors of the mean. (Parameters used: N = 1000, k = 20, C = 1.01, α =
kε = −0.2, τ = 0.1, δ = 0.01).

fixed in-degree k. Fixing this quantity (and varying k instead) allows us to investigate how synchronization
time depends on the rewiring probability for a different ensemble of networks. In particular, we see if
small-world networks still re-synchronize quicker than regular ones in this case and it gives us some insight
into how topological factors other than the characteristic path length influence synchronization time.

4 Method

4.1 Method for fixing average characteristic path length

We fix the average characteristic path length 〈L (p)〉 using a graphical method. Figure 7 shows how
〈L (p)〉 depends on the rewiring probability p for many different values of k. Note that, unlike in Figure
5, the values here are unnormalized. We choose to fix 〈L (p)〉 = 4 (see Figure 7 inset) as this gives
us a wide range of p values. We do not take k < 6 as the networks are in general no longer strongly
connected for larger p values. Any realizations that produce networks that are not strongly connected
are discarded and repeated (this happened in the k = 6 case only). For each of these in-degree values a
value of the rewiring probability p is found from the plot that gives 〈L (p)〉 ≈ 4. The value of k which
gives a characteristic path length for the fully regular graph nearest L(0) = 4 was also found (the result
being k = 142). This gives us 25 (k, p) pairs to use in the simulations.

We note that k decreases in a non-linear fashion as p increases for networks with 〈L (p)〉 = 4. When
we increase p, we decrease the in-degree k. Thus, it might be expected that the amount of coupling each
neuron receives also decreases (recall that the total change in membrane potential each period due to
incoming spikes is α = kε). This would affect the synchronization time [30]. We remove this factor by
keeping kε fixed as p varies. By doing this, we have reduced the effect of changing the in-degree k on the
synchronization time.

The result of using this method to fix 〈L (p)〉 can be seen in Figure 8. We see that for each (k, p) pair
we get 〈L (p)〉 ≈ 4 as required. Note that the standard deviations are larger for smaller p values. This is
because we are rewiring a small number of edges here (Nk/p on average); the effect on L(p) of rewiring
m + 1 edges instead of m edges where m is small can be large as it may add a long-range edge where
there was not one previously.

4.2 Simulation method and Synchronization time definition

We now describe the initial condition used for the simulations and how the synchronization time was
measured.

The initial condition for the phases of the neurons is a random perturbation from the globally syn-
chronized state (2) and in particular is applied to φi = 0 for all i. The perturbation is given by a vector
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Figure 7: Average characteristic path length 〈L (p)〉 against rewiring probability p for 24 values of in-degree k.
We fix 〈L (p)〉 = 4 using this plot by finding the (k, p) pairs that give this value. (N = 1000. Each line produced
with 38 values of p. Averages are over 100 realizations of networks).

d0 ∈ RN where the components d0
i are each drawn independently from a uniform distribution on [−δ, δ].

d0
i is the perturbation applied to neuron i. So the initial condition for neuron i is

φi (0) = 0 + d0
i . (4)

To ensure that the globally synchronized state is stable we have the condition δ < τ
2 [20] (recall that τ is

the delay time). This guarantees that all the neurons fire before any spikes are received. We note that
the perturbation can make the starting phase of a neuron negative. When this phase increases to zero,
the neuron does not fire. This is also the case when a spike causes a phase to become negative.

As we want to know how quickly the neurons re-synchronize, we need a measure of how close the
network is to the globally synchronized state at time t. We define a distance vector d(t) ∈ RN where the
components di(t) ∈ (−0.5, 0.5] give the distance of neuron i from the globally synchronized state at time
t. In the simulations a reference oscillator r is chosen (since the networks and perturbations are random
the same neuron can be chosen in each realization). This reference neuron fires at discrete times, which
we denote by t̂j where j ∈ N and t̂j < t̂j+1. At these instances (i.e. when φr

(
t̂j
)

= 0) we measure the
distance from the globally synchronised state (φi

(
t̂j
)

= 0 for all i). The distance is given by the infinity
norm of d(t), ‖d(t)‖max. So at times t̂j we have,

∥∥d(t̂j)∥∥max
= max

i

∣∣di(t̂j)∣∣ where di
(
t̂j
)

=

{
φi
(
t̂j
)

if φi
(
t̂j
)
≤ 0.5

φi
(
t̂j
)
− 1 if φi

(
t̂j
)
> 0.5

(5)

Note that here we have d(0) = d0 using this definition.
For each (k, p) pair 100 realizations were carried out in order to average over networks and pertur-

bations. Figure 9 shows the distance from the synchronized state (on a logarithmic scale) against time
for all the realizations from one (k, p) pair. We see some transient behaviour before the distance decays
exponentially (or to be more precise, approaches exponential decay, see Section 5). The synchronization
time τsync is defined in terms of the exponential exponent of this decay,

‖d(t)‖max = exp

(
− t

τsync

)
. (6)

We find the synchroniation time for each realization by using least squares linear regression to find
the gradient of the line between two time points. These time points are chosen as high as possible
since exponential decay is approached as t → ∞, but far enough apart so that there is sufficient data
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Figure 8: Average characteristic path length 〈L (p)〉 against rewiring probability p for each (k, p) pair used in
the simulation. Error bars are standard deviations.(N = 1000. Averages are over 100 realizations of networks).

to perform the regression accurately. We also want to avoid very small distances, which introduce
significant numerical error in the simulation. Finally, we average over all realizations to give the average
synchronization time 〈τsync〉.

4.3 Analytical method

We adapt the work by Timme et al. to produce some analytical results for comparison with our numerical
results. Full details of this work can be found in [20] and [25].

In our numerical method we defined a distance vector d(t) which gives the distance of each neuron
from the globally synchronized state. Let T be the period of this state. Explicitly we have T = τ + 1−
U−1 (U (τ) + kε). We still assume the perturbation is applied as in (4) at time t = 0.

In order to analytically find the synchronization time we define a stroboscopic period-T map, F :
RN → RN . (Note that in the numerical method, we sampled d(t) at irregular time intervals). The map
F is given by F (dj) = dj+1 for j = 0, 1, 2, . . . where dj = d(jT + 1) and d(jT + 1) is given by (5)
(replacing t̂j with jT + 1). Here we have d0 = d(1) = d(0) since no spikes are received before all the
oscillators reach the phase threshold for the first time. Hence we first apply the map F in the first period
when spikes are received.

We want to linearize the map F . This map depends on the network connectivity, membrane potential
function U and the dynamical parameters τ and εij . The linearized map is given by a matrix A ∈ RN×N
which results in a first order map dj+1 = Adj for j = 0, 1, 2, . . .. It has been shown [25] that for
general membrane potential functions and normalized coupling (3), the matrix A not only depends on
the properties mentioned above, but also on the vector dj . In particular, it depends on the order of
the components of dj after they are put into ascending order. Hence we have a multi-operator problem.
However, we use integrate-and-fire dynamics (1) which are shown in [20] to be a degenerate case where
the matrix A is now independent of the rank order of dj .

It turns out that the linearized map A is given by a sparse matrix

Aij =


−ε

Ce−γτ−α if there exists an edge from neuron j to neuron i

1 + α
Ce−γτ−α if i = j

0 otherwise

(7)

where α = kε is the total coupling strength. Since each neuron has in-degree k the row-sums of the
matrix A are all equal to one.

We let vi for i = 1, 2, . . . , N be the eigenvectors of A with corresponding eigenvalues |λ1| > |λ2| >
. . . > |λN |. The largest eigenvalue |λ1| = 1 and is unique (this can be shown using the Gershgorin circle
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Figure 9: Logged distance from the globally synchronized state against time for the 100 realizations from one
(k, p) pair. Both network and perturbation are random for all realizations. (Parameters used: N = 1000, k =
58, 〈L〉 = 4, C = 1.01, α = kε = −0.2, τ = 0.1, δ = 0.01).

theorem and Perron-Frobenius theorem [31]). The corresponding eigenvector is v1 = (1, 1, . . . , 1)T since
the row-sums of A are equal to one. We note that this means the distance vector dj does not tend to zero
as j →∞ as they did in the numerical method. Instead, it tends to a uniform phase shift d∞ which has
all components equal, (d∞)i = d∞ for all i (i.e. all the neurons are the same distance from threshold and
hence in a globally synchronized state). To illustrate this we take a simple example. If the neurons are
initially all perturbed by the same amount, φi(0) = δ̃ for all i, then they start off globally synchronized

and d(0) = dj =
(
δ̃, δ̃, . . . , δ̃

)T

for all j.
So the distance from the globally synchronized state is now given by ‖d(t)− d∞‖max = ‖d(t)‖max −

d∞. Using the fact that λ1 = 1, v1 = (1, 1, . . . , 1)T and rewriting d0 as a linear combination of the basis
of eigenvectors gives

dj − d∞ = Ajd0 − d∞ = Aj

(
N∑
i=1

βivi

)
− d∞v1 = (β1 − d∞) v1 +

N∑
i=2

βiλ
j
ivi. (8)

Since (dj − d∞)→ 0 as j →∞ and |λi| < 1 for i ≥ 2 it follows from (8) that

lim
j→∞

[
(β1 − d∞) v1 +

N∑
i=2

βiλ
j
ivi

]
= (β1 − d∞) v1 = 0 (9)

and hence

β1 = d∞. (10)

Then, since λ2 is the second largest eigenvalue, taking the infinity norm in (8) gives

‖dj − d∞‖max =

∥∥∥∥∥
N∑
i=2

βiλ
j
ivi

∥∥∥∥∥
max

=
∣∣∣β2λ

j
2

∣∣∣ ∥∥∥∥∥v2 +
N∑
i=3

βi
β2

(
λi
λ2

)j
vi

∥∥∥∥∥
max

∼ |β2| |λ2|j ‖v2‖max (11)

where ∼ means ‘is asymptotically equal to (as j →∞)’.
Taking the logarithm gives

log
(
‖dj − d∞‖max

)
∼ ω + j log |λ2| (12)

where ω is a constant.
We recall that dj is the distance vector at time jT + 1 and asymptotically define the analytical synchro-
nization time by

‖dj − d∞‖max ∼ |β2| ‖v2‖max exp
(
−jT + 1
τsync

)
(13)
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which after taking the logarithm gives

log
(
‖dj − d∞‖max

)
∼ ω − jT + 1

τsync
. (14)

Comparing (12) with (14) we see that

lim
j→∞

ω − jT+1
τsync

ω + j log |λ2|
= 1 (15)

from which it follows that

τsync = − T

log |λ2|
. (16)

We numerically find the second largest eigenvalue of the matrix A and use this to calculate the
analytical synchronization time (16). The average synchronization time 〈τsync〉 is then obtained by
averaging over realizations of networks.

5 Main result and Discussion

The result for the dependence of numerical and analytical average synchronization time 〈τsync〉 on the
rewiring probability p for network ensembles with fixed average characteristic path length 〈L(p)〉 is shown
in Figure 10.

sync

rewiring probability p

Small-world

Figure 10: Average numerical and analytical synchronization time 〈τsync〉 against rewiring probability p for
networks with fixed average characteristic path length 〈L(p)〉 = 4. Error bars are standard deviations. Small-
world region is determined by taking each (k, p) pair and seeing if this puts it in the small-world region on plots
as in Figure 5. Average synchronization time is averaged over 100 realizations, varying network and perturbation
each time. (Parameters used: N = 1000, 〈L〉 = 4, C = 1.01, α = kε = −0.2, τ = 0.1, δ = 0.01).

We first discuss the numerical result. We see that in the small-world regime, the average synchroniza-
tion times are the highest. This means that for network ensembles of fixed average characteristic path
length, those with regular topology actually synchronize quicker than those with the small-world prop-
erty. This contradicts the popular belief that small-world networks exhibit more efficient synchronization
properties than regular networks [5, 6], which we have shown is true for networks of fixed in-degree k (see
Section 3.2). We still see that random networks are the quickest at synchronizing.

The dependence of 〈τsync〉 on p for the fixed k networks is monotonically decreasing and can be
intuitively explained by the average characteristic path length which follows a similar dependence. The
result here for fixed 〈L(p)〉 has a non-monotonic dependence on p. Hence, a possible reason for this
behaviour is not as clear as with the fixed k result. The in-degree k is monotonically decreasing with p
and it can be shown that the clustering coefficient 〈C(p)〉 is also monotonically decreasing. So neither of
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these topological properties alone give an obvious explanation. One possibility is that it could be due to
an interplay between more than one network property. For example, the fast synchronization of regular
networks could be due to the in-degree k being large. This is not because the total coupling strength
α = kε is high, as we kept this fixed for all (k, p) pairs (see Section 4.1), but could be because the neurons
receive the coupling effect from a large number of spikes. However, we also see fast synchronization for
random networks where k is small and so the same total coupling amount is received from far fewer spikes.
The reason fo fast synchronization here could simply be because the network is indeed random. So we
can see that the explanation for the non-monotonic dependence is non-trivial. It may even be necessary
to define a new network property to explain the relationship properly.

The analytical results match the numerical results well. We see the same non-monotonic behaviour
and the standard deviations are also very similar. This implies that the linearized map used in the
analytical method is a good approximation to the actual dynamics. We do see that the analytical values
are systematically higher than the corresponding numerical values and the difference appears to be greater
in the small-world region. This can be explained by the non-exponentiality of the decay of the distance
from the globally synchronized state ‖d(t)‖ for finite times (the analytics show this, see equation (11)).
In our numerical method we measure the gradient of the decay between two finite times t1 and t2. We
found that increasing t1 or t2 can give a shallower gradient and hence a larger average synchronization
time 〈τsync〉. This suggests that if the simulation was run for longer we may in some cases get higher
numerical results as the decay is closer to being exponential.

6 Conclusion and Further Work

We have investigated the effect of topology on the synchronization time of pulse-coupled neural oscillator
networks, looking in particular at regular, small-world and random networks.

Firstly, we saw that for networks of fixed in-degree k, the average synchronization time 〈τsync〉 was
monotonically decreasing with the rewiring probability p. This was explained by the corresponding
decrease in the average characteristic path length 〈L(p)〉. So we have shown that in this case small-world
networks synchronize quicker than regular networks.

Secondly, instead of fixing the in-degree, we fixed the average characteristic path length. We then saw
that networks in the small-world regime synchronize slower than regular networks and a non-monotonic
dependence on the rewiring probability was observed. This result is surprising given the common belief
that small-world networks exhibit more effective synchronization than regular networks. An explanation
for this dependence is yet to be found.

Finally, we compared our numerical synchronization time results to analytical results. These were
calculated from the eigenvalues of the linearized dynamics. We saw that the analytical results gave the
same non-monotonic dependence on the rewiring probability and were in good agreement with the nu-
merics (only a small systematic difference was observed). This suggests that the linearized dynamics are
a good approximation and may be useful in understanding the behaviour we have observed.

This work has many useful extensions. We have so far only obtained the results for one set of
parameters. It would be useful to discover if we get the same results for different parameters. In
particular, fixing the average characteristic path length at a higher value would be interesting as the
result we have obtained may only hold for smaller values.

Finding an explanation for the non-monotonic dependence of the average synchronization time on
the rewiring probability also requires some further work. Using the linearized map of the dynamics may
help to discover what is happening. We only used them here to make a comparison with our numerical
results. The initial transient behaviour we observed in the decay of the distance ‖d(t)‖ from the globally
synchronized state (see Figure 9) could also be investigated using the eigenvalues and eigenvectors of the
linearized map.

Using a completely different model for the dynamics is another important extension as we have only
studied pulse-coupled dynamics. It is possible that the result holds for phase-coupling also. If this
is true then our result could be applicable to many real-world dynamical networks and could help in
understanding how the topology of these networks relates to the observed synchronization on them.
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