Summary 00

Scientific Computing Resources and Current Fair Usage

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

Centre for Complexity Science, University of Warwick

Complexity DTC Annual Retreat, 2011

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

Computational Resources

Centre for Complexity Science, University of Warwick

1 Available Resources

- Cluster of Workstations
- Parallel Resources
- Desktops

2 Considerate Usage

- 🛛 ssh
- top and w
- nice
- finger

- Case Study
- Summary

Documentation

Collected documentation links :

Computing section on http://go.warwick.ac.uk/qcaudron

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

The Cluster of Workstations

"The CoW is a system which manages computational work across the network of CSC-managed computers." - CSC Wiki

- Collection of campus-wide desktop computers in a network
- Computers are for desktop-use, not dedicated compute nodes
- Allows a fair, noninvasive distribution of computational jobs
- Accessed through Godzilla, using a Torque system

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From Windows :

- NX Client
- PuTTy

From Linux / Mac OS :

- ssh username@godzilla.csc.warwick.ac.uk
- ssh godzilla.csc.warwick.ac.uk -l username

Godzilla is an access point **only**, and should **never** be used for **any** computationally-intensive purposes.

• □ ▶ • • □ ▶ • • □ ▶ • • □ ▶

Available Resources	Considerate Usage 00000	Summary 00
Cluster of Workstations		

So Why Godzilla?

Godzilla allows access to the CoW, to submit jobs to the queue. It also allows ssh access to any other computer on the network.

name.csc.warwick.ac.uk

paris	bern
■ rome	 oslo
lisbon	prague
madrid	watson

name.complexity.warwick.ac.uk

- palermo
- timbuktu
- valea

Current State

The CoW has been switched off in the medium term due to misuse leading to serious networkwide issues.

Desktops remain accessible and usable, but the ability to submit jobs to the queue for correct distribution on the CSC desktop network is unavailable.

Alternative methods for high performance computing remain available :

- Francesca and Minerva HPC systems
- Standard desktops

Available Resources	Considerate Usage	Summary
0000000		
Parallel Resources		

Francesca

Francesca is the *old* supercomputing cluster available for scientific computing use.

- 960 cores at 3 GHz
- 1.92 TB RAM
- Architecture : 240 nodes of 2 dual-core processors, 8 GB per node

Francesca has now been superceded by Minerva after reaching End of Life, but remains accessible, despite no longer being actively supported by CSC admins.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Minerva

Minerva is a more powerful, newly-introduced supercomputing cluster.

- 3096 compute cores at 2.66 GHz
- 6.2 TB RAM, plus 290 GB across two data processing nodes
- 12 NVIDIA Tesla M2050 GPU nodes, with 448 CUDA cores
- CPU Architecture : 258 nodes of 12 cores, 24 GB per node
- GPU Architecture : 6 nodes of 2 GPUs, 48 GB per node

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Parallel Computing Resources

Both Francesca and Minerva are for use with parallelised codes. They offer no advantage to serial code. However, Francesca can be used for trivially-parallelisable averaging batch jobs.

Both of these supercomputers require manually-approved registration.

Both have an associated cost.

For non-communicating parallel applications such as averaging simulations, the CoW has a batch job mode.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Available Resources	Considerate Usage	Summary
0000000		
Desktops		

Desktops

The desktop computers within Complexity are free-access.

From your laptops, they can be accessed through Godzilla if using Windows, or directly from Linux or Macs.

From here, you have access to your own files but are connected remotely to another computer. You may run jobs as you would locally.

However, this will lead to desktops becoming unresponsive and unusable. The user at the desktop will most likely reboot the computer, leading to the loss of any currently running simulations, both yours and theirs.

ssh

To access another computer :

- ssh computername.csc.warwick.ac.uk
- ssh computername.complexity.warwick.ac.uk -X

Then, you can run any code as normal.

- gcc mycode.c -o myCompiledCode
- ./myCompiledCode

ssh

To access another computer :

- ssh computername.csc.warwick.ac.uk
- ssh computername.complexity.warwick.ac.uk -X

Then, you can run any code as normal.

- gcc mycode.c -o myCompiledCode
- ./myCompiledCode

(but please, don't)

Checking the Computer's Load

The computer you have sshed into may have two or four cores. These cores may be more or less occupied by current jobs.

∎ top ∎ w

These commands allow you to check how busy a computer is. Please find one that isn't being overwhelmed by other jobs before putting your own on it.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ilat	ole	Reso	
ററ	oc	000	

top and w

Checking the Computer's Load

top -	10:20:41	up 13	l da	ays, 22	2:20,	11 u	sei	rs, 1	load a	average: 0.	02, 0.03, 0.03
Tasks	: 181 tota	1,	3 1	running	g, 171	7 slee	ep:	ing,	1 st	copped, () zombie
Cpu(s	: 15.3%us		.5%s	sy, 0.	.0%ni,	83.3	28:	id, ().0%wa	a, 0.0%hi,	0.0%si, 0.0%st
Mem:	3990556k	tota	al,	39255	524k 1	used,		6503	32k fi	ree, 1422	28k buffers
Swap:	2088956k	tota	al,	4545	520k 1	used,		163443	36k fi	ree, 24065	72k cached
PID	USER	PR					-				COMMAND
6239	phrfat	20		1525m	671m	19m	R	33	17.2	643:39.76	firefox
20085	phrfat	20		95200	9.9m	2688	R		0.3	67:41.20	npviewer.bin
1763	root	20		24396	728	628			0.0	3:51.27	hald-addon-stor
17437	phrfat	20		8672	1160	788	R		0.0	0:00.06	top
1	root	20		12408	364	364			0.0	0:06.42	init
2	root	20							0.0	0:00.11	kthreadd
3	root	RT							0.0	0:00.25	migration/0
4	root	20				0			0.0	0:11.39	ksoftirqd/0

phrfat@d	oslo:~> 1	ia l						
10:14:0	05 up 8 d	days, 19:51,	5 use	rs, lo	ad aver	rage: 1.75	, 1.65	1.31
USER	TTY	LOGIN@	IDLE	JCPU	PCPU	WHAT		
phrfat	pts/1	10:14	0.00s	0.45s	0.00s			
phreax	pts/6	Mon15	42:19m	0.00s	5.00s	kdeinit4:	kded4	[kdeinit]

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

Computational Resources

Centre for Complexity Science, University of Warwick

Available Resources	Considerate Usage	Summary
00000000	○○○●○	00
nice		

nice

The Linux nice command allows you to set any task's priority as you launch it.

- nice -n 18 myCompiledCode
- ∎ renice -n 18 -p PID

Any job run on another computer **must** be run in this way. The nice value of 18 specifies a low priority which will not reduce a computer to a sputtering mess due to overloading.

If you forget to run the job using nice, you can use top for find out the Process ID and then run renice to correct the value.

Available Resources 00000000	Considerate Usage ○○○○●	Summary 00
finger		

finger

If your desktop is unresponsive, you can find out which user is responsible for the computationally-intensive jobs using top. The finger command allows you to look up the owner of the username from found from top.

phrfat@watson:~> finger phrfat Login: phrfat Directory: /home/phrfat

Name: Quentin Caudron Shell: /bin/bash

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

00

Case Study

top - Tasks Cpu(s) Mem:	: 224 tota): 0.1%us 4057796k	up 8 1, , 0 tot	2 1 .1%: al,	running sy, 24 39341	g, 222 9%ni, 108k u	2 slee , 74.9 used,	ep: 9%:	ing, id, (12368	0 stc 0.0%wa, 38k fre	opped, 0.0%hi ee, 144	00, 1.00, 1.00 0 zombie , 0.0%si, 0.0%st 488k buffers 352k cached
PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
6199	phrhat	38	18	21588	4164	1404	R	100	0.1	5523:50	exec
41	root	20							0.0	1:48.98	kondemand/0
30387	phrfat	20		8788	1276	852	R		0.0	0:00.03	top

We want to find out what the current load is on this computer.

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

Centre for Complexity Science, University of Warwick

00

Case Study

top - Tasks Cpu(s) Mem:	: 224 tota): 0.1%us 4057796k	up 8 1, , 0 tot	2 r .1%s al,	unning sy, 24 3934	g, 223 .9%ni 108k s	2 sle , 74. used,	epi 9%:	ing, id, (12368	0 stc 0.0%wa, 38k fre	opped, 0.0%hi e, 144	00, 1.00, 1.00 0 zombie , 0.0%si, 0.0%st 488% buffers 352% cached
PID 6199 41		PR 38	NI 18 0	VIRT 21588 0	RES 4164 0	SHR 1404 0	SRS	<pre>%CPU 100 0</pre>	<pre>%MEM 0.1 0.0</pre>	TIME+ 5523:50	COMMAND exec kondemand/0

The load average over the last 1, 5 and 15 minutes is 1.0.

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

Centre for Complexity Science, University of Warwick

•0

Case Study

-	t@oslo:~>										
-											00, 1.00, 1.00
Tasks	: 224 tota	1,	2 1	cunning	3, 223	2 slee	ep:	ing,	0 sto	pped,	0 zombie
Cpu(s): 0.1%us	, 0	.1%:	sy, 24.	9%ni	74.	981	id, ().0 % wa,	0.0%hi	, 0.0%si, 0.0%st
Mem:	4057796k	tot	al,	39341	108k 1	used,		12368	38k fre	e, 144	488k buffers
Swap:	2088956k	tot	al,	82	296k 1	used,	1	208066	50k fre	e, 2833	352k cached
PID	USER	PR	NI	VIRT	RES	SHR	S	\$CPU	%MEM	TIME+	COMMAND
6199	phrhat	38	18	21588	4164	1404	R	100	0.1	5523:50	exec
41	root	20							0.0	1:48.98	kondemand/0
30387	phrfat	20		8788	1276	852	R		0.0	0:00.03	top

75% of the processor is idle.

Centre for Complexity Science, University of Warwick

3

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

00

Case Study

top - Tasks	: 224 tota	up 8 1,	2 2	unning	g, 22	2 sle	≥p:	ing,	0 sto	pped,	00, 1.00, 1.00 0 zombie , 0.0%si, 0.0%st
Mem:	4057796k	tot	al,	39341	108k	used,		12368	88k fre	e, 144	488k buffers
Swap:	2088956k	tot	al,	82	296k	used,	1	20806	60k fre	e, 2833	352k cached
PID	USER	PR	NI	VIRT	RES	SHR	S	\$CPU	\$MEM	TIME+	COMMAND
6199	phrhat	38	18	21588	4164	1404	R	100	0.1	5523:50	exec
41	root	20							0.0	1:48.98	kondemand/0
30387	phrfat	20		8788	1276	852	R		0.0	0:00.03	top

The remaining load is not due to userspace loads.

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

Centre for Complexity Science, University of Warwick

3

00

Case Study

top -	t@oslo:~> 11:20:28 : 224 tota	up 8									00, 1.00, 1.00 2 zombie
Cpu(s Mem:): 0.1%us 4057796k	, 0 tot	.1%: al,	3934	9%ni 108k	, 74. used,	98:	id, (12368	0.0%wa, 38k fre	0.0%hi e, 144	, 0.0%si, 0.0%st 488k buffers 352k cached
PID	USER	PR	NI	VIRT	RES	SHR	S	*CPU	\$MEM	TIME+	COMMAND
6199	phrhat	38	18	21588	4164	1404	R	100	0.1	5523:50	exec
41	root	20							0.0	1:48.98	kondemand/0
30387	phrfat	20		8788	1276	852	R		0.0	0:00.03	top

The system is also not responsible for the 25% load.

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

Centre for Complexity Science, University of Warwick

00

Case Study

phrfa	t@oslo:~>	top									
top -	11:20:28	up 8	da	(3, 20)	:58,	6 use	er:	s, 10	bad ave	rage: 1.	00, 1.00, 1.00
Tasks	Tasks: 224 total, 2 running, 222 sleeping, 0 stopped, 0 zombie										
Cpu(s): 0.1%us	, 0	.1%:	sy, 24.	9%ni	, 74.	98.	id, ().0%wa,	0.0%hi	, 0.0%si, 0.0%st
Mem:	4057796k	tot	al,	39341	108k 1	used,		12368	38k fre	e, 144	488k buffers
Swap:	2088956k	tot	al,	82	296k 1	used,		208066	50k fre	e, 2833	352k cached
PID	USER	PR	NI	VIRT	RES	SHR	S	\$CPU	%MEM	TIME+	COMMAND
6199	phrhat	38	18	21588	4164	1404	R	100	0.1	5523:50	exec
41	root	20							0.0	1:48.98	kondemand/0
30387	phrfat	20		8788	1276	852	R		0.0	0:00.03	top

We see that the load is due to niced processes.

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

Centre for Complexity Science, University of Warwick

3

00

Case Study

top - Tasks Cpu(s) Mem:	: 224 tota): 0.1%us 4057796k	up 8 1, , 0 tot	2 1 .1%s al,	unning 9y, 24 3934	g, 222 9%ni 108k 1	2 sle , 74. used,	≥p: 9%:	ing, id, (12368	0 stc 0.0%wa, 88k fre	opped, 0.0%hi e, 144	00, 1.00, 1.00 0 zombie , 0.0%si, 0.0%st 488% buffers 352% cached
6199 41	USER phrhat root phrfat	38	18 0	21588	4164 0	1404 0	R S	100 0	0.1	TIME+ 5523:50 1:48.98 0:00.03	exec kondemand/0

In more detail, we can look at what processes are running.

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

Centre for Complexity Science, University of Warwick

•0

Case Study

top - Tasks	: 224 tota	up 8 1,	2	cunning	1, 223	2 slee	≥p.	ing,	0 sto	pped,	00, 1.00, 1.00 0 zombie , 0.0%si, 0.0%st
Mem:	4057796k	tot	al,	39341	108k 1	used,		12368	88k fre	e, 144	, 0.0451, 0.0451 488k buffers 352k cached
PID	USER	PR	NI	VIRT	RES	SHR	S	*CPU	%MEM	TIME+	COMMAND
6199	phrhat	38	18	21588	4164	1404	R	100	0.1	5523:50	exec
41	root	20							0.0	1:48.98	kondemand/0
30387	phrfat	20		8788	1276	852	R		0.0	0:00.03	top

User phrfat is running top under normal priority.

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

Centre for Complexity Science, University of Warwick

00

Case Study

Tasks: 224 to	8 up 8 tal,	2 1	unning	g, 22	2 slee	ep:	ing,	0 sto	opped,	00, 1.00, 1.00 0 zombie , 0.0%si, 0.0%st
Mem: 405779 Swap: 208895										
PID USER	PR	NI	VIRT	RES	SHR	S	*CPU	*MEM	TIME+	COMMAND
6199 phrhat	38	18	21588	4164	1404	R	100	0.1	5523:50	exec
41 root	20							0.0	1:48.98	kondemand/0
30387 phrfat	20		8788	1276	852	R		0.0	0:00.03	top

User phrhat is running their own code, exec, using nice value 18.

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

Centre for Complexity Science, University of Warwick

Ava	ilal	ble	Reso	
	oc	oc	000	

Case Study

Quentin CAUDRON Ellak SOMFAI Stefan GROSSKINSKY

Computational Resources

Centre for Complexity Science, University of Warwick

Summary

For serial codes :

- Find a computer with a low load, using top
- Run your job using nice -n 18
- Please do not abuse the desktops distribute fairly

For repeat jobs or averaging :

Submit to Francesca's queue

For computationally-demanding parallel jobs :

Submit to Minerva's queue

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >