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Abstract: This discussion of the spike train data applies the approach of Hadjipantelis et al. developed for Linguistic

data to jointly model both the phase and amplitude functions via a mixed effects model. The approach shows that care

needs to be taken when assessing amplitude and phase functions, particularly if separate analysis is undertaken, as

there can be high levels of correlation between the warping and amplitude component functions.
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1. Introduction

When a monkey conducts a task, brain activity can be measured using single electrodes connected to the neurons of

its brain. Each electrode records changes in the action potential of neurons and these sequences of fluctuating action

potentials are what we refer to as spike train data. The data set and introduction to spike trains is provided in Wu,

Hatsopoulos & Srivastava [1]; background is given in [2]. An important characteristic of a given spike train waveform

is that the amplitude of the fluctuations is relatively uninformative while the temporal placement of the spikes, their

phase [3], carries the most important information. Our data are 240 trials of a hand movement task; the movement

pattern outlines the perimeter of a square. The subject had to move a cursor from one angle to the next angle in a

counter-clockwise fashion and the task was completed when the cursor returned to each original starting angle.The

experiment had a balanced design with 60 runs per path and all waveforms were normalized to the same lengths [2].

Spike train data present an obvious test-bed for methodologies that can concurrently account for length, amplitude

and phase variations. As shown in other studies [3] a pre-registration step significantly enhances the explanatory power

of modelling spike trains, as it allows more meaningful interpretation of covariance patterns in conjunction with the
1
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registration functions. We are interested in determining whether more relevant information can be extracted from spike

train data by jointly considering amplitude and phase, rather than considering these components separately, providing

an illustration of the statistical methodology of Hadjipantelis et al [4].

While a number of studies have focused on the analysis of electrophysiological responses as functional data and

even more specifically as functional data embedded in a random-effect structure [5, 6, 7, 8], these studies employ

functional statistical methodology exclusively for the amplitude domain. They assume that inference can be conducted

directly on the spike waveforms (or a smoothed version of them). We recognise this as an obvious limitation and

present a study that accounts for variations in amplitude and phase domains concurrently.

This discussion aims to address three main questions:

• What are the principal modes of variation in the sample when one accounts for phase variability?

• Is there significant correlation between phase and amplitude variations and what consequences does any corre-

lation have?

• Can we produce exemplar spike train waveforms that correspond to our initial dynamic assumptions?

2. Statistical Methodology

Our proposed statistical framework is based on methodology outlined in [4]. As in Tang & Müller [9] we view the ith

waveform fi, measured over the interval t ε [0, 1], as :

fi(t) = f̃i(h
−1
i (u)). (1)

A waveform fi(t) is viewed as the realization of an amplitude variation function f̃ evaluated over u, with the mapping

h(·) transforming the real time t onto the universal/sample-wide time-scale u. We also assume that there is a random

effect Zi associated with each curve, accounting for the path taken in the particular experimental condition.

f̃i dictates the size of a given feature and h−1
i dictates the location of that feature. We consider a representation of

both the amplitude and phase functions as basis expansions:

f̃i(u) = µf̃ (t) +
∑

Af̃
i ζ

f̃
i (u), h̃i(u) =

∑
Ah̃

i ζ
h̃
i (u), (2)

where µf̃ (t) is the mean of the amplitude functions and where

hi(t) =

∫ t

0
eh̃i(u)du∫ 1

0
eh̃i(u)du

(3)

Clearly different choices of bases ζ f̃ , ζ h̃ will give rise to different coefficients A, which can be used for subsequent

analysis such as functional regression as illustrated below; a number of different parametric basis functions can be

used as bases [10]. Here, we advocate the use of a principal component basis both in the case of f̃i and h̃i, using

h̃i(u) rather than hi(u) directly so as to yield a valid space to perform FPCA, as principal components provide a

parsimonious representation in terms of variance explained [11].
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We note that model (Eq. 2) is not identifiable in its most general form, and a solution adopted in [9] is to assume that

the variation in the amplitude functions f̃i will asymptotically vanish, whence the model can be shown to be identifiable

under relatively weak additional regularity conditions. Practically, this can be justified by normalizing the amplitude

functions and assuming that this removes most the variation in these functions. This approach is particularly suited

for situations where the variation in the registration functions is more important than that of the amplitude functions,

which is well justified for spike train data as already mentioned above, or where one uses pre-specified bases for both

amplitude and registration functions. If the registration functions are always determined first, the estimates will also be

unique, as will the amplitude estimates, but in case of non-identifiability, this could cause difficulties in interpretation.

As mentioned above, we assume that each waveform component is subjected to path-specific variational pattern;

we incorporate this information in the covariate Zi, which takes one of four categories depending on the path. As such

the general form of our model for a given sample curve fi with scalar covariates Zi is:

E{f̃i(u)|Zi} = µf̃ (t) +
∑
k

E(Af̃
i,k|Zi)φk(u), (4)

and

E{h̃i(u)|Zi} = µh̃(u) +
∑
m

E(Ah̃
i,m|Zi)ψm(u). (5)

µf̃ (t) is estimated by the sample mean on the amplitude variation functions f̃ and µh̃(u) is estimated by the sample

mean of the phase variation functions h̃, but which will be close to zero as the warpings are designed such that the

expectation is that no warping occurs, corresponding to a zero mean.

Following the registration of the original waveform data f we produce the registered waveforms f̃ and their cor-

responding time-registration functions h̃. Then fixing the set of basis functions φ and ψ as the functional principal

components of the amplitude and the phase covariance functions respectively, we estimate the scores Af̃
i and Ah̃

i .

Those scores will act as surrogate data for curve fi and can be jointly modelled via a pure multivariate random effects

model as formulated below:

E([Af̃
i,k, A

h̃
i,m]|Zi) = ZiΓ Γ ∼ N(0,ΣΓ), (6)

where [Af̃
i,k, A

h̃
i,m] is the N × (k+m) matrix of FPCA scores, where k is the number of amplitude and m the number

of phase components retained. The (k + m)× (k + m) matrix ΣΓ is the covariance matrix of the associated random

effects. The role of Zi, the design matrix for path-specific effects, is to allow different intercepts among the different

path groups. A much more detailed and comprehensive discussion of this modelling framework and computation is

presented in [4]. We note that multivariate covariates Zi can also be incorporated by using single index or additive

modelling approaches for the conditional expectations in Eq. 4 and 5.

The model above depends on the joint phase and amplitude variation functions available. To estimate phase varia-

tion/warping functions we take the approach of Tang & Müller [9], as implemented in the routine WFPCA in PACE.

We first define a pairwise warping function gi′,i between two sample curves, where the pairwise warping function gi′,i
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acts as a 1-to-1 mapping from the i-th curve time-scale to that of the i′-th. The inverse of the sample-wide temporal

mapping for fi, h−1
i , is then defined as the MLE of the gi′,i sample, i′ being an index over a sufficiently large sub-

sample of curves from our original sample. Different methodologies based on the square-root velocity function metric

[12] or area under the curve normalization [13] could be utilized to give a different, but interchangeable in subsequent

analysis, set of warping functions.

3. Data Analysis and Results

Our first insights from the sample come directly from the warped data themselves (Fig. 1); it is evident that we have

localized variation associated with the identity of the path examined. The movement that produces this “increase” is

the one from point 4 to point 1, suggesting that the vertical upward movement pattern excites the neurons of the subject

monkey primary motor cortex. It can be argued that a “partial” neuron excitement also occurs on the movement from

1 to 2.

A qualitative examination of the FPCA generated modes of principal variations suggests, that as expected, the

amplitude FPCs have no single dominant variational tendency (Appendix: Table 3, Column: Amplitude). We expected

FIG 1. The four different warped waveform groups F̃ . Blue lines
are added to signify the change from move xi → xi+1 to move
xi+1 → xi+2.

FIG 2. The four different groups of phase functions H̃ . Blue lines
are added to signify the change from move xi → xi+1 to path
xi+1 → xi+2.
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this as we have four distinct motion patterns that invoke four distinct activity patterns; this being also supported by

the plot of means, which hints at the presence of four peaks (Fig. 3, upper left plot). Additionally the shapes of the

amplitude FPCs show rather abrupt changes instead of smooth varying ones and further suggest partially unrelated

patterns of variation between the samples. In particular the first amplitude FPC shows a strong negative correlation

between paths 4 & 3 and paths 2 & 1. Moreover the same qualitative behaviour with roughly equal intensity can be

seen in second amplitude FPC between paths 4 & 1 and paths 3 & 2.
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FIG 3. Mean function ( (.1 & .9) quantiles shown in grey area) and first, second, third, fourth, fifth, and sixth functional principal components.
Together these account for 75.20% of the sample variance, but only the first four are considered informative (63.08 % of samples variation) and as
such the fifth and sixth were not used in the subsequent analysis.

It is quite interesting that these two components appear to be able to fully qualitative describe all major path be-

haviours. Path1 can be approximately constructed as being a positive linear combination of FPC1 and FPC2, Path2

as being positively influenced by FPC1 and negatively influence by FPC2, Path3 as being a negative linear combi-

nation of FPC1 and FPC2, and Path4 as being negatively influenced by FPC1 and positively influenced by FPC2.

Encouragingly, these intuitive assumptions are supported by the examination of the realizations of the random effect

(Table 1, Columns: f̃FPC1, f̃FPC2) where the signs of the vectors γf̃FPC1 and γf̃FPC2 convey exactly the same

intuition. On the contrary amplitude FPC3 seems to embody a localized counter-correlation pattern between Paths 3

and 2; amplitude FPC4 showing a similar but rather noisier pattern again focusing primarily on the distinct behaviour

of Path2 compared to Path3. We feel that while “only” 63% of the total amplitude variance is retained using the first

four FPCs, given the qualitative characteristics of those FPCs, they are enough to adequately represent all the main

transitions between the modes of variation within the sample. Moreover given that we know that our sample is part of

a random-effect structure with four groupings this choice appears even more sensible. As such we fix the number of

the first amplitude FPCs to retain, Mf̃ , to 4.
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In contrast to the step-like nature of the major amplitude components, qualitative examination of the phase FPCs

does show two dominant components (Appendix: Table 3, Column: Phase) as well as a smooth functional form for

these components (Fig.4). Several qualitative characteristic become obvious: first that the main resource of phase

variation is actually located at the edge of the time domain, and that higher order phase FPCs quickly start exhibiting

noisy patterns.
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FIG 4. Mean function ( (.1 & .9) quantiles shown in grey area) and first, second, third and fourth functional principal components. Together these
account for 93.65% of the sample variance, but only the first four are considered informative (84.91 % of samples variation) and as such the third
and fourth were not used in the subsequent analysis.

As seen in the “raw” phase dataset, we are presented once more with certain path-specific patterns (Fig. 2), espe-

cially in the case of Path 4 it becomes very apparent that we do not need a strong u-shaped pattern but rather a more

evenly accelerating one. More specifically examining the h̃FPCs, the phase FPC1 shows a somewhat steady mono-

tonic trend. The interpretation is straightforward: either a subject starts slowly and then accelerates or starts quickly

and slowly loses momentum. h̃FPC2 shows that some subjects start strongly only to decelerate and then accelerate

again. Interestingly, the realization of the γ for the phase FPC1 shows a strong relation to path identity suggesting

that some paths (namely Paths 1 & 4) have a strong tendency to exhibit phase variation in accordance with this FPC’s

shape; we believe this to be an artefact of the data. Because we have highly localized amplitude variation and our sam-

ple is otherwise quite stable, time-warping effects tend to be only where amplitude variation is exhibited. Therefore

the main areas of phase variation tend to be the ones with localized amplitude variation. This follows also from the

regularity conditions and is clear from an extreme case where amplitudes are constants, in which case the time warping

component is obviously not identifiable. Therefore, when amplitude and phase variation seem to coincide, one needs

to be careful with interpretation (hence a joint model should be considered). We believe that the first two components

of phase variation are adequate to encapsulate the sample behaviour of the phase functions; for that reason we fix Mh̃
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= 2. It is worth stressing that that our choice of number of components to retain is somewhat arbitrary. We choose an

f̃FPC1 f̃FPC2 f̃FPC3 f̃FPC4 h̃FPC1 h̃FPC2
Path1 0.3114991 0.2273291 -0.1187372 -7.223262e-04 -1.2342754 0.1675551
Path2 0.2180206 -0.2238327 0.1113300 5.761511e-04 -0.2969530 -0.1243913
Path3 -0.1944085 -0.2437788 -0.1142326 -8.561804e-06 0.2484397 -0.2227380
Path4 -0.3351112 0.2402824 0.1216398 1.547368e-04 1.2827887 0.1795741

TABLE 1
Realizations of Random Effects.

approach based firmly on the dynamics of the problem. Purely probabilistic approaches have been developed [14] as

well as a number of different heuristics [15], if a data driven selection was of more interest. We expect a sparse random

effect covariance structure. This is because by definition the f̃FPCs are orthogonal among themselves, the same being

true for the h̃FPCs. Additionally the identifiability conditions presented above would force this to be true. Thus, the

only non-zero terms are the ones encoding the covariances between the two families of FPCs.

Finding the parameters that maximize the model’s restricted loglikelihood, we are able to calculate the variance

of each random effect (Table 2) as well as find the overall random effects correlation matrix (Fig. 5). First, by

examining the correlation matrix we identify significant correlation effects between the components of the model.
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FIG 5. Random Effects Correlation Matrices. Row/Columns 1-4 : Amplitude FPC1-4,

Row/Columns 5-6 : Phase FPC1-2 (Exact values in the Appendix (Eq. 7))

We can see two extremely strong correlation

effects. One between f̃FPC1 and h̃FPC1

and a second one between f̃FPC2 and

h̃FPC2. It is also interesting that the higher

order amplitude FPCs are not strongly cor-

related with any phase components. We be-

lieve that there is certainly significant correla-

tion between phase and amplitude variations.

In particular we see that components of sim-

ilar shape seem to correlate with each other.

This further confirms the intuition of phase

variations occurring in relation with amplitude

variations but also signals the danger of dupli-

cation of information when examining phase

and amplitude variation marginally. For exam-

ple, curves exhibiting strong edge variational

patterns (where f̃FPC2 is prominent), also appear to decelerate halfway in their trajectories, only to accelerate up

again towards their edges (correlating their phase variability strongly with that of h̃FPC2).

Making a brief investigation of the random effect standard deviations themselves (Table 2) and focusing on the

ratios between the random effects standard deviation and the measurement error standard deviation we see that we
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Amplitude FPC1 Estimate Amplitude FPC2 Estimate Amplitude FPC3 Estimate
(5%, 95%) (5%, 95%) (5%, 95%)

Path 0.322 0.284 0.15508
(0.282,0.378) (0.246,0.319 ) (0.099,0.156)

Residual 0.165 0.155 0.179
(0.164,0.238) (0.153,0.171) (0.179,0.198)

Amplitude FPC4 Estimate Phase FPC1 Estimate Phase FPC2 Estimate
(5%, 95%) (5%, 95%) (5%, 95%)

Path 0.006 1.022 0.221
(0.004,0.021) (0.675,1.196) (0.127,0.334)

Residual 0.198 1.859 0.851
(0.197,0.198) (1.859,1.861) (0.851,0.856)

TABLE 2
Random Effects Std.Deviations and associated 5% and 95% quantiles using 1000 bootstrap samples.

have chosen components reasonably. With the exception of f̃FPC4, which we expected to be the “noisiest”, in all

other cases the magnitude between the estimates for the random effect variance and the measurement error variance

is comparable, this also being confirmed by a parametric bootstrap approach. As such structure is clearly identified

within the model’s variational patterns both in the amplitude and in the phase path-wise groupings.

As a final note we compute exemplar curves (Fig. 6) based on the multivariate random model used (Eq. 6). They

show reasonable shapes that correspond to our initial assumptions for the expected waveform each specific path should

have. It is noteworthy that Path3 does exhibit a certain degree of “smearing” that was also seen in the original sample

(Fig. 2).

4. Discussion

As a whole we have presented an analysis of the spike train data using on a methodology for the analysis of functional

data that accounts for variations both in the phase and in the amplitude domain via a mixed effects model framework. It
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FIG 6. Exemplar curves for each path
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allows the identification of correlations among the variational patterns in those domains. It achieves this by factorizing

the sample covariance matrix into its variance and correlation matrices. It also provides a comparison between the

relative influence of random effects and measurement error. Finally it importantly raises a caveat regarding such

concurrent analyses procedures: The danger of saying the same thing twice. While in theory the amplitude variation

functions F̃ and the phase variation function H̃ represent deconvolved modes of variation, in a sample like the present,

this separation is not evident. Judging by Fig. 1 we would expect amplitude and phase variation patterns to be have

similar structures within paths of the same type; that could then lead to the false intuition that the two variational

patterns are related when in reality they are not. The localized structure of the signal will act as a confounding factor

causing high correlation between the two domains.

Future work could focus on the choice of optimal basis functions and/or the determination of the sample’s optimal

dimensionality reduction. Especially in signal-related applications, non-parametric projection can greatly enhance

the explanatory power of the analysis by taking advantage of strong non-Gaussian phenomena in sample such as

periodicity. Finally it is worth noting that the identity of the subject monkey was unavailable to us during this analysis;

including the subject identity as an additional random effect (if the data contains recordings from multiple monkeys,

of course) would certainly enhance the model’s predictive power.
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6. Appendix

Amplitude Phase
FPC1 23.52 (23.52) 72.12 (72.12)
FPC2 19.44 (49.52) 12.78 (84.91)
FPC3 11.42 (54.37) 5.69 (90.60)
FPC4 8.71 (63.08) 3.05 (93.65)
FPC5 6.58 (69.65) 1.92 (95.57)
FPC6 5.55 (75.20) 1.25 (96.82)
FPC7 5.23 (80.44) 0.95 (97.77)
FPC8 4.70 (85.14) 0.67 (98.44)
FPC9 4.32 (89.45) 0.53 (98.96)

TABLE 3
Percentage of variances reflected from each
respective FPC (first 9 shown). Cumulative

variance in parenthesis.

The correlation structure that maximized the restricted log-likelihood of our model is :

PΓ =


1 0 0 0 −0.927 −0.021
· · · 1 0 0 −0.017 0.999
· · · · · · 1 0 0.373 −0.008
· · · · · · · · · 1 0.005 0.012
· · · · · · · · · · · · 1 0
· · · · · · · · · · · · · · · 1

 (7)
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