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which are highly elongated, normal to the surface
of the cortex. This extended cell does not have a
homogeneous membrane voltage but instead the
voltage satisfies a so-called cable equation.

The neocortex has neuronal cells forming a com-
plex network where each cell individually has in-
teresting response properties, which is the main
reason for its computational power. The prin-
cipal cells in the neocortex are pyramidal cells,
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subject to a very large stochastic synaptic input,
where each synapse has either an inhibitory or
excitatory effect.

FEach cortical neuron can receive up to 10,000
synapses. Though the rate at which cells fire ac-
tion potentials can be very low (~0-5Hz) they are

The voltage in the extended cell is described by a
diffusion like cable equation

During this project the Point model was extended
to a cable of radius a where the synapses are dis-
tributed along the membrane with a density p;
(s = e,i stands for excitatory and inhibitory
synapses) and along each infinitesimal section of
the cable A, is a set of synaptic pulses {ts}-

7O = —v + N202v + Lyyn(t, 2)/G, (3)

where I, 18 the synaptic drive, 7, A are the mem-
brane time and space constants respectively and
(G is a conductance. In this case the synaptic drive
is in the form of a sum of excitatory and inhibitory
current inputs. For the extended model we make
the same approximations as for a single compart-
ment model and get a voltage relation of the form
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where a, is the amplitude of voltage jumps due
to synaptic pulses, R, is the number of pulses per
unit time per unit area, (s(¢,x) is a white noise
term in time and space, 75 is the decay time con-
stant for the conductance of the excitatory and

inhibitory pulses, G, is the characteristic con-
ductance term and g is the sum of the leak con-
ductance and the mean of the excitatory and in-
hibitory conductances.
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The starting point to study stochastic input into
dendrites of a neuron, is to consider the dendrites
to be point like, i.e. without spatial dependence.
The input is considered to be Poissonian in time,
with each incoming pulse at the synapses chang-
ing the conductance of the postsynaptic cell by
a fixed v [1, 3, 4].

To ensure the resulting voltage relation and its
mean and variance have a closed form solution
some approximations need to be made. First
the Poisson process is written as a mean and
the excess from it is Gaussian distributed eqn.
(1). Secondly the closing of synaptic channels is
assumed to be instantaneous. The conductance
is in the form:

(1)

The resulting Voltage relation is in the form of
the Ornstein-Uhlenbeck process

Js = gso + gsF-

dV
T— =F -V + oy V27&(1),
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where 7 is the effective membrane time constant,
E is an effective equilibrium potential, oy is the
variance of the voltage and £(t) is time depen-
dant white noise.

The cable equation eqn. (3) has a unique solu-
tion depending on the boundaries [5|, [7]. The
Greens function of the cable equation for an infi-

nite cable due to a current impulse 6(x —x")d(t —
t') takes the form [5]
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The closed form solution for v(¢, ) can be found
by convolving the specific form of the synaptic
current Iy, (t,z) (from eqn. (4)) in space and
time with the Greens function g(z;t). Using the
properties of the white noise term we can con-
clude that (V (z,t)), . = 0. From the solution for
the covariance (V (z, )V (z/,#)) it is also possi-
ble to calculate the variance of the voltage
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The next step is to calculate the variance and
covariance of voltages in the case of a finite cable.
The method consists of using an infinite sum of
Greens functions [6].

There are many interesting directions in which

Ithis project can be extended. The first stepl

would be to include an active input into the cell
and explore the properties of the resulting volt-
age relation. In addition to that one could try
to include coloured noise to see how the type of
synaptic noise affects the voltage.

Once the voltage relations with active input for a
single cell are known, it would become possible to
explore properties of neuronal cells in networks
using mean-field approaches or using a simplified
version of the single cell voltage relation.



