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The whole is more

than the sum of its parts.

Aristotle

1
Introduction

C ollective behaviour has always been one of the most fascinating phenom-
ena since men started to observe Nature. One of the most impressive features
is the emerging of collective properties and skills which do not belong to the
single entity forming the group. This characteristic is particularly attractive
and inclined to several practical applications. For these reasons biologists,
socio-scientists and zoologists have always been interested in collective be-
haviours of quadrupeds, birds, fish and insects [1, 2, 3, 4]. These are the
most immediate and direct observable examples of species which show col-
lective motion without a leader. On the other hand, in the last century,
the biological community started to investigate organisms at even smaller
scales. They discovered remarkable collective behaviours and emerging co-
herent structures in bacteria, cells and metastasis [5, 6, 7] which make these
phenomena even more attractive and interesting. Remarkably, the same
complex structures are shown by organisms living at very different length
scales such as actin molecules and herds.
All these examples have a common property: the elementary units forming
the group are classified as “active” or “self-propelled” units, i.e. entities
that have the ability to transform, through different ways, the food filling
the environment in internal energy and ultimately in motion [8]. Non-living
or artificial objects can also be designed as active matter: for instance Chaté
et al. observed collective behaviours in systems made by polar disks sitting
over a vibrating surface [9].
More specifically, the key features shown by these kind of systems are cluster-
ing, apolar or polar order and order-disorder transition. Quite surprisingly
they are very similar to the collective behaviours occurring in those “pas-
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sive” systems, such as spins systems or liquid crystals, deeply understood
and well described in Statistical Mechanics.

However, active systems, being formed by self-propelled units, are naturally
out-of equilibrium systems, which show novel features like giant density
fluctuations and their understanding turns out to be a severe challenge for
theoreticians.
For all these reasons statistical physicists began to be interested on the study
of these kinds of systems because they offer a practical and popular topic
for the in-depth knowledge already held by physicists. Indeed, an analogous
physical approach used to describe liquid crystals and spins systems when
applied to “active” biological systems, like those made of bacteria and cells,
brought many qualitative and quantitative results to biological community
and shed new light on the statistical properties of non-equilibrium systems
[8, 11]. For these reasons, statistical physicists had, and have currently, the
concrete possibility to go further with the study of very interesting features,
like non-equilibrium phase transitions, coarsening dynamics, collective re-
sponse phenomena and giant density fluctuations shown by these “simple”
and “easily” reproducible experimentally cases. At the same time, the biol-
ogists can take advantage of the results provided by physicists through the
understanding of what actually happens in these complex systems and how
to describe and predict their peculiar behaviours.

Another important aspect that one has to face in investigating active sys-
tems is that self-propelled units often live and move in restricted or crowded
environments which, as a first approximation, can be described as narrow
and irregular channels. In biology, for instance, micro-organisms like bac-
teria often move inside human vessels and cytoskeletal motors like kinesin
carry proteins and mitochondria to and from neuron cells through micro-
tubule. Moreover, the improvements of nano-scale objects production, like
nano-channels and nano-slits, have made possible the design of experiments
in which the response of active systems (both natural and artificial) subject
to different confinements may be investigated.
For these reasons, in this work we are going to investigate the collective mo-
tion of self-propelled particles moving inside narrow and irregular channels.
In designing the model and fixing its main parameters we will be inspired
by bacterial suspensions inside human vessels although many of the results
we will obtain can be often referred to a generic active system.

With this respect, many kind of bacteria, like E. coli, adopt, for biochemical
reasons, the “run and tumble” behaviour which makes the bacteria to per-
form a persistent random walks inside the environment. As a consequence,
if we consider a system made of E. Coli as a mere ensemble of random
walkers, we expect it to reach a steady distribution with an homogeneous
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density. On the contrary, previous experiments [12] state firmly that geo-
metrical constrains and obstacles lead the system to a completely different
density steady distribution even against the Gibbs principle.
Hence, the questions we are going to address and endeavour to answer are:
How the bulk collective motions are affected by geometrical constraints?
How is it possible to “manipulate” an ensemble of “self-propelled” units by
using a given confining geometry? Which new features are brought by the
introduction of geometrical irregularities in the confinement? And how we
can use them to maximize the coherence in the collective motion of the sys-
tem?

In order to try to answer to these questions in the first part of this thesis we
will report only a brief review regarding the studies (theoretical and experi-
mental) on self-propelled particles bulk features, while the main part will fo-
cus on the study of confinement effects and of self-propelled particle-surface
interaction on the collective motion. Below is reported a short summary of
the chapters in which the thesis is organized:

- Chapter 2: A brief review on the Vicsek and Chaté works [10, 13] will
be given and many of the numerical results presented in these papers
are here reproduced as a stringent test on the correctness of my own
code in the unconstrained case (no confinement). The theoretical part
is reported as in the works while the data and the plots are obtained
using my own code. The results agree with the Vicsek and Chaté ones.

- Chapter 3: The excluded volume interaction is here added to the
original Vicsek model. The simulations are then performed in the still
unconstrained case by using periodic boundary conditions. The effects
on the order parameter, order parameter fluctuations, density distri-
bution and spatial correlation are studied. From now on all the models
considered will take into account self-propelled particles with excluded
volume interactions.

- Chapter 4: Confining environments are here considered. We inves-
tigate how the constraint affects the order parameter and the order
parameter fluctuations. Particular attention is given to the density
distribution as a function of the noise and the ratio between system
size and particle radius. Several comparisons with periodic boundary
conditions are also reported. One of the main results of this chapter,
and of the entire work, is shown in sec. 4.3: giant density fluctuations
are observed even in confined active systems and found to be related
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to the size of the constrained direction.

- Chapter 5: Implementation of phenomenologically inspired boundary
conditions at the walls. The principal aim here is to design suitable
boundary conditions that better reproduce the constrained condition
under which bacterial system moves. In particular we will study in
details the several collective behaviours that may be induced by the
different boundary conditions in strongly confined systems.

- Chapter 6: Introduction of “non-differentiable”, i.e. irregular, con-
straints. The simulations are performed using again my own code,
parallelized using a mix of OpenMP and MPI, and through the meth-
ods reported in sec. 1.1. In particular in this chapter are considered
environments which present wedges or bottlenecks. The boundary
condition used is the most close to real one, according to [12]. The
residence time and the local order parameter are attentively inves-
tigated. The introduction of a chemotaxis term and of asymmetric
constrains are also briefly studied. The particular case in which a fun-
nel is located in the middle of the system, as experimentally done in
[12], is simulated in appendix A.

- Chapter 7: I report the main conclusions and some suggestions re-
garding future works on this topic with the aim to obtain solider and
more relevant results especially on the phenomena described in Chap-
ter 6.

1.1 Method

In this thesis the most part of the simulations are performed using a 2D
box with specified boundary conditions and with N particles randomly dis-
tributed and oriented at the beginning of the process. The data are obtained
by averaging the observables the last 5−10 ·103 time steps and over at least
5 different initial conditions except where specified. The implementation
of the excluded volume in chapter 3 is introduced by rejecting all those
movements which would create an overlapping of the 2D-volume of two par-
ticles within the system. The “walls” and the particle behaviours at the
walls in chapters 4 and 5 are implemented through simple conditions at the
boundaries. In particular, the “bouncing back” behaviour is reproduced by
reflecting the direction of the particles as does the common elastic collision
rule. The “stop” condition is taken into account by stopping the motion but
letting the direction unchanged while the “slip” condition involves a forced
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sliding and reorientation along the wall. Since we are going to work with
self-propelled round particles, the first two conditions are quite reasonable,
especially if one has in mind the artificial self-propelled particles suggested
by the Sheffield researchers. On the other hand, in [12] is firmly proved that
the behaviour undertaken by bacteria at the walls is the latter. For this
reason in the last chapter (6) only the “slip” boundary condition is consid-
ered. For simplicity the collision with the walls is detected when the center
of mass of the round particles hits the surfaces; this means that the effective
size of the system is the linear size plus the radius of a round particle. The
chemotaxis effect in chapter 6 is considered by adding to the usual Vicsek
update rule a constant vector pointing to the source of food at each time
step.
All the simulations regarding the last part of chap. 6 were performed on
Hector, the HPC facility located in Edinburgh. The code has been paral-
lelized by myself for the occasion using a mix of MPI and OpenMP. More
detailed information are inside the specified chapters. Some of videos re-
lated to specific arguments are uploaded and accessible on my web site
http://spiro.fisica.unipd.it/~dmichiel/.

http://spiro.fisica.unipd.it/~dmichiel/
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Vicsek Model
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I n the past decades there has been many attempts to model “flock-
ing” (i.e. collective) behaviour, performed from communities of physicists,
biologists and computer graphics specialists.
Perhaps the first model of flocking was introduced by Reynolds in 1987. His
system was a collection of “boids”, i.e. bird-like particles, subjected to three
types of interaction: avoidance of collision, trying to adapting direction to
the average one of the neighbours and trying to stay close to the center of
mass of the flock. However, his work was only qualitative and “aesthetic”†.
In order to obtain some quantitative results, in 1995 Vicsek introduced and
studied a “naive” model of flocking using the statistical physics approach.
Vicsek’s work [10] has immediately found large success and many followers
who have been interested on it until nowadays [15, 18, 19, 20, 21].
In the Vicsek model, the activity of the objects is considered making the

†For further information see the web site http://www.red3d.com/cwr/boids/

http://www.red3d.com/cwr/boids/
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point-like particles move off-lattice at constant speed v0. Each particle is
labelled at each time-step t with its position x(t) and its direction ϑ(t) =
Θ(v(t)), where the function Θ gives the angle between v(t) and a selected
direction (horizontal coordinate axis).
The interaction is chosen such that at each time step every particle adjusts
its direction of motion to the average one of its neighbours, up to some noise
term accounting for the randomness of the system.
As we have already mentioned before, the absolute value of the velocity of
each particle is v0 even after the interaction. As a consequence, this model
does not preserve the momentum. Actually, it does not preserve neither
the Galilean invariance. Indeed, if we consider a moving reference frame,
the absolute velocity of the particles are no longer v0 as determined by the
model.
The random term reproduces the stochastic perturbation affecting the mo-
tion of flocking organisms and it is taken into account adding a random
angle to the average direction. We will see later that it is not the only way
to consider the effects of random perturbation on the direction of motion.
This particular choice reflects the perturbations acting on the decisional
mechanism through which each particle updates its velocity. We can call it
“angular” (or “intrinsic” [18]) noise. Thus the updating rule is

ϑi(t+ 1) = Arg





∑

〈i,j〉

eιϑj(t)



+ ηξi(t) (2.1)

where
∑

〈i,j〉 is the sum over the particles inside a circle with radius R and
with center in xi(t), η is the noise amplitude (η ∈ [0, 1]) and ξi(t) is a
δ-correlated white noise uniformly distributed with ξi(t) ∈ [−π, π].

An other way to consider stochastic perturbation in the Vicsek model is the
so called “vectorial” [13] (or “extrinsic” [18]) noise.
For first, Chàte and Grègiore [13] argued that random errors can be made
when a particle estimates the directions of its flock-mates, for example be-
cause a noisy environment instead of commit an error when adapt its direc-
tion to the average one.
In this respect one has to consider the following updating rule

ϑi(t+ 1) = Arg





∑

〈i,j〉

eιϑj(t) + ηni(t)e
ιξi(t)



 (2.2)

Where ni(t) is the number of neighbours of i-th particle at time t.
It is worth to notice that considering vectorial noise instead of angular one
is not a pure formality at all. If one use the vectorial noise he makes the
locally ordered regions subject to weaker noise than the disordered ones,
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indeed in this case also the noise is “averaged”.

As already said, the models which tried to describe collective motions were
originally inspired by the observation of collective behaviours of flocks of
birds, school of fish, swarms of insects and so on. It is useful to have in
mind these examples in order to compare the theoretical model with the
real world.

2.1 Vicsek Model as Langevin Process Approxi-

mation

At first sight the update rules (2.1) and (2.2) seem to be mere tools to
reproduce qualitatively the flocking of many interacting objects. On the
contrary we are going to point out that those update rules are based on the
usual Langevin equations, provided that the friction coefficient is suitable
to the case of self-propelled particles as we do in the following deduction.
Let us start with the general Langevin equations (m = 1):

dv(t)

dt
= −γ(v) v(t) + F (t) + dW (t) (2.3)

dx(t)

dt
= v(t) (2.4)

where F (t) is an external force, dW (t) is the stochastic term (Wiener) and
friction term γ(v). This one is chosen in order to consider the activity of
the particles

γ(v) = γ0

(

v
2

v
2
0

− 1

)

(2.5)

with γ0 the usual friction coefficient. Indeed this term “pumps” the velocity
|v| toward the value v0, which is reached after an initial transient.
What is important to notice is that

γ(v) = γ(|v|). (2.6)

This assumption is quite reasonable and intuitive, indeed it makes sense the
assumption that the friction does not affect the direction of the particles.
The assumptions we are going to do on the other terms are not so granted,
but they lead to the equations provided in the original Vicsek model. Let
us assume that the external force F (t) and the stochastic term dW (t) do
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not affect the absolute value of the velocity, so one can write:

F (t; |v| , ϑ) = F (t;ϑ)

dW (t; |v| , ϑ) = dW (t;ϑ).

Actually, in the original Vicsek formulation the stochastic term does not
neither depend on the direction of the particle but for our purpose these
assumptions are enough. At this point is clear that one can rewrite the
equation (2.3) as two differential equations; one on the absolute value of the
velocity and the other on the direction ϑ.

d |v(t)|

dt
= −γ(|v|) |v(t)| (2.7)

dϑ(t)

dt
= F (t;ϑ) + dW (t;ϑ) (2.8)

(2.9)

and for time large enough

d |v(t)|

dt
= 0 , |v| = v0. (2.10)

Finally one can write the velocity of each particle as follows

v(t) = |v(t)| eιϑ(t) = v0e
ιϑ(t) (2.11)

i.e. a vector pointing to the direction ϑ(t) with norm v0.
Since that we have to consider the finite step time in order to perform
numerical simulations, the evolution equation (2.4) becomes

xi(t+∆t) = xi(t) + vi(t)∆t (2.12)

with vi(t) controlled by eq. (2.8) and (2.10) with the suitable terms for F (t)
and dW (t). It can indeed reproduce the equations (2.1) or (2.2) depending
on the choice of the stochastic term.

2.2 Algorithm

In this chapter we are going to do a brief review on the main Vicsek [10],
Baglietto and Albano [15] works on this topic and to perform independent
simulations in order to check the results provided by my own code. The
simulations are not large scale simulations, thus we are going to compare
them only with the qualitative numerical results provided in the earliest
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works mentioned above. Indeed, since that many quantitative works have
been already done on the Vicsek model (for example see [22, 27]), our aim
is not to provide quantitative and solid results regarding this topic but to
test the validity of our algorithm in order to have a solid base from which
we can start to work on the real goals of this thesis.
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(a) Value of the noise amplitude: η = 0.9
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Figure 2.1: Snapshot of a late time configuration of point-like particles subjected
to the angular noise specified below the plots. The system has linear size L = 10
and N = 100 particles (arrows point to the last direction of particles).

The initial set up is made of N particles randomly distributed and oriented
inside a box with linear size L. The boundary conditions are fixed as in the
original Vicsek model, i.e. we assume periodic boundary conditions. Thus
the particles can move over the surface of a 3-dimensional torus. The time
step is fixed to ∆t = 1 as the interactions radius R = 1. At every time
step each particle “looks” for neighbours inside R, if it has not flock-mates,
it considers its own direction as the averaged direction. In other words,
unless the noise is null, a particle cannot move straightly even if isolated.
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As already said, the particles are point-like, i.e. they have not an excluded
volume. Examples of typical configuration are shown for the model based
on angular noise in figures 2.1a and 2.1b for high and low values of the noise,
respectively. It is worth to notice the coherent moving structures arisen for
low noise value.

2.3 Observables

In order to obtain some quantitative results, and inspired by the statistical
physics ansatz, we are going to define and measure the (instantaneous) order
parameter:

φ(t) ≡
1

Nv0

∣

∣

∣

∣

∣

N
∑

i=1

vi(t)

∣

∣

∣

∣

∣

. (2.13)

In a passive system such as a ferromagnetic one v(t) would correspond to
the single spin orientation while φ(t) to the average magnetization at the
time step t. Figures 2.2 and 2.3 show the trend of the averaged order pa-
rameter φ ≡ 〈φ(t)〉 against the noise amplitude η for angular and vectorial
noise respectively. The average has been performed over the configurations
as explained in section 1.1. The curves are obtained varying properly the
system linear size L and the number of particles N in order to simulate a
thermodynamic limit (the number density ρ ≡ N/L2 is kept constant).
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Figure 2.2: Plot of the order parameter φ versus angular noise amplitude. The
curves correspond to different values of number of particles in systems with the
same density ρ = 4 (N=40, L=3.1; N=100, L=5; N=400, L=10; N=4000, L=31.6).
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Figure 2.3: Plot of the order parameter φ versus vectorial noise amplitude. The
curves correspond to different values of number of particles in systems with the
same density ρ = 4 (N=40, L=3.1; N=100, L=5; N=400, L=10; N=4000, L=31.6).

The first imperative consideration to point out is that the system shows a
crossover from a disordered state to an ordered one. In other words, under
the suitable noise conditions, the system “chooses” a particular direction
and breaks the initial rotational symmetry. As a consequence, while the
initial total momentum is null (the particles are randomly oriented), the
system reaches a state in which it is non-null.

In these plots one can also observe the shift of the curves towards smaller
values of the noise for increasing values of the system linear size. This fea-
ture strongly suggests that the crossover from the disordered to the ordered
state occurs also in the thermodynamic limit and so we can assume that
the Vicsek model is able to reproduce a phase transition. Since the Vic-
sek model describes non-equilibrium systems, the phase transition showed
above is called “kinetic”, on the contrary, passive (equilibrium) systems show
“static” phase transitions.

Another consideration we can do is that the crossover is continuous (2.2)
for systems subjected to angular noise while discontinuous (2.3) for systems
subjected to vectorial noise. Actually, the classification of the transition
shown by the Vicsek model in the two cases was debated for a long period.
In the last decade have been done many works focused on large-scale simula-
tions with the aim to identify the type of the Vicsek model phase transition
(see [15, 22, 23, 24, 26, 25]). In particular, the shift of the curve in fig. 2.2
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raised a lot of questions regarding the effects of the system “finite size” on
the type of crossover, and if it could be different when the thermodynamic
limit is considered. In [15] large scale simulations and ad hoc tricks (as ro-
tating reference frames) are performed by the authors in order to remove
as far as possible the system finite-size effects. In the same work is firmly
stated that the phase transition (N → ∞, L → ∞) is effectively a second
type phase transition (continuous) when the system is subjected to angular
noise, while it is a first type phase transition (discontinuous) when subjected
to vectorial noise.

It is worth to notice that the onset of the ordered phase is not granted at all,
indeed the correspondent “passive” model (the XY model for spin systems)
can not show any phase transition in d = 2, as stated by Mermin-Wagner
theorem [31]. This characteristic of the model is absolutely non-trivial. In-
deed even nowadays the thought that a flock can be seen as a phase of a
system made of birds or a school as a phase of a system made of fish is quite
weird.

2.3.1 Scaling Properties

Quite remarkably, the order parameter behaviour plotted in fig. 2.2 and 2.3
is very similar to the order parameter trends of some equilibrium systems
close to their critical point, such as, for instance, the magnetization for
ferromagnetic systems; even though in standard equilibrium systems the
critical behaviour is usually expressed as function of the temperature and
density, in this case we write φ as function of the noise η and the density ρ.
As a consequence, one could identify the noise introduced “by hand” in eq.
(2.1) and (2.2) with a sort of system temperature.
Actually, if we consider, for instance, a real system made of bacteria in an
aqueous bath, one could argue that the temperature of the system involves
strong consequences on the bacteria behaviour. One can moreover guess that
in this case the Vicsek noise could be even proportional to the temperature
of the bath. This argument suggests that the analogy noise-temperature is
not so wrong, and will be useful to keep in mind.
For these reasons and in analogy with the scaling law for the magnetization,
one can guess a scaling law also for the order parameter φ:

φ(η, ρ;L) =











(

ηc(ρ;L)− η

ηc(ρ;L)

)β

for η < ηc(ρ;L)

0 for η > ηc(ρ;L)

(2.14)

where β is the critical exponent and ηc(ρ;L) is, like the critical temperature
in ferromagnetic systems, the effective critical value of the noise for finite-
size system at density ρ. It is worth to notice that the dependence of ηc from
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the system linear size L is quite relevant and has to be taken into account,
as we have already seen in fig. 2.2 and 2.3.
The original work [10] provides a rough evaluation of ηc(ρ) ≡ ηc(ρ;∞).
The numerical value is determined through the maximization of the scaling
region and through the check of its increasing for N,L → ∞. Subsequently,
large-scale simulations in [20] have provided solider numerical estimation of
ηc(ρ;∞) giving the finite-size scaling law

ηc(ρ, L) − ηc(ρ,∞) ∼ L−1/2. (2.15)

On the contrary, the estimation of ηc(ρ;L) is easier and it is provided from
Gaussian fit (see fig. 2.4) of the order parameter fluctuations, defined as
follows

χ = Var(φ)L2 Var(φ) ≡ 〈φ(t)2〉 − 〈φ(t)〉2. (2.16)

where, as usually, 〈. . . 〉 represents the average over the configurations.
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Figure 2.4: Example of order parameter and order parameter fluctuations
against the noise for N = 400 and L = 10 (ρ = 4). The black line is a Gaus-
sian fit of χ; it provides the average ηc(ρ, L) = 0.56 and the variance σ = 0.10

Suitably rescaling the curves in fig. 2.2 one can also evaluate the critical
exponent β, as we roughly do in fig. 2.5.

In a similar way, one can write a scaling law also for the number density
ρ. Even in this case the analogy with ferromagnetic systems leads to the
expression:

φ(η, ρ;L) =











(

ρ− ρc(η;L)

ρc(η;L)

)δ

for ρ > ρc(η;L)

0 for ρ < ρc(η;L)

(2.17)
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Figure 2.5: Evaluation of the critical exponent β. The curves represent different
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L=31.6). The fit provides a value of β ∼ 0.4, according with Vicsek estimation.

where δ is the critical exponent. In [10, 20] is reported an accurate evalua-
tion of this critical exponent, either theoretically either through large scale
simulations. On the contrary, we simply report in figure 2.6 the order pa-
rameter trend as a function of the density ρ for fixed value of the noise η.
From the plot one can point out that, as expected from phenomenological
considerations, the greater is the density of the system, the greater value is
taken by the order parameter, or in other words, the greater noise is required
to conserve the initial rotational symmetry.
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Figure 2.6: Plot of the order parameter φ as a function of the system density ρ
for fixed value of the noise η = 0.3. Notice the analogy with ferromagnetic systems:
the order parameter is higher for higher values of the system density.
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Plotting φ(ρ;L) as a function of (ρ−ρc(η;L))/ρc(η;L) is possible to estimate
the value of δ. Since we are not going to perform large scale simulations, we
refer to [10, 20] for further details.
As we have just observed, the value of ηc strongly depends on the system
density ρ. In particular, higher values of the density ρ imply higher values of
the critical value ηc. Theoretical and numerical considerations [20] suggest
that the relation between the critical noise and the number density follows
the power law:

ηc(ρ) ∼ ρκ (2.18)

with κ = 1/2 in d = 2. Our aim is not to find out the exact value of κ
but, at least, check the validity of this relation in our results. We are going,
indeed, to plot φ against η for different values of the density ρ and for fixed
linear size L = 20 (fig.2.7).
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Figure 2.7: Plot of the order parameter φ versus the angular noise amplitude
for different values of the density ρ and with L = 20.

If we rescale the curves in agreement with eq. (2.18), we obtain their col-
lapse, as one can see in fig. 2.8.

The previous section wanted to show briefly that the statistical tools used
by physicists are very powerful and useful even when applied to these kind
of systems. Even though the Vicsek model is quite naive, it is very inclined
to the physical point of view of the problem. Often, in physics, the simplest
models are the most useful, or at least, a good base in order to describe a
complex system. And also in this case, even if the starting point is really
simple, it lends itself to a very powerful physical approach.
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Figure 2.8: Plot of the order parameter φ versus the rescaled angular noise
amplitude η/ρκ for different values of the density ρ and with L = 20

2.4 Clustering

One of the most characterizing features of this model is the formation of
spectacular patterns such as fluxes and clusters. For enough low values of
the noise, or at least lesser than the critical noise (for a given density), the
“boids” join in two forms: flux, for null value of the noise, while clusters for
0 < η ≤ ηc. The former occurs when the interaction is purely deterministic,
indeed after an initial transient the system breaks the rotational symmetry
and a steady state showing a persistent flow is reached (fig. 2.9a). The
latter occurs when the noise does not manage to preserve the symmetry but
the motion is still stochastic (fig. 2.9b).
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Figure 2.9: Detail of a late system configuration snapshot for η = 0 and η > 0
respectively. The arrows point toward the last particle direction.
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These two collective behaviours are very spectacular and worthy to be deeper
studied. For this reason, inspired by [30], we are going to introduce and dis-
cuss the methods and the tools often used to describe the evolution of an
isolated cluster.

We start by considering a situation in which all the particles are located at
the origin and move towards +x̂ with speed v0. For simplicity, we consider
only angular noise perturbation acting on the system.
Since all particles see each other, we can simply describe this system within
a mean field approach. Moreover, since all the particles start with the same
direction, every time a particle calculates the average direction of its neigh-
bours the results is again the direction +x̂. This involves two immediate
consequences: the noise is a random perturbation around their common di-
rection and we can see the average direction as an external field that guides
all the particles.
In other words, the updating rule (2.1) can be seen as

ϑi(t+ 1) = α0 + ηξi(t). (2.19)

where, in this case, α0 = 0.
This means that the probability to find a particle pointing in direction ϑ is

P (ϑ) =
1

2πη
g(ϑ, α0, η) (2.20)

with

g(ϑ, α0, η) =

{

1 if α0 − ηπ ≤ ϑ ≤ α0 + ηπ

0 otherwise

with 0 ≤ η ≤ 1.
In order to simplify the problem we assumed that α0 does not change over
the time. it is an acceptable assumption in this situation since the leading
orientation is α0 itself. The position of the i-th particle at time tn = n∆t is
then given by:

xi(tn) =
n
∑

k=0

cos ϑi(tk)v0∆t (2.21)

yi(tn) =
n
∑

k=0

sinϑi(tk)v0∆t (2.22)

Using (2.21), (2.22) and (2.20) and remembering that ξi(t) is a δ- correlated
white noise uniformly distributed with zero mean (〈ϑi(tk)ϑj(tl)〉 = σδi,jδk,l)
it is possible to calculate the average positions 〈x(tn)〉, 〈y(tn)〉 and the vari-
ances

Var(x(tn)) = 〈x(tn)
2〉 − 〈x(tn)〉

2 (2.23)
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and
Var(y(tn)) = 〈y(tn)

2〉 − 〈y(tn)〉
2. (2.24)

where 〈. . . 〉 represents the average over the N particles and the realizations
of the noise. For instance

〈x(tn)〉 =

∫ π

−π
P (ϑ)x(tn)dϑ = (2.25)

=
v0∆t

2πη

n
∑

k=0

∫ ηπ

−ηπ
cos (ϑ(tk))dϑ =

=
v0n∆t

πη
sin (ηπ)

〈y(tn)〉 =

∫ π

−π
P (ϑ)y(tn)dϑ = (2.26)

=
v0
2πη

n
∑

k=0

∫ ηπ

−ηπ
sin (ϑ(tk))dϑ =

= 0

〈x2(tn)〉 =

∫ π

−π
P (ϑ)x2(tn)dϑ = (2.27)

=
(v0∆t)2

2πη

n
∑

l=0

n
∑

k=0

∫ ηπ

−ηπ
cos (ϑ(tl)) cos (ϑ(tk))dϑ =

=
(v0∆t)2

2πη

n
∑

k=l=0

∫ ηπ

−ηπ
δk,l cos

2 (ϑ(tk)) =

=
n(v0∆t)2

2πη

[

πη +
sin (2πη)

2

]

〈y2(tn)〉 =

∫ π

−π
P (ϑ)y2(tn)dϑ = (2.28)

=
(v0∆t)2

2πη

n
∑

l=0

n
∑

k=0

∫ ηπ

−ηπ
sin (ϑ(tl)) sin (ϑ(tk))dϑ =

=
(v0∆t)2

2πη

n
∑

k=l=0

∫ ηπ

−ηπ
δk,l sin

2 (ϑ(tk)) =

=
n(v0∆t)2

2πη

[

πη −
sin (2πη)

2

]
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Given these results at hand one can derive the diffusion coefficients of the
spreading process of the cluster. Indeed we can write a sort of bi-dimensional
Fokker-Plank equation for the density evolution of the cluster

∂tρ(x, t) = −V (η, v0)∂xρ(x, t) +∇ · (D(η, v0)∇ρ(x, t)) (2.29)

with a convective term, calculated as the projection along the x-axis of the
instantaneous velocity

V (η, v0) = v0

∫ π

−π
P (ϑ) cos ϑdϑ = v0

sin(ηπ)

ηπ
= lim

tn→∞

〈x(tn)〉

tn
(2.30)

and a diffusive matrix D(η, t) having the form

D(η, v0) =

(

Dx(η, v0) 0
0 Dy(η, v0)

)

(2.31)

where

Dx(η, v0) = lim
tn→∞

Var(x(tn))

tn
=

(

1

2
−

[

sin ηπ

ηπ

]2

+
sin 2ηπ

4πη

)

v20∆t (2.32)

Dy(η, v0) = lim
tn→∞

Var(y(tn))

tn
=

(

1

2
−

sin 2ηπ

4πη

)

v20∆t. (2.33)

It is worth to comment a couple of properties of V (η, v0) andD(η, v0) emerg-
ing from this procedure

• Since
lim
η→0

V (η, v0) → v0 (2.34)

there is only a deterministic transport of particles (flux) toward +x̂

direction;

• Since
lim
η→1

V (η, v0) → 0 (2.35)

the particles are completely uncorrelated and their behaviour is simi-
lar to a random-walk.

• For small values of noise
Dy > Dx (2.36)

which means that the cluster has more spreading along the orthogo-
nal to the direction of motion. This strongly suggest the formation of
bands moving coherently.
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It is worth to notice that his description is valid only for the time in which
the cloud of particles remain one coherent cluster. This is no longer true for
longer times. Indeed with the increasing of the cluster spread, it happens
that not all the particles “see” all the others, and so the cluster can break
in two or more parts.

The previous analytical procedure offers a good description of the cluster
behaviour in a very, maybe too, simple situation. An interesting question
could be what happens when more complex scenarios arise. Vicsek model
sets, indeed, periodic boundary conditions and so the clusters cannot be
considered isolated. Anyway, one could guess that the cluster spreading due
to the stochastic noise and the random collisions between different clusters
reaches a steady state in which the probability distribution to find a cluster
with m particles becomes constant.
As a consequence we are going to define and investigate the “cluster size
distribution”

P (m, t) =
mnm(t)

N
(2.37)

where nm(t) is the number of clusters with m particles at the time step
t. Qualitatively, this observable is expected to be a monotonic decreasing
function for high values of the noise, while is expected to be very peaked for
high values of m when the noise is small. Fig. 2.10 shows the cluster size
distribution in a system with N = 200 for different values of the noise.
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Figure 2.10: Cluster size distribution as a function of the size m (number of
particles which form the cluster) for different values of the noise η = 0.0, η = 0.1,
η = 0.2 and η = 0.4. To notice the peaks at large m for small values of η. We
considered N = 200 and ρ = 0.125.
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2.4.1 Clustering Algorithm

It is worth to notice that we consider a particle (j) belonging to the same
cluster of (or connected to) another (i) if their distance is less than 2R and
if its direction ϑj ∈ [ϑi − 2ηπ, ϑi + 2ηπ].
This choice is due to the fact that at each time step the particles are sub-
jected to the random noise ξ that, in the worst scenario, adds or subtracts
an angle equal to ηπ to, or from, the average direction. As a consequence,
if at the time t two particles are perfectly aligned and isolated, in the next
time step they could be oriented toward two directions which differ for, at
maximum, 2ηπ. Since that they belong to the same cluster, the choice to
use a gap of 2ηπ makes possible to recognize the cluster formed by these two
particles. Otherwise, if the orientation of the j-th particle differ for more
than 2ηπ it does not, obviously, belong to the same cluster.
A “cluster” is defined as an ensemble of connected particles, so it is worth
to notice that it is not necessary that all the particles “see” all the others,
but only that they interact at least with one of them. For instance, if one
imagine three particles that do not interact with all of them, but the first
and the third are inside a circle with radius 2R with center on the second,
then the third particle is linked at the first through the second particle.

Figure 2.11: Example of linking algorithm used to recognize the clusters.

2.5 Giant Fluctuations

An other interesting aspect that characterize this model is the presence of
“giant density fluctuations” [28, 29]. Let us consider a system undertaken
Vicsek update rule and subjected to high values of the noise η. If we calculate
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the density distribution in its subsystems, for instance squares, for increasing
values of their linear size l we expect that the average number of particles
inside the squares follows

〈n〉 ∼ l2square (2.38)

because high values of the noise make self-propelled particles move like Brow-
nian particles, hence they reach an uniform density distribution within the
system. In the same scenario, if one looks at the fluctuations of the number
of particles, defined as

Var(n) = 〈n2〉 − 〈n〉2 (2.39)

whatever the density distribution is, Var(n) has to follow the following re-
lation

Var(n) ∼ 〈n〉α (2.40)

with α = αgauss = 1/2 in the limit N → ∞ and L → ∞. This is because the
Central Limit Theorem assures this relation for purely diffusing particles.
On the contrary, if the system shows any type of correlation, α is no longer
equal to αgauss. In this section we are going to show that in suitable con-
ditions, Vicsek model can reproduce giant density fluctuations, which mean
high correlation among particles and cluster formation.
Since that in following chapters we are going to consider rectangular shaped
systems, we are interested to study giant density fluctuations using anisotropic
boxes, i.e. rectangular boxes. Indeed, for our purpose, it is more suitable
to use rectangular boxes with fixed height h = Ly and increasing base lrect
∈ [0, Lx] where Lx is the horizontal size of the system, as plotted in the
picture below.
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Since that the choice of rectangular boxes involves a different sectioning of
the entire area of the system, we expect that the average number of particles
inside each rectangular subsystem follows

〈n〉 ∼ lrect (2.41)

instead of 〈n〉 ∼ l2. Fig. 2.12 states the validity of this trend.

Even if the behaviour of 〈n〉 depends on the choice of how the boxes grow,
because it is function of their linear size, Var(n) must be independent from
this choice. Moreover, since the plots are made using the original Vicsek
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Figure 2.12: Average number of particles as function of the linear size of square
or rectangular boxes. The system is a square with L = 30 and N = 900.

model with low values of the noise, we expect that the high correlation
among the particles leads the systems to a state with non-uniform density,
due to cluster and band formation. Or, in other words, we expect that the
linear regression of log(Var(n)) as a function of log(〈n〉) gives α > 1/2. As
shown in fig. 2.13 the giant density fluctuations exist and the linear regres-
sion gives α = 0.81 that agrees with previous estimation of this exponent
[29].
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For sake of completeness, in fig. 2.14 we report Var(n) as a function of 〈n〉
calculated using rectangular boxes in a system subjected to η = 0.9. In this
case we expect and check the validity of the Central Limit Theorem in the
Vicsek model subjected to high values of the noise.
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Figure 2.14: Absence of giant density fluctuations in a square system with
η = 0.9, L = 30 and N = 900. The fit gives α = 0.47 which agrees to αgauss

provided by the Central Limit Theorem.

2.6 The limit for low values of velocity

One of the most important parameter in the Vicsek model is the absolute
velocity of the particles v0. For null value of the absolute velocity the parti-
cles change their direction accordingly to the Vicsek update rule on ϑ, but,
actually, they do not move. In other words, the system becomes a passive
system, since that the activity defined by

d |v|

dt
= 0 with |v|

∣

∣

∣

t=0
= v0 (2.42)

is removed. One can identify this model with an off-lattice XY model for
spin systems. In this case the system is no longer out-of-equilibrium and
the Mermin-Wagner theorem states the impossibility for a two dimensional
equilibrium system with continuous symmetry to show any type of symme-
try breaking [31].
The test of this feature is very important to check the validity of the Vicsek
model. In this respect fig. 2.15 states exactly that, for null value of the
velocity, the phase transition is no longer showed.
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Figure 2.15: Plot of the order parameter in function of the noise for fixed value
of density (ρ = 1) and for different values of the absolute velocity v0.

The most important consideration to point out is that the role of the ac-
tivity in this model is fundamental. Without activity the system looses all
the amazing property which have in the original formulation. Even if the
non-equilibrium state makes the model more difficult to work with, it is
necessary in order to reproduce the features, like collective motions, which
we are looking for.

One of the most important works which move toward this problem is Bagli-
etto and Albano paper [22]. Here, the limit v0 → 0 is deeply studied in order
to better understand the differences between the standard XY model and
the Vicsek one. Understanding these differences means understand why the
latter model shows a symmetry breaking, which is absolutely a non trivial
problem. They discovered that the behaviour of the critical noise ηc as a
function of the velocity v0 takes a strange behaviour when the limit v0 → 0
is considered. Indeed, ηc(v0 → 0) differs from the value taken when the
velocity is chosen exactly equal to zero. In particular, they concluded that
the combination of alignment interaction and displacement of the particles
is essential for the existence of the phase transition. On the contrary, the
mere fact that the system is off-lattice might not be responsible for the onset
of the ordered phase.





3
Collective Motion of Hard-Core Spheres

S ince that the aim of this thesis is studying collective motions in con-
fining geometries, in this chapter we are going to modify the original Vicsek
model and to consider round particles, i.e. particles which are hard 2D
spheres, instead of point-like ones. Indeed, in order to fix properly the sys-
tem size, we have to fix the volume of the particles. In fact, even if the
system is not infinite, point-like particles can overlap each-other, and hence
the system size would be meaningless.
Since that one of the most important parameters in the model is the inter-
action radius R, we choose to fix it as R = 1 (arbitrary unit) and to set the
volume radius r with respect to this scale. Clearly, it must be r < R.
In order to do a choice with physical meaning we have to take into account
that the existence of an excluded volume makes finite the number of possible
interactions. Thus, we have to set a radius r that allows each particle to in-
teract with not too few “flock-mates”. For instance, if we set 0.25 < r < 0.5
each particle would interact with only its first neighbours, because the sec-
ond neighbours would not be seen by the particle. Even though this could
be a reasonable choice, it would strongly reduce the interaction range. For
this reason we choose r ∈ (0, 0.25).

Collective motion in presence of finite-size objects was already investigated
by Peruani et al. [32]. They pointed out the existence of a transition from
the disordered state to the ordered one, in systems made of self-propelled
rods. In this case the alignment rule is unnecessary, since that rod shaped
objects have already a nematic interaction due to the geometry.
They proved, indeed, that in the case in which the aspect ratio of the rods is
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equal to 1, i.e. the rods are squares, the particles do not perform collective
motions and do not aggregate in ordered regions.
On the contrary, as far as we know, there are not any previous works re-
garding collective behaviours of finite size self-propelled particles interacting
through an alignment rule like Vicsek one. For this reason it would be in-
teresting studying how the observables defined in chapter 1 are affected by
the introduction of the excluded volume.

The excluded volume is added to the system stopping, i.e. rejecting, the
movement of a particle every time its volume would overlap the volume of
an other, in other words, if the distance between the two center of mass is
less than 2r. In order to adopt this algorithm, we have to pay attention
to the order in which the particles move. In other words, the update rule
must be serial, indeed doing so, each movement of the i-th particle at the
time step t+∆t can be confronted with the position of the particle j at the
time-step t+∆t if j < i and at the time-step t if j > i. On the contrary, it
would not be so easy determine which particle has moved before an other†.
More clearly, one can express this algorithm in formulae:

xi(t+∆t) = xi(t) if

{

[xi(t+∆t)− xj(t+∆t)]2 < (2r)2 for j < i

[xi(t+∆t)− xj(t)]
2 < (2r)2 for j > i

3.1 Effects on Phase Transition

First of all, we are going to study the consequences brought by the introduc-
tion of the excluded volume on the phase transition behaviour. In this case
we expect that the presence of the excluded volume involves more order in
the system with respect to the same system but made of point-like particles.
Indeed, if we consider a very dense system made of round particles, the ge-
ometrical contribution would be very relevant since that not all the possible
directions are available. Actually, for fixed value of the noise amplitude, this
system experiments a shrinking of the range of available directions. More-
over we expect that the greater is the density, the greater is this order effect.
This feature can be seen in figures 3.1a - 3.2b.
As expected, the higher is the density ρ the more evident is the effect on
the order parameter trend. Moreover, the higher is the volume radius, the
greater values are taken by the critical noise ηc(ρ, L) and the narrower are
the order parameter fluctuations.

†This algorithm is strongly inspired by polymer units serial movements.
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Figure 3.1: Plot of φ and χ as a function of the angular noise amplitude for
different values of the radius r (r = 0.0, r = 0.05, r = 0.1, r = 0.15, r = 0.2) and
at the same density ρ = 1.
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Figure 3.2: Plot of φ and χ as a function of the angular noise amplitude for
different values of the radius r (r = 0.0, r = 0.05, r = 0.1, r = 0.15, r = 0.2) and
at the same density ρ = 3.

In other words, the presence of the excluded volume strongly forces the
particles to have a lesser fluctuating direction, and this effect is greater for
higher density and higher values of the volume. As a consequence, the sys-
tem results more ordered and more inclined to stay in this phase.
Since that in the previous plots systems subjected to angular noise were
considered, now we are going to show how behave their counterpart, i.e.
systems subjected to vectorial noise (fig. 3.3a - 3.4b).
This time the critical noise value is not shifted, but the order parameter fluc-
tuations are still narrower for higher values of the radius r. This means that
the introduction of the excluded volume in this types of systems involves
more order for η < ηc(ρ, L) but does not modify the inclination to stay in
the ordered phase. The transition is definitely too sharp and disruptive to
be affected by geometrical contributions.
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Figure 3.3: Plot of φ and χ as a function of the vectorial noise amplitude for
different values of the radius r (r = 0.0, r = 0.05, r = 0.1, r = 0.15, r = 0.2) and
at the same density ρ = 2.
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Figure 3.4: Plot of φ and χ as a function of the vectorial noise amplitude for
different values of the radius r (r = 0.0, r = 0.05, r = 0.1, r = 0.15, r = 0.2) and
at the same density ρ = 3.

3.2 Spatial Correlation

In this section we are going to introduce the 2D spatial correlation function
g(x, y) inspired by [14]. This observable is often used to estimate qualita-
tively the distribution of objects within the same cluster. For instance, in
[14], g(x, y) is investigated in order to check the nematic alignment among a
population of bacteria. In that case the distribution stated that in systems
made of rod-shaped objects, the probability to find two or more rod-shaped
object along the orthogonal direction of the cluster is much greater than
that along the longitudinal direction. In other words, the rod-shaped object
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prefer to stay close side-by-side instead of head-to-tail.
In this work, we are not dealing with rods, but this observable could be
useful to check some features of our model. First of all, it could check the
validity of the algorithm used to consider the excluded volume of the parti-
cles. In next chapters we will see that we could use it also for other purposes.
Let us then define the 2D spatial correlation:

g(x, y) =
1

ρ
〈
∑

j 6=i

δ[xx̂i + yŷi − (ri − rj)]〉i (3.1)

where 〈...〉i represents the average over all the particles and the position
difference ∆r = xx̂i + yŷi is expressed is i-th local frame. Fig. 3.5 shows
two examples of g(x, y) for systems made of point-like and round particles.

(a) r = 0

(b) r = 0.1

Figure 3.5: Plots of the spatial correlation g(x, y) for systems with fixed ρ = 1
and η = 0.1 and for different values of the radius r. The hole in the right figure
states the validity of our algorithm for the excluded volume.
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I n the previous chapters we have seen that the introduction of the
excluded volume interaction brings some important consequences on the be-
haviour of the collective motion of self-propelled particles. In particular, we
have pointed out that the presence of units with finite size pushes the system
to be more ordered with respect to the corresponding one with point-like
particles. In this chapter we want to focus on the consequences that con-
finement may have on collective behaviours. In particular, we are going to
study collective behaviour of self-propelled particles with excluded volume
confined in rectangular geometries. In the set up we considered the system
as periodic along x-axis and sandwiched between two impenetrable walls
located at y = 0 and y = Ly.
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4.1 Bouncing Back Conditions at the Walls

In order to investigate the effects brought by the constriction we choose to
let, for the moment, the system width Ly = Lx and to shrink the width only
at a later stage. The confinement is considered imposing a “bouncing back”
conditions on the upper and lower walls. In other words, the two horizontal
walls reflect the direction of those particles which try to cross them.
From the topological point of view, we are cutting the torus along y = 0
and reproducing a closed strip (or a 2d-channel) as narrower as smaller is Ly.

In order to fix the ideas we report a series of snapshots in which a system
with Ly = Lx = 10 and N = 100 is subjected to different values of the noise.
Fig. 4.1a and 4.1b show the onset of two separated fluxes flowing parallel
and oppositely, respectively.

(a) Opposite fluxes η = 0 (b) Parallel fluxes η = 0

(c) Random walkers η = 0.9 (d) Clusters onset η = 0.3

Figure 4.1: Snapshot of different system behaviours for different values of the
noise amplitude η. The system has Lx = Ly = 10 ρ = 1. The big arrows indicate
the common direction of the flux.
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This peculiar feature is due to the absence of noise. After few moments the
particles reach a stable state flowing parallel to the walls. If the system is
thick enough, as in this case, the upper and lower part could be completely
detached from each other. Since that the order parameter we have defined
is a global order parameter, this scenario causes a decrease of its value. This
behaviour is obviously random but it is equally probable the production of
one flux or two fluxes oriented to the same direction. Otherwise, we will see
that for Ly ∼ R = 1 such behaviour is not possible any more because the
fluxes “see each-other” (the interaction range is comparable to the stripe
width). So, the presence of isolated fluxes becomes lesser probable as nar-
rower the stripe width decreases.
On the other hand, for increasing values of the noise, the particle do not
manage to stay close to the walls because the noisy term. Indeed, for small,
but non-null value of η, they prefer to join in clusters which, we will see
further, are very inclined to stick to the walls (fig. 4.1d) but actually they
do not persist for very long time close to the surfaces.
Fig. 4.1c shows an ensemble of particles subjected to η = 0.9. They perform
random walks and are not affected by the presence of the walls.

A schematic idea of what happens to the particles in presence of bouncing
back boundaries is shown in 4.2 and 4.3.
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Figure 4.2: Scheme of the (deterministic) particles behaviour close to the wall
for η = 0.
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Figure 4.3: Scheme of possible particles behaviour close to the wall for 0 < η <
ηc.
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Consider, for instance, two particles that do not interact each other but fol-
low a quasi-common direction towards the wall. When the first particle hits
the wall and inverts its direction the particles see each-other and interact.
At this point there are two possibilities:

- if η = 0: they follow a common direction parallel to the wall;

- if 0 < η < ηBB
c (L) †: the particles interact but the noise is high enough

to avoid the immediate alignment. So, most probably, also the second
particle bounces over the wall.

In the following section we will study how these behaviours affects the sys-
tem order parameter.

4.1.1 Effects on the Phase Transition

In this section we are going to compare the order parameter and order
parameter fluctuations behaviours in presence of the confinement and in the
original model. Fig. 4.4a and 4.4b show that the mere introduction of hard
reflecting walls do not lead to a more ordered system, on the contrary it
causes the enhancing of the high fluctuations range.
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Figure 4.4: Plot of φ and chi against η for periodic and bouncing back conditions
in a system with Lx = Ly = 10 and ρ = 1.

Let us point out some comments about this scenario:

- For η = 0 one can notice that, as already mentioned in previous sec-
tion, the order parameter is not equal to 1 because of the (random)
formation of isolated fluxes with often opposite travelling direction.

†ηBB
c (L) is the critical noise relative to the system with finite-size (L) and with bounc-

ing back conditions on the walls.
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- For 0 < η < ηBB
c (L) the presence of the confinement slightly decreases

the order parameter value, on the contrary, the increasing of the fluc-
tuations are very marked. This feature is due to the “bouncing” of
big clusters. Indeed, while the first layers are reflected by a wall, the
last ones keep pushing toward the wall. Doing so, many disordered
configuration come up. Even though this process is only a transient
between two ordered states, it takes as much time as bigger is the
reflecting cluster.

- For large noise strength the curves are overlapped, indeed the walls do
not play a relevant role on particles behaviour.

We will see that the size of the confined direction plays an important role
on the system order. In particular, we expect that narrowing the size till
Ly ∼ R will strongly affect the order parameter trend even for η & ηBB

c (L).

4.1.2 Density Distribution

In this part we want to point out the sticky effect due to the cluster-surface
interaction. For null value of the noise the combinations of bouncing back
conditions and deterministic dynamic caused the formation of fluxes paral-
lel and noticed very close to the walls. In fig. 4.5 we compare the density
distribution in the case of bouncing back and periodic conditions.
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with periodic conditions and η = 0.1 shows an uniform distribution as in the case
for η = 0)
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From this figure one can clearly infer that the particles have the tendency
to stay close to the walls for null value of the noise when the constrained
system is considered. On the other hand for η = 0.1, ρ(y) is more uniform
but still higher close to the boundaries. The sticky effect is not as rele-
vant as is be in real bacterial systems, but we will see further that a more
realistic effect can be reproduced slightly changing the boundary conditions.

4.1.3 Cluster Size Distribution

As already mentioned, we expect that the probability to find cluster with
a large number of units increases when constrained systems are considered.
The confining of environments leads naturally to larger number of interac-
tions and to the onset of locally denser clusters. In this section we want to
investigate the cluster size distribution P (m) introduced in section 2.4 and
compare the results with the unconstrained case.
Fig. 4.6 shows the cluster size distribution for η = 0.1 and η = 0.2 and for
the constrained and unconstrained cases. As expected, the case in which the
bouncing back boundary conditions are considered presents greater proba-
bilities to find big clusters.
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Figure 4.6: Plot of the cluster size distribution in the constrained and uncon-
strained cases for different values of the noise. Periodic: η = 0.1, η = 0.2. Bouncing
Back: η = 0.1, η = 0.2.
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4.2 Narrowing the Channel

In previous section we have introduced the confinement, but we let the sys-
tem width ten times greater than the interaction radius R. In this section
we are going to narrow the constrained dimension and to study the effects of
strong confinement. We are indeed going to reduce the width Ly till values
Ly ∼ R in order to confine the stripes in geometries very narrow and long.
Below (fig. 4.7) we report some snapshots of the systems we are considering.
Notice that the scales vary.

(a) Ly = 1, η = 0

(b) Ly = 2, η = 0.3 (c) Ly = 1, η = 0.3

Figure 4.7: Snapshot of system configuration for different values of system width
and noise. The big arrow represent the common direction of the particles. Notice
in fig. 4.7b and 4.7c the presence of big and small clusters respectively.

The first facts to notice are that, due to the strong confinement, the onset of
oppositely directed fluxes is impossible. Moreover, small width increases the
frequency of the interactions particle-surface. The onset of ordered states is
made easier by the cluster width, which is forced to be as thin as Ly, this
indeed involves a greater cluster mobility and inclination to stay aligned.
In the following section we are going to investigate quantitatively how the
confinement affects the order parameter behaviour.

4.2.1 Effects on the Phase Transition

We have seen in sec. 4.1.1 that the introduction of hard walls has enhanced
the order parameter fluctuations and decreased the order parameter value
within the range 0 < η < ηBB

c (L). This is not what one expects from a
constrained system. But, we will see in this section that the intuitive effect
of the confinement (more order, tendency to stay aligned, etc.) shows up
when one consider the geometry width of the same order of the interaction
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radius R, i.e. strong confinement.
In the following figures (fig. 4.8 and 4.9) we compare the order parameter
and the order parameter fluctuations of strongly and weakly constrained
and unconstrained systems.
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The first features one can immediately point out from the figures 4.8 and
4.9 about the behaviour of φ and χ in systems with Ly ∼ R are:

• For η = 0 the order parameter must be equal to one. This is due to the
impossibility of the formation of two isolated and oppositely directed
fluxes (still possible for Ly = 10 as already pointed out).

• For fixed system size A = LxLy
† and density ρ:

- The critical noise ηc(A) is shifted towards higher values of the
noise.

- The narrower is the channel, the narrower are the peaks of χ and
the sharper is the order-disorder crossover.

- χ experiences strong consequences of the presence of the constrain
even for η & ηc(A).

As already mentioned, for strong confinement the cluster thickness is forced
to be of the same order of Ly and hence, for small values of the width,
the information spreading is very rapid and the cluster is very mobile. The
immediate consequence is the increasing of the cluster coherence and of the
order parameter φ. On the contrary, weakly constrained systems show big
and lesser dense clusters through which the information does not move so
fast. An other important effect is shown η ∼ ηc(A), indeed the order pa-
rameter experiences a very sharp decreasing. This feature is due to the
great hitting frequency against the walls. Indeed, as soon as the noise is big
enough, the clusters are subjected to fragmentation as we will see in sec.
4.2.3.

4.2.2 Density Distribution

Since that the strong confinement induced by bouncing back conditions at
the boundaries pushes the particles to jump very frequently between the
walls, we expect the density distribution to be more uniform with respect
to the weakly constrained case. So, in this scenario, the sticky effect disap-
pears more and more for smaller values of the confined direction size. This
is clearly visible in fig. 4.10 where is plotted ρ(y) for weakly (4.10a) and
strongly (4.10b and 4.10c) confined systems.

†Since the linear size Ly and Lx vary, in this case the finite system size is considered
fixing the area A. So ηc is determined for fixed A and ρ.
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Figure 4.10: Plot of the density distribution projection on the y-axis for systems
with different Ly and noises: η = 0, η = 0.1, η = 0.3 and η = 0.8.

4.2.3 Cluster Size Distribution

In previous section 4.2.1 we mentioned the onset of cluster fragmentation
effect for η & ηc(A). Figure 4.11 is particularly indicative in order to make a
point of such feature. For η < ηc(A) the curves for the two values of Ly are
quite similar so in the two cases the different values of the order parameter
is not caused by the cluster dimension. On the contrary, as soon as the noise
passes the critical value, the system with Ly = 1 shows greater probability
to find smaller clusters with respect to the system with Ly = 2 and this con-
tributes to the sharp decreasing of the value of φ in system with very small
width. In other words the narrowing leads to the clusters fragmentation
thus for fixed noise η > ηc(A) the narrower is the strip, the more probable
is to find smaller clusters which explain the shape of the curve of φ in fig.
4.9.
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Figure 4.11: Plot of the cluster size distribution for a system with bouncing back
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4.3 Giant Fluctuations in Rectangular-Shape Sys-

tems

In this section we are going to show one of the most important achievements
regarding confinement of active systems.
Indeed, we are going to point out that the giant density fluctuations already
mentioned for the original Vicsek model, are also shown in constrained sys-
tems and they strongly depend on the size Ly. In figures 4.12a-4.12c are
plotted Var(n) as a function of 〈n〉 for systems with different width and for
η = 0.1 and η = 0.9. The data are provided through the same method
described in sec. 2.5.
The worthiest fact to notice is that, for η = 0.1, the fit gives greater values
of α† for lesser value of the system width Ly. In other words, the stronger is
the confinement, the “more giant” are the density fluctuations. This feature
suggest evidently the onset of strongly non-uniform states as moving bands.
Notice that for η = 0.9 the systems show the expected behaviour for Ly > 1
(α ≃ 1/2) but for Ly = 1 it seems that even with high noises the uniform
density is not preserved. These results are, unfortunately, only preliminary
and qualitative. Large scale simulations are imperative in order to state
firmly the dependence of the giant fluctuations on the confinement strength.
However, these plots strongly motivates further studies.

†Remember that α is defined as Var(n) ∼ 〈n〉α
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I n this chapter we are going to explore other boundary conditions at
the walls y = 0 and y = Ly. These boundary conditions are phenomenolog-
ically inspired and tend to reproduce, in particular, the behaviour of living
units that tend to avoid collisions with an obstacle. We consider:

Stop B. C.: In this case self-propelled particles stop their motion
until they go a direction, caused by the noise or by the interaction
with other particles, that would avoid a collision with the wall.

Slip B. C.: Here self-propelled particles slip along the boundary con-
serving their absolute velocity. This is closer to the behaviour observed
in birds, bacteria and herds.
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In particular, in this chapter we are going to study the effects that these
conditions may have on density distribution, phase transition, cluster size
distribution and density fluctuations in systems confined within stripes.

5.1 Stop Condition

In this section we are going to analyse new effects brought by the introduc-
tion of the “stop condition”. In order to fix the ideas we plot below some
snapshots of the typical system configurations at different times and with
different noises.
In absence of noise, after few time steps, the system reaches a static (5.1b
is equal to 5.1c) state in which all particles are blocked and aggregated in
many little clusters (see fig. 5.1). Moreover we can just anticipate that the
clusters have a pyramidal form: many particles lay on the wall while going
far away from the boundary lesser particles are present.

(a) t = 0 (b) t = tmax/2

(c) t = tmax

Figure 5.1: Snapshots of system configurations at different times and with noise
η = 0.0. Notice the formation of stable pyramidal clusters. (Notice that the scales
are unreal, in other words it seems that the particles are overlapping each-other
and are moving only vertically but they are not.)

This configuration strongly suggest that the order parameter of the system
can not be close to unity. Indeed the presence of many little (and isolated)
clusters makes the particles only locally aligned.
On the other hand, if one increases slightly the noise, the situation is com-
pletely different. One can see in fig. 5.2 that there are metastable states in
which large clusters occurs. In this condition we expect a greater value of
the order parameter of the system with respect to the case with zero noise;
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indeed there are more possibilities that the particles interact each-other dur-
ing all time of the process.
In all these cases, however, we expect a non-uniform density distribution
along the y-axis also in presence of noise (to be compared with results found
in sec. 4.2.2). This means that our particles conserve the tendency to stay
close to the walls until the noise strength reaches a sufficiently high value.
This feature is quite similar to real bacteria behaviour which are trapped
along the surfaces both because of the elongated shape of bacteria and of
the hydrodynamic interactions [33, 34]. Even if real bacteria continue to
swim along the walls, for now we are going to analyse this scenario as a
middle-step to the introduction of the “slip” condition.

(a) t = 0 (b) t = tmax/2

(c) t = tmax

Figure 5.2: Snapshots of system configurations at different times and with noise
η = 0.1. Notice the metastable state in 5.2b characterized by the formation of big
clusters. In fig. 5.2c the presence of pyramidal clusters are still observed.

5.1.1 Effects on the Phase Transition

As already mentioned the system configuration for null value of the noise is
dominated by the presence of several non-interacting small clusters attached
to the walls. Since the clusters are oriented upward or downward depending
if they are on the upper or lower wall, these configurations correspond to
low value of the global order parameter. This means that there is no longer
a critical noise ηc for which for any η < ηc the system reaches an ordered
state. This is what one can point out from fig. 5.3 where one can compare
the order parameter trend in stop and bouncing back boundary condition.
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Figure 5.3: Plot of the order parameter as a function of the noise amplitude for
different values of Ly and with fixed density ρ = 1 (Ly = 1, Ly = 2 and Ly = 4).

Another interesting point is the effect of the channel width on the order
parameter trend.
In fig. 5.3 we report the order parameter as a function of the noise ampli-
tude for different values of Ly. Since we have to maintain the same density,
it is worth to notice that if we shrink the width, we also have to enlarge
the strip’s base (Lx). This means that there is a strong spread of particles
along x-direction that could hinder the interaction among them especially if
subjected to stop condition at the boundary because in this case free move-
ments within the system are rarer.
From fig. 5.3 one can infer that for fixed value of the noise a smaller Ly

implies a smaller value of the order parameter. A possible explanation is
the following.
The boundary condition imposed is very strong, indeed every time one par-
ticle “hits” the wall it stops its motion; if now we focus on a single cluster, it
is easy to understand that if the first layer is blocked near a wall, since the
particles have a finite volume, all the other flock-mates are forced to stop in
order to avoid overlapping.
For this reason the smaller the system width is, the more frequently the
particles interact with the walls and consequently have to stop their motion.
In other words the clusters have less “free path” between one stop and the
other during which they can interact with other clusters. This means that
the systems in channels present more but smaller clusters which move inde-
pendently to the others, and so there is higher probability to find isolated
clusters blocked in the two different walls simultaneously.
In the figures 5.4 and 5.5 are plotted two configurations of systems with
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same density and different values of the width Ly.

Figure 5.4: Snapshot of a configuration for system with Ly = 1 and fixed noise
η = 0.2. To notice the presence of many and small independent clusters.

Figure 5.5: Snapshot of a configuration for system with Ly = 4 and fixed noise
η = 0.2. To notice the presence of only two big independent clusters.

5.1.2 Effects on the Density Distribution

In this section we are going to discuss the increasing of the adhesion effect
due to the introduction of the stop condition at the boundaries.
This feature is particularly interesting because reproduces phenomenologi-
cal behaviours of self-propelled rod-like units. In [35] the authors underline
the fact that only the elongated shape of the rods allows the aggregation at
the side walls. Here we show that, with opportune boundary conditions, the
aggregation (at the walls) is possible also with round particles.

In fig. 5.6 we show the density distribution along the y-axis for ρ = 2 and
Ly = 2. In this scenario one can see the walls to act as “attractors”; indeed
as soon as a particle interact with the surface it is literally frozen and its
direction is, obviously, toward the wall. For this reason each particle that
enters in its interaction radius R it is attracted to the “frozen” particle.
Having in mind the process described above one has to investigate how the
noise affects the configurations; if the noise is null the particles follow ex-
actly the average direction of the “frozen” group and are stopped before
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Figure 5.6: Plot of the density distribution as a function of the y-coordinate for
fixed ρ = 2 and Ly = 2 and for different values of the noise (η = 0, η = 0.1, η = 0.4
and η = 0.8).

they would overlap their volume. So, as soon as a particle stops its motion
it stays in that position for all time long of the process.
On the contrary, if the noise is big enough, the contributions of noise, align-
ment tendency and stop condition lead the group to rearrange itself until it
reaches a stable configuration (a truncated cone, fig. 5.7).
For these reasons one can observe the red line in fig. 5.6 that is less sharp
for y = 0 and y = Ly and has several little peaks for half-values of the
y-coordinate which represents the probability to find particles stopped by
the tips of the triangular structures already formed. On the contrary for
non-null but low values of the noise the density distribution reflects the ten-
dency of the particles to fall as “avalanches” toward the near wall.

iiiii��1��� 6AAK 6iIi��� i6i6i6i6i6

η = 0

i6iiii��� 6� 6i��� i6iAAKi��� iCCO i6iBBM i���iCCO i��� iAAK i6iCCO i��� iBBM

η > 0
Figure 5.7: Examples of particle configuration for η = 0(left) and η > 0(right).
The particle make advantage of the presence of the noise to rearrange their dispo-
sition in order to form the most stable configuration.
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5.1.3 Cluster Size Distribution

In sec. 2.4 we defined the “cluster size distribution” P (m) and we pointed
out that in systems with periodic and bouncing back boundary conditions
the probability to find large clusters is maximum for noises η ∈ [0, ηc(L)].
Moreover in sec. 4.2.3 we have highlighted that as soon as η > ηc the com-
bination of bouncing back conditions and narrowing of the stripes lead to
clusters fragmentation. However, it is easy to understand that, for instance,
bacteria do not bounce over the surfaces like balls. Otherwise, they could
more inclined to stick on them and grow until a colony is formed.
In this work we do not allow the particle to reproduce but, by introducing
the stop condition, we can fairly simulate the aggregation in colonies. For
these reasons in this section we want to understand if the stop condition
reproduces properly the feature of the bacteria to aggregate in precise loca-
tions.
We have already shown that for null value of the noise many and little long-
living clusters are rapidly formed, while for little values of η the particles
manage to form stable pyramidal structures. Obviously, the time needed by
those structures to form is related to the channel width because for fixed
noise the lesser is the width the more frequently the particles are stopped
at the walls instead of interact each-other. In fig. 5.8 one can observe that
the particles aggregate in a completely different way with respect to systems
with previously boundary conditions.
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Figure 5.9: Plot of the cluster size distribution as a function of the cluster size m
for fixed Ly = 1 and different values of the noise (η = 0, η = 0.1, η = 0.2, η = 0.8).

For instance, the two distributions for η = 0 with bouncing back and stop
boundary conditions show that it is impossible to find big clusters in the
latter case. Moreover, the greater aggregation effects arises for low, but non-
null values of the noise (green line in fig. 5.9). This feature plenty satisfies
what is experimentally observed: even if the bacteria live in noisy environ-
ment they are able to form stable structures stopping on the surfaces.
On the other hand the stop condition makes the units too less mobile, or in
other words it is not very realistic that every time a bacteria hits a wall it
stops its motion. Indeed it is more reasonable that the smaller vertical size
should leads to more frequent interactions and should stimulate the onset
of the self-organization instead of makes the particle less interacting.
A clue of this feature is shown in fig. 5.8, indeed for fixed noise the narrower
is the system the greater is the probability to find smaller clusters. In sec.
5.2 we will introduce a different boundary condition in order to get over
these difficulties.

5.2 Slip Condition

Strongly motivated by direct observation of bacteria interaction with obsta-
cles [12] in this section we are going to reproduce the tendency of intelligent
living units to avoid the hits with obstacles and at the same time to conserve
the movement. We remind the “slip” condition:
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Slip condition: Whenever a particle position at time t + ∆t would be
beyond the upper or lower wall, the particle slips along the boundary con-
serving its absolute velocity v0.

This condition is very suitable with respect to what is the aim of this
work. Indeed, as stated in the introduction, we consider the particles non-
reproducing and the environment, in which those particles move, filled of
“food” homogeneously, consequently there are not biological motivations
for which the units prefer a certain location. In this scenario we can investi-
gate the system properties and the aggregation effect at the surfaces caused
only by geometric contributions.

5.2.1 Effects on Phase Transition

Let us firstly investigate how this condition affects the order parameter
trend. We expect that for low values of the noise the approaching to the
stationary state is very rapid; indeed as soon as the i-th particle hits a wall
its direction is immediately redirected along the border. After that, every
particle entering in its interaction radius R is instantaneously and determin-
istically aligned to the i-th particle since that the latter is forced to move
parallel to the wall. On other hand for higher values of the noise the slip
conditions does not involve very different effects on φ with respect to the
bouncing back conditions.
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Figure 5.10: Plot of φ for fixed ρ = 1 and for different values of width Ly

with slip condition (Ly = 1, Ly = 2, Ly = 4) and for bouncing back , Ly = 1
condition.
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ρ = 1, ρ = 2). Notice the enhancing of the unstable region at low values of η for
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From fig. 5.10 one can compare the trend of the order parameter in systems
with different width Ly and for slip and bouncing back boundary conditions.
It is evident that the curves for Ly = 1 in the case of slip (red) and bounc-
ing back (black) boundary conditions are well-overlapped for η high enough.
On the contrary, for low values of noise strength the slip conditions leads
the system to unstable states in which the order parameter is not strictly
close to one. From fig. 5.11 it is also clear that this strange behaviour is
greater for bigger values of the system density. In order to understand the
causes of this effect one can observe fig. 5.12. It shows that the dynamic of
the system, which involves excluded volume and binding of the wall, leads
the particles to “crystallize” in the structures shown in fig. 5.12a.

(a) (b)

Figure 5.12: (Left) Snapshot of a system configuration for Ly = 1. Notice that
while the left cluster is moving rightward, the right cluster is blocked and static
because of geometrical and dynamical reasons. (Right) Scheme of the dynamics
that brings the particles to aggregate in static cluster.
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5.2.2 Effects on Density Distribution

In this scenario the adhesion effect is still important but not so strong as in
systems with stop conditions at the walls. Indeed the slip condition is less
binding than the stop condition. The former reorients the particle direction
parallel to the wall so that it is sufficient a little “push” of the noise toward
the bulk to detach the particle from the wall. On the other hand, the par-
ticle frozen by the stop condition needs greater values of the noise strength
to go far away from the boundary.
Since that the slip condition is less binding than the stop condition, we ex-
pect that for η = 0 the density distribution ρ(y) takes high values close to
the boundaries but as soon as η becomes non-null the slip condition loses
rapidly its importance as one can infer from fig. 5.13.
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5.2.3 Cluster Size Distribution

The cluster size distribution is a very good clue about what is the achieve-
ment reached through the introduction of the slip condition. Fig. 5.14a and
5.14b allow us to compare the effects on P (m) of the stop condition and of
the slip condition for different systems width and for η = 0.2 and η = 0.4
respectively.



58 5.3. Giant Density Fluctuations

What one can infer from these figures is that using the slip condition the
“cluster fragmentation” pointed out for system with bouncing back con-
ditions and also existent for stop condition is still present for values of η
greater than the critical noise. This feature causes the rapid drop of the
order parameter value for η > ηc(A) observable in fig. 5.10 and as a conse-
quence, the trend of φ is as sharper as smaller is the system width.
At the same time the slip condition involves high probability to find clusters
with size m ∼ N for η < ηc(A) while the stop one does not allow the cluster
to aggregate in big clusters, as one can infer from fig. 5.14a.
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Figure 5.14: Plot of the “cluster size distribution” P (m) as a function of the
cluster size m for fixed noise η and ρ = 1. Different curves correspond to different
values of the width Ly and boundary conditions. Slip condition: Ly = 2 and
Ly = 1. Stop condition: Ly = 2 and Ly = 1.

As a consequence, the slip condition is the most suitable boundary condi-
tion for our purpose. Moreover, it agrees with previous direct observations
of bacterial systems and indirect observations of aggregation features.

5.3 Giant Density Fluctuations

Let us analyse how this boundary condition affect the density fluctuations.
In sec. 4.3 we found that in systems subjected to strong confinement and
bouncing back boundary condition, strong inhomogeneous configurations
occur very frequently. Those giant density fluctuations were, moreover, di-
rectly related to the confined size of the environment.
In this section we want to investigate the giant density fluctuation when slip
boundary condition is considered. To notice that, as far as we know, no one
has ever tried to calculate this observable in real bacterial systems. On the
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contrary, it is a good clue of the non-equilibrium state of the system. We
show the results of our simulation in fig. 5.15.
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Figure 5.15: Plot of Var(n) as a function of 〈n〉 for systems with different width
Ly and fixed noise η = 0.1 < ηc(A) (Ly = 1, Ly = 2 and Ly = 4).

From the figure one can infer that the narrower the system is, the larger
is the fluctuations. We remind that in the standard Vicsek model α was
found to be α = 0.8 [29]. Hence, even though we are not performing large
scale simulations, the values we reported in fig. 5.15 and especially their de-
pendence from the constrained size, strongly motivate deeper investigations
regarding this topic.
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O ne of the main goal of this thesis is the study of the collective motion
of self-propelled particles within confining non-differentiable geometries. We
will restrict ourselves to simple non-differentiable geometries such as spikes
and wedges.
The initial set up is made of N round particles with random positions and
orientations within a system with periodic boundary conditions on the ver-
tical borders and slip boundary conditions on the upper and lower walls
which this time are not straight lines but present limited regions with posi-
tive (bottlenecks) or negative (wedges) curvatures (see fig. 6.1).

The aim of this chapter is to understand the interplay between the geomet-
rical shape and the collective dynamic. Indeed, one of the main question
we raised is: how is the collective motion affected by the confinement in
irregular geometries? It is an important and interesting question and, as
far as we know, not yet enough investigated. This topic gains even more
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(a) Singularity with negative curvature (b) Singularity with positive curvature

Figure 6.1

prominence thank to technological developments which allow us to create
microscopic strong constrained systems.
It is worth to remember that we are not considering the presence of food
or other biological motivations. Hence, here we are interested only on the
study of those geometrical contributions which could enhance the probabil-
ity of trapping and clustering. For this reason, the final goal is to predict,
for a given confining shape, the probability to find clusters of bacteria (or
cells, metastasis ... whatever living or non-living unit describable by this
model) in a certain region of the space-time.

6.1 Wedges

In this section we are going to simulate the presence of a wedge placed at
the upper wall, while the lower one is kept straight (see fig. 6.1a). Note that
the area of the wedge is very small with respect to the total system area A
of the confined region. The wedge is parametrized by its half base w and
slope α (the height is h = w · α). Giving an aspect ratio:

R ≡
h

2 · w
=

α

2
.

An interesting question to address for this geometry is whether, under suit-
able conditions of density and noise, the probability to find a large amount
of bacteria inside the wedge is high even if they are not attracted by the
presence of food. In order to do so we are going to study the density distri-
bution inside the wedge as a function of the y-coordinate and the “residence
time” Tres defined as:

Tres ≡
1

Tmax

∫ Tmax

0
Θ(t)dt (6.1)
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where

Θ(t) ≡

{

1 if
∫

W ρ(x, y, t)dxdy ≥ 0.1

0 , otherwise
(6.2)

and Tmax is the simulation time and the integral is performed inside the re-
gion W which represent the wedge. The resident time and ρ(y) are going to
be investigated for different values of the aspect ratio R and noise strength
η. It is worth noticing that in this scenario the global order parameter φ
loses its importance. Indeed also for low values of the noise it could happen
that the particles inside the inlet are not aligned causing the decrease of the
order parameter value. Moreover, in order to answer to the questions high-
lighted above we can use more powerful tools, as the density distribution,
the residence time and the cluster distribution.

6.1.1 Density Distribution Inside the Wedge

In this section we look at the density distribution for different aspect ratio
R. The base of the wedge is fixed to 2 ·w = 3. In other words the entrance
of the inlet is fifteen times the diameter of the particles. It is worth noticing
that larger R means higher curvature at the top of the wedge. As a conse-
quence, we expect that for higher R the particles would be more inclined to
“crystallize” at the top of the wedge.
Figures 6.3a-6.3d show the density distribution ρ(h) as a function of the
wedge’s height h. These plots show, as expected, that the maximum of ρ(h)
is more shifted toward the top of the wedge for higher values of R.
It is worth noticing that the domain of ρ(y) in this case is y ∈ [Ly, Ly+w ·α].
As a consequence, since we choose to let the normalization constant of ρ(y)
fixed to N , the curves plotted in figures are not normalized to 1. On the
other hand, this choice can highlight another interesting information: the
fraction of particles which explore, on average, the wedge at each time step.
From these figures one can deduce that:

- when the noise is absent the particle are distributed quite homoge-
neously along the y axis but not along the x axis, or in other words
they do not fill all the available space inside the wedge. This feature
is due to the completely absence of the noise (fig. 6.2a). As soon as
the noise is big enough, the particles begin to rearrange themselves in
order to fill all the inlet’s area. As a consequence many other particles
can enter in the wedge and so all the cluster becomes trapped more
efficiently (fig. 6.2b);
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- for noises beyond the critical value ηc(A) of the correspondent system
without the wedge the distribution is more peaked towards the top of
the wedge but a lesser fraction of particles explore, on average, the
inlet at each time step. This is because the greater the noise is, the
lesser the particles “feel” the inlet; as a consequence, it is harder for the
particles to reach the top part of the wedge. However, 6.2c shows that
once they have reached it, and the curvature is big enough (R > 1),
they are efficiently trapped, also for quite big noises;

- for noises η ∼ 1 the particles are N random walkers and the particle
take a diffusive behaviour. After enough time the particle reach a sta-
ble distribution in which the inlet is filled uniformly as the rest of the
system (see fig. 6.2d).

(a) Snapshot of system configura-
tion for η = 0.

(b) Snapshot of system configu-
ration for η = 0.1.

(c) Snapshot of system configura-
tion for η = 0.4.

(d) Snapshot of system configura-
tion for η = 0.8.

Figure 6.2: Notice the diverse way in which the wedge traps the particles de-
pending on the noise strength. For η = 0.1 there is enough noise to permit the
exploration of all the inlet. For η = 0.4 the combination of noise and wedge detach
a group from the rest.

An interesting problem that arises from the considerations above concerns
in estimating the “critical aspect ratio” R∗ that is the value of R that, for a
given noise strength, the trapping of the particles is efficient. Indeed, from
figures 6.2a-6.2d one can point out that for fixed η, it exists a value R∗(η)
for which a fraction of the particles are trapped inside the inlet and are com-
pletely uncorrelated from the rest of the system. In other words, it seems
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that “as soon as those particles enter in the inlet, it closes behind them” as
shown in fig. 6.2c.
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Figure 6.3: Plot of density distribution ρ(h) as a function of the cone height h
for fixed ρ = 2 and for different values of the noise η (η = 0.0, η = 0.1, η = 0.4 and
η = 0.8).

6.1.2 Residence Time

In this section we are going to study the residence time defined in eq. (6.1).
This observable has a very important meaning in this scenario since it indi-
cates the time fraction during which more than the 10% of the particles are
inside the inlet, for a given density ρ, noise η and aspect ratio R. Fig. 6.4
shows the trend of Tres as a function of the noise η for different aspect ratios
R. The interpretation of the figure is quite straightforward but not trivial:
for η < 0.5 the curves are well defined and not very noisy. In that range,
one can observe that the sharper the wedge is the higher noise strength
is needed to decrease Tres. This feature, in this particular range of noise,
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makes a point of what already said in the previous section: sharper wedges
assure a more efficient trapping.
For noises η > 0.5 the situation is slightly different, since particles are more
similar to random walkers than flock-mates. In this case the residence time
cannot give us any information about the trapping efficiency of the inlet
with a certain aspect ratio.
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Figure 6.4: Residence time Tres as a function of the noise η for different values
of the aspect ratio R and for fixed ρ = 1 (R = 0.5, R = 1, R = 2, R = 4 and
R = 6). Data are averaged over the last 5 · 103 configurations and over 10 different
initial conditions.

Another important consideration is that, for aspect ratio R ≤ 2 and for
η < 0.5, the residence time experiences a sudden drop for precise values of
η, while higher aspect ratios do not lead to this effect.
This observations strongly suggests the existence of a “critical aspect ratio”
R∗ that, for this range of noise, can assure the presence of a certain amount
of particles for a certain period of time.
Moreover, in an indirect way, the rapid decrease give us an estimation of
the trapping efficiency of the wedges. Indeed, for fixed aspect ratio exists a
critical noise η∗(R) for which the wedge does no longer trap the particle in
an efficient way.

Cluster Size Distribution

We expect that the cluster size distribution is strongly modified by the pres-
ence of the wedge. Indeed, as already pointed out, for not too big values
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of the noise, the sharper the inlet is the more efficiently the particles are
trapped and more time they spend inside it.
In particular we expect that for low values of R the cluster size distribution
would be quite similar to that in the case of rectangular smooth systems
(with the same width Ly). This is well confirmed in fig. 6.5.
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Figure 6.6: Plot of P (m) for different values of the aspect ratio R (R = 1,
R = 2, R = 4, R = 6). Notice the decreasing of P (m ∼ N) for greater values of R
and at the same time the coming up of peaks for m . N .

On the other hand the introduction of sharper wedges brings stronger con-
sequences on the clustering. For instance, as shown in fig. 6.6, the cluster
size distribution at m ∼ N is less peaked for greater values of R. At the
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same time, it becomes more probable to find clusters having size m slightly
smaller than N. This feature is another indication that sharper wedges imply
greater probabilities to find a non-negligible fraction of particles inside them.

6.2 Bottlenecks

The aim of this section is to reproduce size irregularities frequently present
in constrained biological and artificial systems. The investigation of this
topic is, as already said, very suitable with respect to modern experiments
regarding physics at the nanoscales.
Firstly, we are going to investigate the density distribution and the resi-
dence time as a function of the x-coordinate. Indeed, while in the previous
section we were interested in the study of the trapping performed by the
wedge (negative curvature), here we expect to observe other kinds of effect
provided by the presence of obstacles with positive curvature. In particular,
the presence of the wedge broke the spatial symmetry on the y direction,
which suggested a careful investigation of the observable dependence on y
coordinate. Now, the presence of the bottlenecks restores the x, y symmetry,
so we are going to study both x and y dependences.

In order to fix the important quantities we remind that in this scenario the
lower and the upper walls are functions of the x-coordinate. So we define

S ≡ min {UpperWall(x)− LowerWall(x)}. (6.3)

We are going to consider S ∈ [0.5, Ly ] which correspond to set the minimum
gap large enough to allow the simultaneous passage of two particles in the
former case and of Ly/(2 · r) particles in the latter (which corresponds to a
system without constrictions).

6.2.1 Blockage Effect

In this scenario we expect that when the opening S is very small, it would
obstruct the passage of the round particles. As a consequence, a sort of
queue close to the most narrow space between the walls would arise. In
order to check this effect, which is a very realistic phenomenon (one can
think at the occlusions performed by cholesterol molecules in the veins), we
study the density distribution ρ as a function of the x-coordinate. Next, we
are going to study how long, on average, they stay in this configuration.
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Density Distribution

As expected we observe a non-uniform density distribution along the x-axis.
As the opening decreases ρ(x) splits in two symmetric peaks, which is very
reasonable, since we are considering a symmetric constrain (fig. 6.7, 6.8).
The third plot (6.9) shows ρ(x) for different values of the noise and for the
same value S = 1.
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Figure 6.7: Plot of ρ(x) for different values of the spacing S at fixed noise η = 0
(S = Ly, S = 3, S = 2, S = 1, S = 0.5). (Notice that the bottleneck takes the
minimum space between the walls at x = Lx/2)
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Figure 6.8: Plot of ρ(x) for different values of the spacing S at fixed noise η = 0.1
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70 6.2. Bottlenecks

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  2  4  6  8  10  12  14  16  18  20

D
en

si
ty

 D
is

tr
ib

ut
io

n 
ρ(

x)

x

Density Distribution

η = 0.0
η = 0.1
η = 0.3
η = 0.8

Figure 6.9: Plot of ρ(x) for different values of the noise η and for fixed spacing
S = 1 (η = 0, η = 0.1, η = 0.3, η = 0.8). (Notice that the bottleneck takes the
minimum space between the walls at x = Lx/2)

One can clearly observe the increasing of the inhomogeneity for smaller val-
ues of the spacing S and of the noise η. This means that the role of the
blockage becomes very relevant for small values of the gap and for little val-
ues of the noise. On the other hand, we will see in the following sections that
small gaps and little noises involves an interesting “focusing effect” on the
particles. For these reasons it could be very stimulating to find the suitable
conditions for which the blockage effect is minimum but this “focusing ef-
fect”, which we will define better in next sections, is maximum. We will try
to define the most appropriate observables and to answer to this question
later in this chapter.

Residence Time

As already mentioned before, in this section we are going to investigate the
resident time along the x-axis. The introduction of the constrain causes the
particles to slow or stop their motion when they are close to the narrowest
section. As a consequence a queue is rapidly formed. The aim of this section
is to understand how long, on average, more then the 10 % of the particles
are blocked close to the bottleneck. With this respect we define:

Tres ≡
1

Tmax

∫ Tmax

0
Θ(t)dt (6.4)
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where

Θ(t) ≡

{

1 if
∫

B ρ(x, y, t)dxdy ≥ 0.1

0 , otherwise .
(6.5)

This time the region of the integration in eq.(6.5) is the range B = [0, Ly ]⊕
[Lx/2.0 − w,Lx/2.0 + w]. The residence time as a function of the noise for
different values of the spacing S is plotted in fig. 6.10.
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Figure 6.10: Plot of Tres against η for different values of S (S = Ly, S = 3,
S = 2, S = 1). To notice that, for enough low noises, as smaller is S as longer the
particles are stopped close to the bottleneck.

For too low values of the noise the values of Tres are very high because the
particles are forced to follow each-other. On the contrary, for very big values
of the noise the particles perform random walks, hence no queue comes up.
It is worth to notice that, as expected, lower values of the gap S involve
higher probability to find the particles blocked very close to the maximum
constrain. This result makes a point of the importance of the suitable geo-
metrical and environmental condition in order to reach as fast as possible,
for instance, a region particularly rich of food.

For these reasons, one could simulate the presence of food within the sys-
tem and study which is the best geometrical configuration that helps the
self-propelled units (bacteria in this case) to reach the food.
In fig. 6.11 I report a sequence of frames of a rectangular system with a
constrain in the middle and N = 1000 particles initially located on the left.
Notice that the food is represented by the box in the right part of the sys-
tem.
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(a) t=0 (b) t=126

(c) t=284 (d) t=500

Figure 6.11: Snapshots of the system configuration at different step time.

One of the observables which is reasonable to investigate could be the “First
Arrival Time” Tfat(t, η, α,w); or, in other words, the probability that a par-
ticle reaches the box as a function of the time t, the noise and the geometry.
In this thesis I am not going to investigate further these kind of systems.

From these preliminary considerations, another interesting question arises:
What happens if we consider systems without spatial symmetry? Or at
least, one of the two part of the system (right or left) is not the mirror of
the other? This question is strongly related to the work of Prof. Ruocco
[36] and of Prof. Austin [12] which are obtaining solid results based on the
possibility for the active matter to overcome the restrictions imposed by the
second law of thermodynamics on equilibrium passive systems.
In order to investigate this topic we could remove one part of the constrain
and create a sort of funnel, very similar but not equal to that produced by
[12]. The most curious thing is that, from a biological point of view, we are
just reproducing the same geometry of the valves inside the human veins.
As a consequence, we expect that the self-propelled units experience the
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same process of the blood cells inside the human veins, i.e. they are forced
to flow on the right way. The system we set looks like fig. 6.12.
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Figure 6.12: Asymmetric constrain.

While fig. 6.13 is a snapshot of the system made of N = 1000 particles
moving through the constrain.

Figure 6.13: Snapshot of a system with N = 1000 particles and asymmetric
bottleneck. Notice the focusing effect caused by the constrain.

In fig. 6.13 one can notice that under the appropriate environmental and
geometrical conditions, the cluster conserve the shape of the constrain, in-
stead of immediately spread. We can define this tendency of the clusters to
conserve the shape and the alignment as a “focusing effect”.
An important consequence of this feature is, as we will see better later, the
enhancing of the cluster average velocity. Since the particles are forced by
the interaction with the walls to stay very close and to reduce the fluctua-
tions, the velocity of the cluster center of mass increases. What would be
very worthy to investigate further is how much we can focus the clusters.
Or in other words, how much the geometry can help the cluster to reach
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rapidly a fixed region. As in the case of the chemotaxis term, we are not
going to study deeper this scenario.

6.2.2 Focusing Effect

In previous section we have qualitatively observe a tendency of the cluster
to stay aligned and to conserve the elongated shape. This feature is very
similar to the focusing experienced by the light when pass through a lens.
For this reason we called it “focusing effect”. In this section we are go-
ing to study deeper the occurrence of non homogeneous density patterns
in proximity of the narrowest region at the bottleneck. We will investigate
in particular the full 2D density distribution function and the local order
parameter, which we will define later.

2D Density Distribution

Let us define the two dimensional density distribution ρ(x, y) as

ρ(x, y) =
1

N
〈

N
∑

i=1

δ[xx̂+ yŷ − ri]〉 (6.6)

where 〈. . . 〉 is the average over the configurations.
Fig. 6.14 show a sequence of different ρ(x, y) for systems with N = 1000
particles and different values of S and η.
In these figures is clearly visible a strong non uniformity of the density dis-
tribution. In particular, it is evident that for the suitable combination of
η and S the darker (denser) region takes an elongated shape. This means
that, when the system have broken the initial symmetry for x-axis reflection
at Lx/2 one side of the bottleneck thrusts out the focused clusters, while
the other works as a funnel. In fig. 6.14e and 6.14f the gap is very small and
the “plaques” of blocked particles are evident. Otherwise, for bigger values
of the gap (6.14a,6.14b) the flow is much more important then the blocked
particles, also if not very focused.
The best combination of environmental noise and geometrical shape among
these cases is plotted in fig. 6.14d. The gap fixed at S = 2 and the noise at
η = 0.1 involve a good compromise between flowing and focusing.

Local Order Parameter

At this point a question that arise naturally is: which is the best observable
we can define in order to investigate a large number of S and η combina-
tions? One can indeed notice that as soon as the cluster leaves behind the
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(a) S = 3, η = 0.2 (b) S = 3, η = 0.1

(c) S = 2, η = 0.2 (d) S = 2, η = 0.1

(e) S = 0.5, η = 0.2 (f) S = 0.5, η = 0.1

Figure 6.14: Notice (specially for 6.14c and 6.14d) the color scale at the right
of the figures. In fig 6.14e the particles are blocked and the flow through the gap
is very poor. Notice, also, that the breaking of the symmetry could be rightward
or leftward. In the last two figures is leftward, in the others is rightward. Since the
system is symmetric for refection of the x-axis around Lx/2 the two possibilities
have the same probability.

gap it is very coherent, or in other words, the particles are very aligned.
Hence the average velocity of that cluster is expected to be bigger than that
of a cluster in the original Vicsek model at the same value of the noise, and
this effect is more evident as the noise increases. Thus, a good way to check
the efficiency of the constrain is to define the local order parameter:

φLoc(x) ≡ 〈
1

Nv0

∣

∣

∣

∣

∣

C
∑

i

vi(t)

∣

∣

∣

∣

∣

〉 (6.7)
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where 〈. . . 〉 is the average over the time and the sum is restricted to those
particles inside the layer [x, x+ dx], or in other words C = {i|xix̂ ∈ [Lx/2−
w,Lx/2+w]}. And in the same way we can define the local order parameter
fluctuations χLoc(x) = Var(φLoc(x)).
The figures 6.15a and 6.15b show the trends of φLoc(x) and χLoc(x) against
the x value. Notice that the maximum constrain is set in x = Lx/2 = 5.
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Figure 6.15: Plot of the local order parameter φLoc(x) and χLoc(x) as a function
of the x value close to the maximum constrain for different values of S (S = Ly,
S = 3 and S = 2) and for fixed value of the noise η = 0.2.

The focusing effect is visible but not very accentuated in fig. 6.15a and 6.15b
because the order parameter value of the “pure” Vicsek case is already very
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high. Otherwise when the noise is fixed to η = 0.8 the increasing of the
order parameter close to the constrain is clearly evident, although once the
particles have left the bottleneck the noise overwhelms the alignment effect
(fig. 6.16a and 6.16b).
These clues strongly suggest a deeper study of the bottleneck efficiency as
a function of the environmental noise and the geometrical shape of the con-
strain.
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Figure 6.16: Plot of the local order parameter φLoc(x) and χLoc(x) as a function
of the x value close to the maximum constrain for different values of S (S = Ly,
S = 3 and S = 2) and for fixed value of the noise η = 0.8.
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6.2.3 Spatial Correlation

In this last section we would like to offer an other clue about what is the
contribution brought by the passage through the constrain in the cluster
shape and density. Since that we are going to use the “spatial correlation”
defined in previous chapters the following results have to be compared to
sec. 3.2. We expect an important increasing of the clusters density in the
case of confining geometries. The sequence reported below (fig. 6.17a-6.17d)
shows indeed clearly (notice the scales at the right of each plot) that the
narrower is the bottleneck the denser are the clusters.

(a) S = Ly (b) S = 3

(c) S = 1 (d) S = 0.5

Figure 6.17: Spatial Correlation for different systems with different minimum
space between the walls of the constrain. Notice carefully the scales at the
right of the plots.

We could also study the “orientation correlation” h(x, y) which is the prob-
ability of each particle with direction θ to have a neighbour with θn ∈
[θ−dθ, θ+dθ] in the region A = [x, x+dx][y, y+dy]. This observable could
be very useful to understand if the clusters which were passed through the
constrain are more aligned then the cluster which were not gone through.
And so if their average velocity is greater of that one of those clusters which
not pass through the gap. But, since that we have already found apt observ-
ables (φLoc(x) and χLoc(x)) for this purpose, we skip this effort and move
later this check if it will be necessary for our aims.



7
Conclusions

In this thesis we have studied numerically the non-equilibrium properties
of 2D systems of self-propelled particles (active systems) under geometrical
constraints. After having reviewed the classical Vicsek model in the bulk
(chap. 2) we introduced a new model that is still based on Vicsek’s interac-
tion and updating rules but with the addition of excluded volume interaction
between particles. This new model is simulated and compared with the clas-
sical Vicsek’s model in the bulk (chap. 3). The main result we found is that
presence of self-avoidance increases the tendency of the system to stay in the
ordered phase. This tendency is quantified by the shift of the order-disorder
transition towards higher values of noise and by the narrowing of the or-
der parameter fluctuations. Both effects become more relevant for higher
values of the system density. This agrees with the idea that, for instance,
denser bacterial systems are more inclined to stay ordered. We next turned
to the main argument of the thesis, namely the study of active systems un-
der confinement (chap. 4). This has been carried out by looking first at
regular geometries such 2D channels (stripes). We found that if bouncing-
back conditions are considered at the stripe boundaries, the system is more
inclined to form big clusters than in the unconstrained case. Moreover the
giant fluctuations, that are characteristic of active systems in the bulk, are
shown to develop also in the confined case and are actually enhanced by
making the stripes narrower (sec. 4.3). To better reproduce the behaviour
of real bacterial systems close to an impenetrable boundary we then replace
the bouncing-back with slip conditions. By inserting this condition in our
Vicsek’s model with self-avoidance we have been able to recreate adhesion
and trapping effects experimentally observed in systems made of more com-
plicated self-propelled rods. For example trapping is studied in details in
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chap. 6, where regular stripes are replaced by wedges and bottlenecks. We
indeed pointed out the fact that, even at high values of the noise and even
without the presence of a chemotaxis term (food), it exists a proper aspect
ratio of the wedge that allow to cage a certain fraction of particles within it
and keep them for quite long time. Bottlenecks were studied by introducing
new observables, as the full 2D density distribution function ρ(x, y) and the
local order parameter φ(x). The most relevant achievements regarding this
topic are the occurrences, under suitable conditions, of “blockage” and “fo-
cusing” effects. We indeed studied how the geometrical and environmental
conditions affect the behaviour of active round particles near the narrow-
est opening. We found an interesting persistence of the cluster to keep the
shape and the coherence of the motion obtained after the passage through
the opening. This is a very remarkable feature and it is worthy of deeper
investigations.
Asymmetric constrains and addition of chemotaxis term are also briefly men-
tioned in the same chapter.

As we mentioned in the introduction, technology improvements allow us to
reproduce experimentally confined active systems at micro and nano scales.
For instance, the researchers of Sheffield University built asymmetric balls
by coating half of them in platinum which react with the environment filled
of hydrogen peroxide and water. In this way the researchers make micro-
balls self-propelled for the time enough to be observed. As one can read from
their website: “our efforts move toward self-propelled nano-swimmers that
could navigate narrow channels such as the human circulatory system”†.
One of the greatest difficulties related to this experiment and, in general, to
designing models of active systems is the presence of hydrodynamic interac-
tions among the self-propelled units. Since most part of real active systems
live in solutions, hydrodynamics effects play a major role in governing the
overall dynamics of the problem. At the state of the art, the implementation
of the hydrodynamic is in general a quite difficult task to achieve, even for
passive systems. This is one of the reason why first attempts to understand
theoretically active systems referred to cases, as the one described in [9], in
which hydrodynamic modes are .

With respect to these comments, other questions could be addressed: How
can we include hydrodynamic interaction in the original Vicsek model? How
is it possible to design a model able to describe the recursive patterns (vor-
texes, rings, bands, ...) shown by active particles in aqueous bath?
Even excluding hydrodynamic, other kind of questions are still present; for
instance how can we describe and predict theoretically the confinement ef-
fects on order-disorder transition?

†www.sheffield.ac.uk/physics/stories/microswimmer

www.sheffield.ac.uk/physics/stories/microswimmer
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In order to seek for some solutions, it could be interesting to compare our
results with a real experiment and develop together new models able to re-
produce a larger range of features shown by real systems, like the already
mentioned, vortexes and rings. These are only some of the questions which
naturally arise in this topic. Active matter and its confinement is a very
broad and practical topic, full of theoretical challenges which deserve deeper
studies.





A
Funnel

Strongly inspired by [12] we endeavoured to reproduce a sort of funnel inside
a 2d channel. Quite unexpectedly, the authors report a strongly asymmetric
density distribution of the steady state, which confirm the fact that bacteria
are not random walkers, and that the interaction bacteria-surfaces is very
relevant. Here, we try to reproduce the same behaviour using self-propelled
round particles interacting through the alignment rule introduced by Vic-
sek. The set up is made of a rectangular box with slip condition on the four
walls and a funnel with the sharpest part leftward. To notice that neither
the walls at x = 0 and x = Lx have the periodic conditions. Fig. A.1
represent two different configurations of system.

(a) t = 0 (b) t = 500

Figure A.1: Snapshots of system configurations at time t specified below the
plots. Notice the increasing of the density in the right part of the box.

One of the most important observables measured in [12] is the density in
the right part of the system ρ(x > Lx/2) as a function of the time t. In fig.
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A.2 we report the results from our simulations which agree with the results
of Prof. Austin. The plot shows the density in the right part of the system
as a function of the time steps. What it is worth to notice is the increasing
of the density from an initial value of ρ ≃ 1/2, which means uniform density
inside the box, to a final value ρ(x > Lx/2) = 0.8 which means that the
most part of the particles is in the right half of the system.
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Figure A.2: Plot of the density in the right part of the system as a function of
the time and for different values of the noise. To notice that, against the Gibbs law,
the density increases, instead of stay constant. The simulation is averaged over 10
different initial conditions.

It is also worth to notice that different values of the noise imply different
behaviours of ρ(x > LX/2, t) before it reaches the steady state. It could be
interesting comparing numerical data with the experimental ones in order
to find the most suitable value of the noise η which can reproduce the real
bacteria behaviour. As a consequence one can find out the noise experienced
by a real bacterial system.

This brief review on the experiment of Prof. Austin [12] makes a point of
the relevance of the bacteria-surface interaction. Active systems often show
non-intuitive scenarios and spectacular behaviours when interacting with
obstacles and irregular walls. For these reasons confinement, trapping and
mazes could turn out useful and powerful tools in order to handle this kind
of systems and deserve deeper studies.
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