EPSRC

Engineering and Physical Sciences
Research Council

Complexity Science
Doctoral Training Centre

The Setup:

For $\omega_{j} \in \mathbb{Z}^{d}, j \in \mathbb{N}$, let the sequence $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}, \ldots\right)$ represent the path of a d-dimensional directed random polymer. We construct the n-th step measure on this path as follows,

$$
\mu_{n}(\{\omega\})=\frac{1}{Z_{n}} \exp \left(\beta \sum_{j=1}^{n} \eta\left(j, \omega_{j}\right)\right) P(\{\omega\})
$$

where:

- P - the \mathbb{Z}^{d} simple-symmetric random walk measure of a path ω.
- β - a parameter whose physical interpretation is inverse temperature.
- $(\eta)_{\mathbb{N} \times \mathbb{Z}^{d}}$ - a family of iid rvs we call the random environment.
- Z_{n} - a normalisation factor we call the the partition function.

Then μ_{n} reweights the measure P, giving more weight to those paths which often encounter a positive environment $\left(\eta\left(j, \omega_{j}\right)>0\right)$ and less to those which often encounter a negative environ ment $\left(\eta\left(j, \omega_{j}\right)<0\right)$. Hence the model attempts to capture the idea that a polymer will grow towards an environment which is

fig. 1
Under the measure μ_{n} the walker's next step is more likely to be left, where the environment is +ve and less likely to be right or down.
favourable. (fig. 1)

The Random Environment:

The random environment $(\eta)_{\mathbb{N} \times \mathbb{Z} d}$ is a family of real valued, non constant iid rvs. We define Q to be the measure on members of this family. Furthermore, η has a finite moment generating function. Formally, $Q\left(e^{\beta \eta}\right)<\infty$ for all $\beta \in \mathbb{R}$. Additionally we will introduce notation for the log of the moment generating function as a function of the inverse temperature, which we will denote by $\lambda_{\eta}(\beta)$. Formally, $\lambda_{\eta}(\beta)=\log \left(Q\left(e^{\beta \eta}\right)\right)$.

Existence of a Phase Transition:

We study the normalised partition function, W_{n}, defined as follows,

$$
W_{n}=Z_{n} e^{-n \lambda_{\eta}(\beta)}
$$

Notice $Q\left(W_{n}\right)=1$ for all n and W_{n} is a martingale wrt filtration $\left(\mathcal{G}_{n}\right)$, where $\mathcal{G}_{n}=\sigma\left\{\eta(j, x) ; j \leq n, x \in \mathbb{Z}^{d}\right\}$.

It can be shown analytically that $W_{\infty}:=\lim _{n \rightarrow \infty} W_{n}$ converges Q-as and either $W_{\infty}>0, Q$-as or $W_{\infty}=0, Q$-as

Further more this transition is monotonic in β and hence the model shows a phase transition namely,

$$
\begin{aligned}
& W_{\infty}>0 Q \text {-as for } \beta<\beta_{c} \\
& W_{\infty}=0 Q \text {-as for } \beta>\beta_{c}
\end{aligned}
$$

where β_{c} is the critical point at which phase transition occurs.
$W_{\infty}>0 Q$-as corresponds to a diffusive behaviour. Formally

$$
\lim _{n \rightarrow \infty} \frac{\mu_{n}\left(\left\|\omega_{n}\right\|^{2}\right)}{n}=1, Q \text {-as }
$$

$W_{\infty}=0 Q$-as corresponds to a regime of strong disorder. (fig. 2)

For $d=1,2$ it has been shown that $\beta_{c}=0$.

For $d \geq 3$ the following analytical bounds exist for $\beta_{c}[1]$,

- $\lambda_{\eta}\left(2 \beta_{c}\right)-2 \lambda_{\eta}\left(\beta_{c}\right) \geq \log \frac{1}{\pi_{d}}$, (lower)
- $\beta_{c} \lambda_{\eta}^{\prime}\left(\beta_{c}\right)-\lambda_{\eta}\left(\beta_{c}\right) \leq \log 2 d$, (upper) where π_{d} is the probability that a d-dimensional random walk returns to its starting point.

Recent work has shown that the lower bound is not tight for $d \geq 4$. A major objective of this project is to investigate numerically whether the lower bound is tight for $d=3$.

Strong disorder:

fig. 2
Strong disorder: Favourable paths stay localised at a favourite site and exhibit occasional fast move ment through a +ve environment.

Calculation:

We will attempt to calculate W_{n} for $d=3$ and a Gaussian random environment, $\eta \sim N(0,1)$. For large n we hope to observe the phase transition and estimate β_{c}.

We will exploit the following recursion relation,

$$
W_{n}(x)=\frac{e^{\beta \eta(n, x)-\lambda_{\eta}(\beta)}}{2 d} \sum_{\delta \in \Delta} W_{n-1}(x+\delta)
$$

with $W_{0}(x)=1$ if $x=0$ and $W_{0}(x)=0$ if $x \neq 0$, where

$$
W_{n}(x)=P\left(e^{\left.\sum_{j=1}^{n}\left(\beta \eta\left(j, \omega_{j}\right)-\lambda_{\eta}(\beta)\right)_{\mathbb{I}_{\left\{\omega_{n}=x\right\}}}\right)}\right.
$$

and

$$
\Delta=\left\{\delta \in \mathbb{Z}^{d}:\|\delta\|_{1}=1\right\}^{\dagger}
$$

We calculate W_{n} by summing over lattice points,

$$
W_{n}=\sum_{x \in \mathbb{Z}^{d}} W_{n}(x)
$$

remembering that $W_{n}(x)=0$ when $\|x\|_{1}>n$ because a random walker could not have traveled more that n steps away from the origin.

Another aim of the project is to investigate a possible scaling law of of the form $W_{n} \sim e^{-n f\left(\beta-\beta_{c}\right)}$ for $\beta>\beta_{c}$, where the function f will be some scaling exponent.

Preliminary Findings:

We have written c code to compute W_{n} up to $n=290$ for several realisations of the Gaussian random environment. Figure 3 shows W_{290} plotted against β for one such environment. The phase transition can be clearly observed and the preliminary findings indicate it is plausible that the analytical lower bound for $d=3$ and $\eta \sim$ $N(0,1)$ of $\beta_{c} \geq 1.03$ may not be tight. It will be necessary to compute W_{n} to larger n to confirm this.

