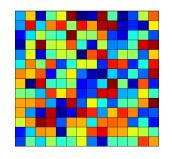
Fractal quantum transport in the presence of underlying mixed classical phase space

Anas Ahmad Rana

Complex Dynamics in Quantum Systems Institut für Theoretische Physik, Universität Heidelberg

26th June 2008



Imperial College London

Motivation

- Komplexität des quantenmechanischen δ -kicked Rotor
 - klassisch gemischtes → rein chaotisches System
- Fraktale Strukturen der Parametrische Fluktuationen
 - quantenmechanischer Transport unter Einwirkung von absorbierenden Randbedingungen

Im Experiment: Kalte Atome werden einem eindimensionalen periodischen Potential ausgesetzt, dass periodisch an und ausgeschaltet wird.

F.L. Moore et. al., Phys. Rev. Lett. 75, 4598, 1995

Inhaltsübersicht

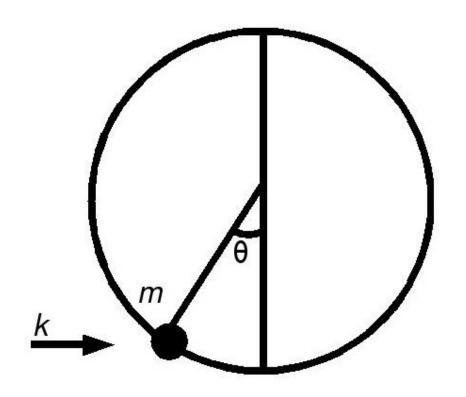
- Klassischer δ -kicked Rotor
- Eigenschaften des Systems
- Überlebenswahrscheinlichkeit
- Methoden zur Analyse der Fraktalen Dimension, D_f
- Problem Lokalisierung
- D_f als Funktion der Zeit
- **D**_f als funktion von S
- Zusmmenfassung Ausblick

Klassischer δ -kicked rotor

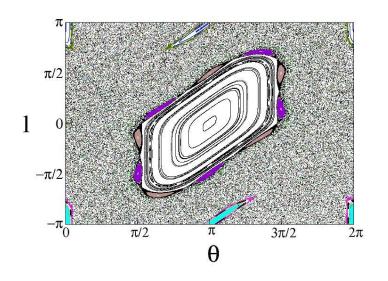
$$H(L,\theta,t) = \frac{L^2}{2I} + k\cos(\theta) \sum_{n} \delta(t - nT)$$

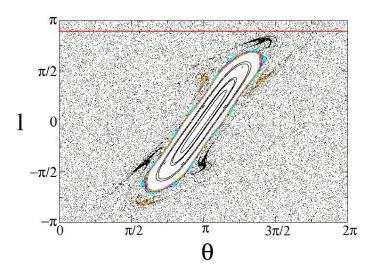
$$l_{n+1} = l_n + S\sin(\theta_n)$$

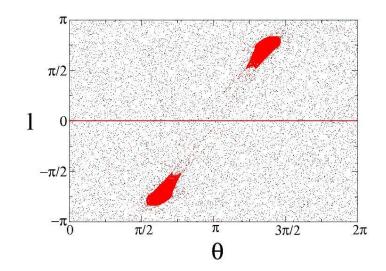
$$\theta_{n+1} = \theta_n + l_{n+1}$$

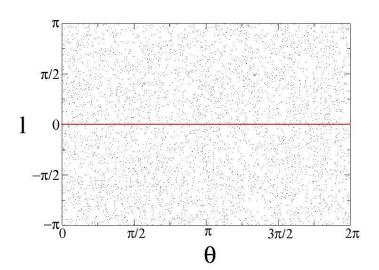


Klassischer δ -kicked Rotor







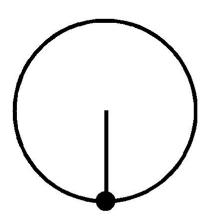


Quantenmechanischer δ -kicked Rotor

$$\hat{H} = \frac{(\hat{p}\hbar)^2}{2m} + V_0 \tau \cos(2\hat{x}k_L) \sum_{l} \delta(t - l\tau) \qquad \qquad \blacktriangleright \qquad \hat{H} = \frac{\hat{p}^2}{2} + k \tau \cos(\hat{\theta}) \sum_{l} \delta(t - l\tau)$$

$$\hat{H} = \frac{\hat{p}^2}{2} + k \tau \cos(\hat{\theta}) \sum_{l} \delta(t - l\tau)$$





Quantenmechanischer δ -kicked Rotor

$$\hat{H} = \frac{(\hat{p}\hbar)^2}{2m} + V_0 \tau \cos(2\hat{x}k_L) \sum_{l} \delta(t - l\tau) \qquad \qquad \blacktriangleright \qquad \hat{H} = \frac{\hat{p}^2}{2} + k \tau \cos(\hat{\theta}) \sum_{l} \delta(t - l\tau)$$

Bloch Theorem wird benutzt um das System in ein periodisches zu überführen.

$$\psi(\theta) = e^{i\beta\theta} u(\theta) \qquad p = n + \beta \quad n \in \mathbb{N}, \beta \in \left] 0, 1 \right[$$

$$\hat{H} = \frac{(\hat{n} + \beta)^2}{2} + k \cos(\hat{\theta}) \sum_{l} \delta(t/\tau - l)$$

Quantenmechanischer δ -kicked Rotor

$$\hat{H} = \frac{(\hat{p}\hbar)^2}{2m} + V_0 \tau \cos(2\hat{x}k_L) \sum_{l} \delta(t - l\tau) \qquad \qquad \qquad \hat{H} = \frac{\hat{p}^2}{2} + k \tau \cos(\hat{\theta}) \sum_{l} \delta(t - l\tau)$$

Bloch Theorem wird benutzt um das System in ein periodisches zu überführen.

$$\psi(\theta) = e^{i\beta\theta}u(\theta)$$
 $p = n + \beta$ $n \in \mathbb{N}, \beta \in]0,1[$

$$\hat{H} = \frac{(\hat{n} + \beta)^2}{2} + k \cos(\hat{\theta}) \sum_{l} \delta(t/\tau - l)$$

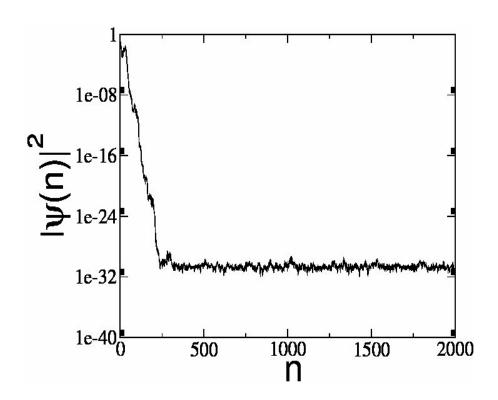
Der Zeitentwicklungsoperator wird dann berechnet und besteht aus zwei Faktoren

$$\hat{U} = \exp\left(-i\tau \frac{(\hat{n}+\beta)^2}{2}\right) \exp\left(-ik\cos(\hat{\theta})\right)$$

Eigenschaften des Systems

Dynamische Lokalisierung

Für fast alle Werte der Parameter τ , β , beobachten wir Dynamische Lokalisierung



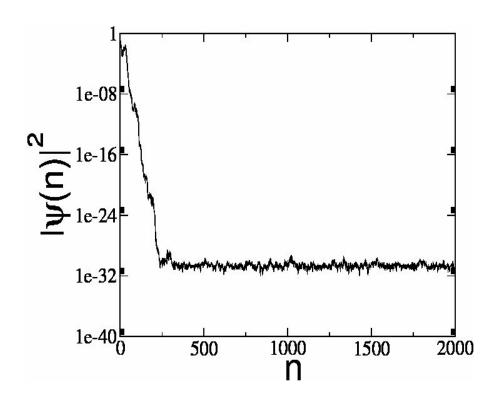
Eigenschaften des Systems

Dynamische Lokalisierung

Für fast alle Werte der Parameter τ , β , beobachten wir Dynamische Lokalisierung

Quadratischer Energiezuwachs

Bsp.: für
$$\tau = 4 \pi 1$$
; 1 positive ganze Zahl und $\beta = \frac{1}{2} + \frac{1}{1} \mod(1)$; $j=0,1,...,l-1$

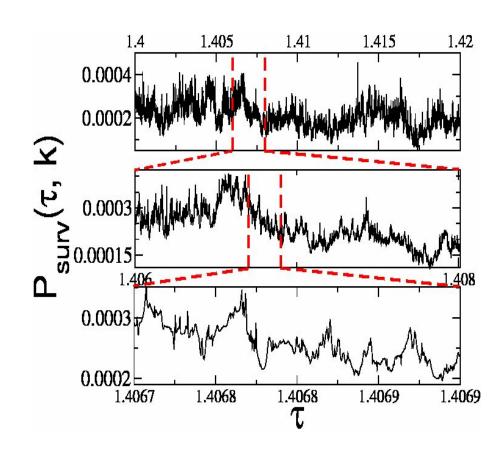


Überlebenswahrscheinlichkeit

• Impulskomponenten außerhalb von $]n_1,n_2[$ werden vernachlässigt

$$P_{surv}(t; \tau, \beta, k, n_{1,n_2}) = \sum_{n=n_1-1}^{n_2-1} |u(n; t)|^2$$

- n_1 und n_2 müssen die Lokalisierung gewährleisten
- Fluktuationen auf drei unterschiedlichen Skalen



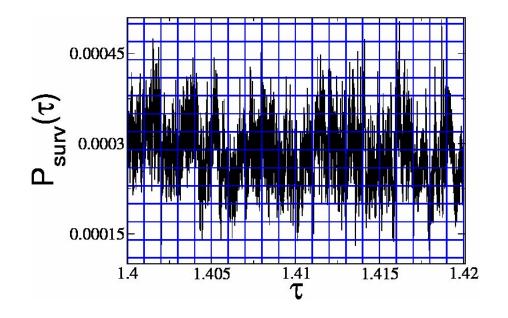
Methoden zur Analyse der Fraktalen Dimension

Boxcounting

$$N(\delta) = \sum_{i} \left[\frac{\max P_{surv}(\tau_{n}) - \min P_{surv}(\tau_{n})}{\delta} \right]$$

Power law

$$N(\delta) \sim \delta^{-D_f}$$



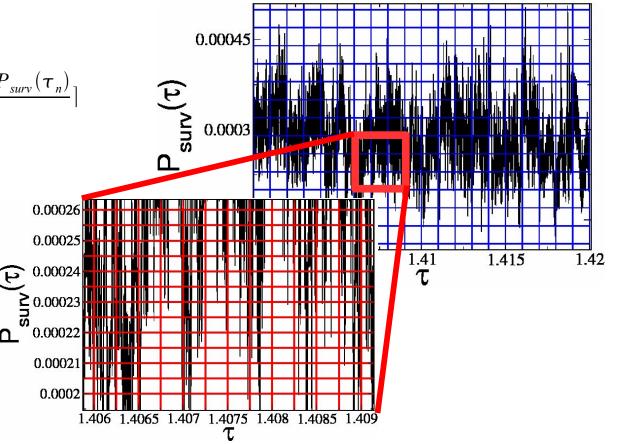
Methoden zur Analyse der Fraktalen Dimension

Boxcounting

$$N(\delta) = \sum_{i} \left\lceil \frac{\max P_{surv}(\tau_n) - \min P_{surv}(\tau_n)}{\delta} \right\rceil$$

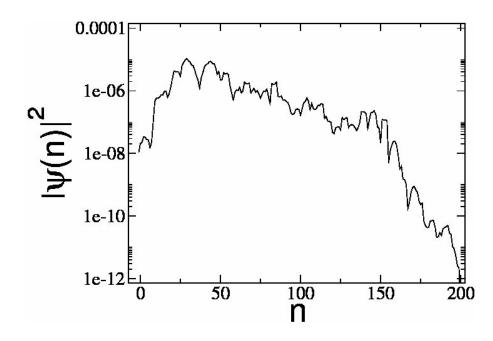
Power law

$$N(\delta) \sim \delta^{-D_f}$$



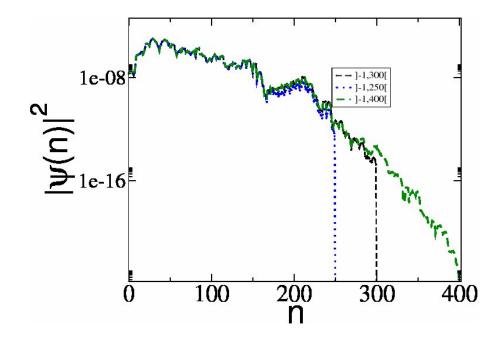
Problem - Lokalisierung

• Für große S ist die Lokalisierung für die gewählten Randbedingungen nicht gewährleistet



Problem - Lokalisierung

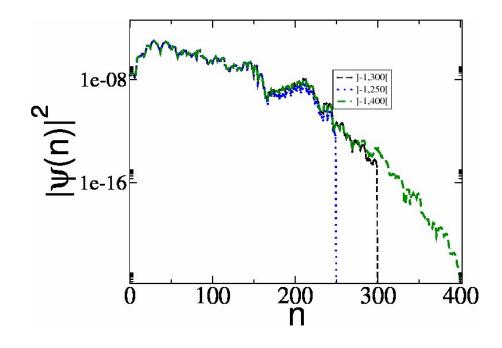
- Für große S ist die Lokalisierung für die gewählten Randbedingungen nicht gewährleistet
- Durch ändern der absorbierenden Grenzen kann die Lokalisierungslänge erweitert werden



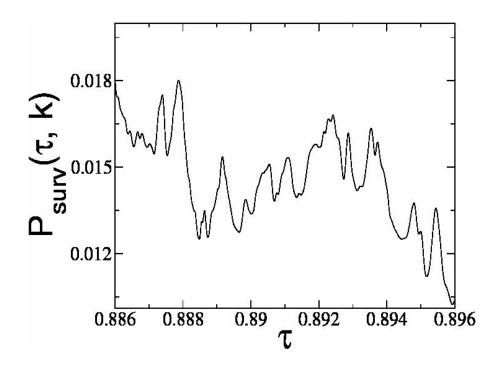
Problem - Lokalisierung

- Für große S ist die Lokalisierung für die gewählten Randbedingungen nicht gewährleistet
- Durch ändern der absorbierenden Grenzen kann die Lokalisierungslänge erweitert werden
- Wenn n, zu klein gewählt wird

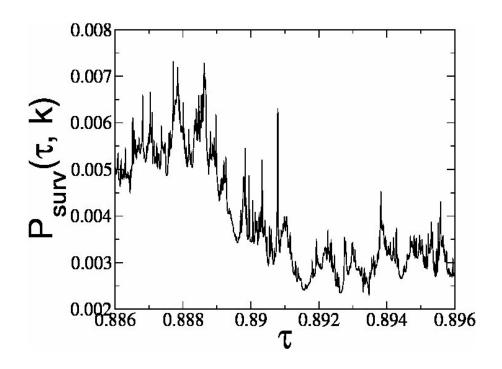
$$P_{surv} \approx 1$$



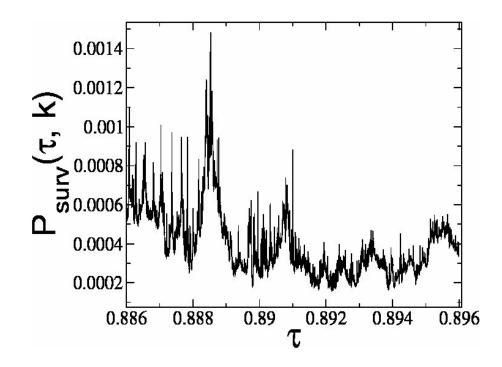
- Die Fraktale Dimension als Funktion der Zeit saturiert für verschiedene Werte von der Anzahl der Kicks
- Saturierungswert $\approx 2000 3000$ kicks für kleine τ und $\approx 3000 - 4000$ kicks für große τ



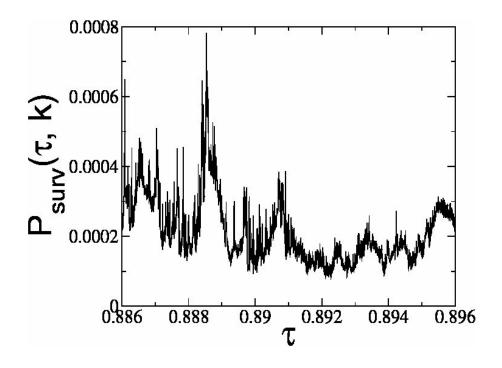
- Die Fraktale Dimension als Funktion der Zeit saturiert für verschiedene Werte von der Anzahl der Kicks
- Saturierungswert $\approx 2000 3000$ kicks für kleine τ und $\approx 3000 - 4000$ kicks für große τ



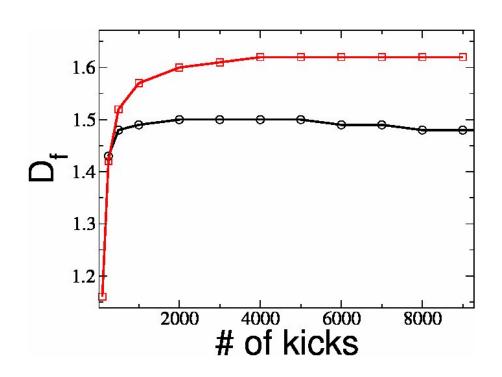
- Die Fraktale Dimension als Funktion der Zeit saturiert für verschiedene Werte von der Anzahl der Kicks
- Saturierungswert $\approx 2000 3000$ kicks für kleine τ und $\approx 3000 - 4000$ kicks für große τ



- Die Fraktale Dimension als Funktion der Zeit saturiert für verschiedene Werte von der Anzahl der Kicks
- Saturierungswert ≈ 2000 3000
 kicks für kleine τ und ≈ 3000 4000
 kicks für große τ

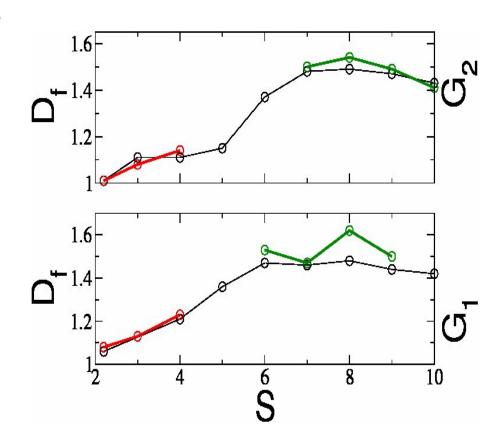


- Die Fraktale Dimension als Funktion der Zeit saturiert für verschiedene Werte von der Anzahl der Kicks
- Saturierungswert $\approx 2000 3000$ kicks für kleine τ und $\approx 3000 - 4000$ kicks für große τ
- Der Saturierungspunkt sinkt für zunehmende S
- Gleichzeitig mit dem Aufheben der Lokalisierung
- Erst nach dieser Saturierung sind alle Strukturen aufgelöst



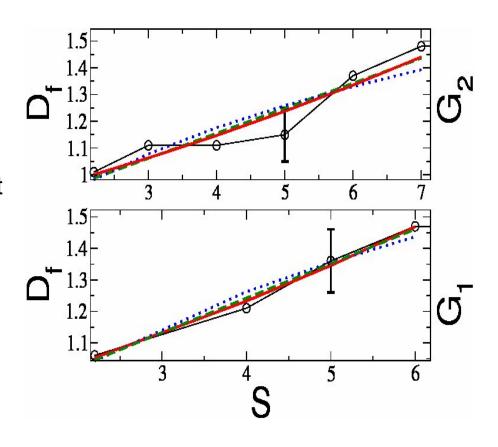
D_f als Funktion von S

- Die Analyse ergibt nur Sinn wenn alle Strukturen aufgelößt sind
- Für beide Intervalle ist eine Saturierung sichtbar bei verschiedenen S



D_f als Funktion von S

- Die Analyse ergibt nur Sinn wenn alle Strukturen aufgelöst sind
- Für beide Intervalle ist eine Saturierung sichtbar bei verschiedenen S
- Der Trend des Anstiegs f
 ür kleine S ist interessant
- Unterschiede zwischen den Fits minimal → endgültige Aussage nicht möglich



Zusammenfassung - Ausblick

- Erster schritt zum besseren Verständnis von Systemen mit gemischtem unterliegenden klassischen Phasenraum
 - Zwei Intervalle von *τ* untersucht
 - S über weiten Bereich abgescannt

Zusammenfassung - Ausblick

- Erster schritt zum besseren Verständnis von Systemen mit gemischtem unterliegenden klassischen Phasenraum
 - Zwei Intervalle von τ untersucht
 - S über weiten Bereich abgescannt

- Mehr Werte für Parameter S untersuchen
- $\hbar_{eff} = \tau \rightarrow 0$ für ein mehr Semiklassische Betrachtung

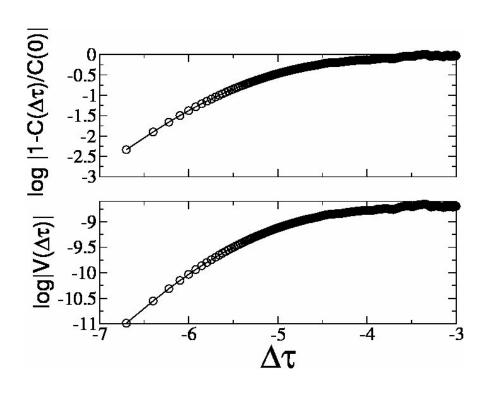
Vielen Dank fürs Zuhören!

Methoden zur Analyse der Fraktalen Dimension

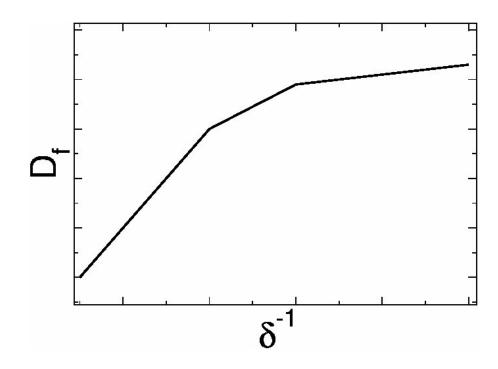
$$N(\delta) \sim \delta^{-D_f}$$

Korrelation und Varianz

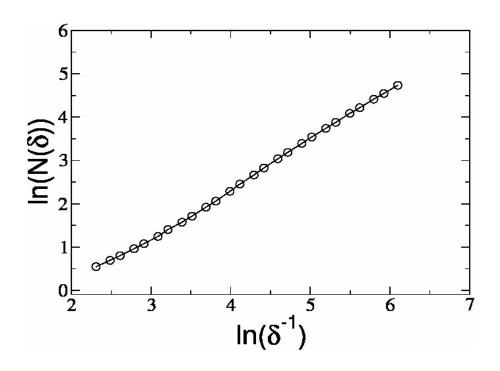
$$\begin{split} C(\Delta \, \tau) &= \left\langle P_{\mathit{surv}}(\tau) \, x \, P_{\mathit{surv}}(\tau + \Delta \, \tau) \right\rangle_{\tau} \\ V(\Delta \, \tau) &= \left\langle \left| P_{\mathit{surv}}(\tau + \Delta \, \tau) - P_{\mathit{surv}}(\tau) \right|^2 \right\rangle_{\tau} \\ &- \text{Power Law} \\ 1 - C(\Delta \, \tau) / C(0) \sim c \, \Delta \, \tau^{\alpha}, \quad V(\Delta \, \tau) \sim c \, \Delta \, \tau^{\alpha} \\ D_f &= 2 - \alpha / \, 2 \end{split}$$



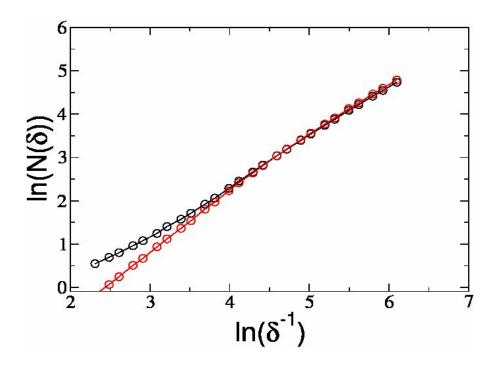
- Wenn die Schrittweite in τ vergleichbar ist mit P_{surv} ist die Struktur nicht wie erwartet
- Das Boxcounting ohne ceiling Funktion wird zur Hilfe genommen



- Wenn die Schrittweite in τ vergleichbar ist mit P_{surv} ist die Struktur nicht wie erwartet
- Das Boxcounting ohne ceiling Funktion wird zur Hilfe genommen



- Wenn die Schrittweite in τ vergleichbar ist mit P_{surv} ist die Struktur nicht wie erwartet
- Das Boxcounting ohne ceiling Funktion wird zur Hilfe genommen



- Wenn die Schrittweite in τ vergleichbar ist mit P_{surv} ist die Struktur nicht wie erwartet
- Das Boxcounting ohne ceiling Funktion wird zur Hilfe genommen
- Dadurch kann ein Bereich identifiziert werden, in dem die Boxcounting Funktion Sinn ergibt

