
For ωj ∈ Zd, j ∈ N, let the sequence ω = (ω1, ω2, ω3, ...) represent
the path of a d-dimensional directed random polymer. We construct
the n-th step measure on this path as follows,

µn ({ω}) =
1

Zn
exp

β n∑
j=1

η
(
j, ωj

)P ({ω})

where:

• P - the Zd simple-symmetric random walk measure of a path ω.

• β - a parameter whose physical interpretation is inverse temper-
ature.

• (η)N×Zd - a family of iid rvs we call the random environment.

• Zn - a normalisation factor we call the the partition function.

Then µn reweights
the measure P , giv-
ing more weight to
those paths which
often encounter a
positive environment
(η
(
j, ωj

)
> 0) and

less to those which
often encounter a
negative environ-
ment (η

(
j, ωj

)
< 0).

Hence the model
attempts to cap-
ture the idea that
a polymer will grow
towards an envi-
ronment which is
favourable. (fig. 1)

fig. 1

Under the measure µn the walker’s next step is more
likely to be left, where the environment is +ve and
less likely to be right or down.

The random environment (η)N×Zd is a family of real valued, non
constant iid rvs. We define Q to be the measure on members of
this family. Furthermore, η has a finite moment generating function.
Formally, Q(eβη) < ∞ for all β ∈ R. Additionally we will introduce
notation for the log of the moment generating function as a function
of the inverse temperature, which we will denote by λη (β). Formally,
λη(β) = log (Q(eβη)).

We study the normalised partition function, Wn, defined as follows,

Wn = Zne
−nλη(β)

Notice Q(Wn) = 1 for all n and Wn is a martingale wrt filtration (Gn),
where Gn = σ{η(j, x); j ≤ n, x ∈ Zd}.

It can be shown analytically that W∞ := limn→∞Wn converges Q-as
and either W∞ > 0, Q-as or W∞ = 0, Q-as.

Further more this transition is monotonic in β and hence the model
shows a phase transition namely,

W∞ > 0 Q-as for β < βc

W∞ = 0 Q-as for β > βc

where βc is the critical point at which phase transition occurs.

W∞ > 0 Q-as corresponds to a dif-
fusive behaviour. Formally

lim
n→∞

µn
(
||ωn||2

)
n

= 1, Q-as

W∞ = 0 Q-as corresponds to a
regime of strong disorder. (fig. 2)

For d = 1, 2 it has been shown that
βc = 0.

For d ≥ 3 the following analytical
bounds exist for βc[1],

• λη(2βc)− 2λη(βc) ≥ log 1
πd

, (lower)

• βcλ
′
η(βc)− λη(βc) ≤ log 2d, (upper)

where πd is the probability that a
d-dimensional random walk returns
to its starting point.

Recent work has shown that the
lower bound is not tight for d ≥ 4.
A major objective of this project is to
investigate numerically whether the
lower bound is tight for d = 3.

fig. 2

Strong disorder: Favourable paths
stay localised at a favourite site
and exhibit occasional fast move-
ment through a +ve environment.

We will attempt to calculate Wn for d = 3 and a Gaussian random
environment, η ∼ N(0, 1). For large n we hope to observe the phase
transition and estimate βc.

We will exploit the following recursion relation,

Wn(x) =
eβη(n,x)−λη(β)

2d

∑
δ∈∆

Wn−1(x + δ)

with W0(x) = 1 if x = 0 and W0(x) = 0 if x 6= 0, where

Wn(x) = P
(
e
∑n
j=1 (βη(j,ωj)−λη(β))I{ωn=x}

)
and

∆ = {δ ∈ Zd : ||δ||1 = 1}†

We calculate Wn by summing over lattice points,

Wn =
∑
x∈Zd

Wn(x)

remembering that Wn(x) = 0 when ||x||1 > n because a random
walker could not have traveled more that n steps away from the
origin.

Another aim of the project is to investigate a possible scaling law of
of the form Wn ∼ e−nf (β−βc) for β > βc, where the function f will be
some scaling exponent.

We have written c code to com-
pute Wn up to n = 290 for sev-
eral realisations of the Gaus-
sian random environment. Fig-
ure 3 shows W290 plotted
against β for one such environ-
ment. The phase transition can
be clearly observed and the
preliminary findings indicate it
is plausible that the analytical
lower bound for d = 3 and η ∼
N(0, 1) of βc ≥ 1.03 may not
be tight. It will be necessary to
compute Wn to larger n to con-
firm this.
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