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Abstract

Influenza A viruses are associated with most of the widespread influenza epidemics, and are the sole cause of
the occasional global pandemics. They have many strains and the ability to inhabit many host species. We
present a stochastic model, based on susceptible, infected and recovered dynamics, to explore the complex
strain diversity and between-species epidemiology of influenza A. We apply the derived model in three
distinct ways. First as a one host, multi-strain model, second as a multi-host, one strain model, and finally
as a multi-host, multi-strain model. We address basic questions in strain and multiple host dynamics,
focusing particularly on how the number of infected is affected by the type of model and the reasons behind
this. Our results show how the ability of a strain to out compete others within a host population is linked
to the length of the infectious period. The longer the infectious period, the more likely it is the strain will
be able to persist and cause a greater number of infectious cases in the long-term. We show how the time
taken for a strain to reach humanity from other animal species depends on the zoonotic pathway of the
strain, with the pathway containing the lower number of species not always the quickest route.

1. Introduction

The virus influenza is a cause of considerable morbidity and mortality in humans. Influenza incorporates
three virus types: types A, B and C. A key distinction in the molecular make up of these types is that
type A and B influenza viruses contain eight RNA gene segments, while type C influenza viruses contain
seven RNA gene segments. Consequently, influenza viruses exhibit different patterns of epidemiological and
clinical behaviour [1]. Influenza A, in particular, has the ability to inhabit many host species and has many
strains. As a result, type A viruses are associated with most of the widespread influenza epidemics, and
are the sole cause of the occasional global pandemics. It remains of critical importance to understand how
likely it is that more lethal influenza A strains will cause a pandemic in the human population.

Influenza A is notable for its annual epidemics and antigenic drift dynamics. The two most abundant
surface proteins of type A influenza viruses, hemagglutinin (HA) and neuraminidase (NA), show the greatest
extent of variability, undergoing subtle, minor changes in structure almost annually. Consequently, a large
number of strains can be in circulation within a population at any given time. An antibody response raised
against one strain may or may not be effective against a mutation of the original strain. Antigenic drift is
the major reason for the success of these viruses in evading human immune mechanisms [1].

Humanity however does not act as the primary reservoir for type A influenza viruses. This role is
fulfilled by wild avian species. Mutation of the viral genes not only creates different strains, but sometimes
produces a strain that can be transmitted into a different host species. Of particular importance is the
transmission between these wild avian species and domesticated poultry. In wild ducks, influenza A viruses
cause no disease, although they can be excreted in high concentrations in the faeces. Ducks are essentially
asymptomatic carriers of all influenza strains. Two types of avian influenza infection are transmitted from
wild waterfowl to farmed ducks, chickens, turkeys and geese - referred to as LPAIV (low-pathogenic avian
influenza virus) and HPAIV (high-pathogenic avian influenza virus). High-pathogenic avian influenza viruses
are highly lethal to infected poultry, spreading very rapidly in the local region and leading, in outbreaks
in recent times, to the loss of more than 100 million birds through disease and culling. However, on initial
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Fig. 1. Influenza type A transmitted between different animal species and humans. Adapted from [1].

infection of poultry these strains are avirulent (unable to produce disease). It is only following spread
within the infected flock and mutation of the viral genes providing adaptation to their host that they
acquire virulence and lethality. By a similar process, it is believed type A avian influenza viruses spread
to, and caused severe outbreaks of illness and disease, in pigs, horses, harbour seals and whales. Influenza
A now has a number of possible transmission routes between different animal species and humans (Fig. 1).
The epidemiology of a single strain can be radically different depending on the host species [1].

Very occasionally, humans become infected with a virus bearing HA and/or NA antigens derived from
non-human sources. These are essentially novel to humans. The HA and/or NA surface antigens of such
viruses are not initially recognised by the specific human host defence mechanisms. Due to the viruses
meeting with little or no established resistance, they can, following mutation and adaptation to their new
host, spread relatively easily in the human species. This can give rise to a localised outbreak that may
develop into a worldwide influenza pandemic [1]. An area of interest is the length of time it takes for a
strain circulating within animal host species to be transmitted to humanity, referred to as the hit time.

The grave impact of an influenza pandemic was shown in recent years, caused by H1N1. In April 2009,
H1N1 was first detected in the United States. This virus was a unique combination of influenza virus genes
never previously identified in either animals or people. The virus genes were a combination of genes most
closely related to North American swine-lineage H1N1 and Eurasian swine-lineage H1N1 influenza viruses.
However, it became apparent that this new virus was circulating among humans and not among U.S. pig
herds [2]. Shortly before the end of the pandemic (as of 1st August 2010), worldwide more than 214 countries
and overseas territories or communities had reported laboratory confirmed cases of H1N1, including over
18,449 deaths (see Fig. 2) [3]. Work has since been carried out studying the 2009 H1N1 influenza pandemic,
including the transmission characteristics and risk factors [4, 5]. A current concern is the H7N9 outbreak
in China. Influenza A H7 viruses are a group of influenza viruses that normally circulate among birds.
Although some H7 viruses (H7N2, H7N3 and H7N7) have occasionally been found to infect humans, no
human infections with H7N9 viruses had been reported until recent reports from China. The disease is of
concern because most patients have been severely ill, with many suffering from severe pneumonia. [6]. WHO
was first notified of cases of H7N9 virus cases in China on 31st March 2013. As of 17th May 2013, a total
of 131 laboratory-confirmed cases of human infection with H7N9 virus in China, including 36 deaths, had
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Fig. 2. Pandemic (H1N1) 2009 affected countries and deaths, status as of 15-August-2010. Adapted from [3].

been reported to WHO [7].
The complexity of the multi-strain, multi-host problem has been approached in a number of ways. The

main obstacle to modelling systems with more than a few strains is the fact that the number of dynamic
variables tends to grow with the number of strains. Gog and Grenfell [8] propose a simple model that is
capable of capturing the dynamics of a large number of antigenic types that interact via host cross-immunity.
This manages the complexity of many strains by using a status-based formulation, where the current immune
state of the host is considered rather than the very complex immune history of exposure. Arinaminpathy
and McLean [9] use a simple mathematical model to study potential epidemiological markers of adaptation,
where pathogens are able to cross the species barrier and become established in a new host species, in this
case humans. The model simulates a series of introductions of evolving pathogens via a multi-type branching
process, leading to emergence. Modelling of specific classes of influenza A virus have been carried out. Smith
et al. [10] quantified and visualized the antigenic evolution of influenza A (H3N2) virus in humans, where
their approach offered a route to predicting the relative success of emerging strains.

In this study we illustrate a stochastic framework to model the complex strain diversity and between-
species epidemiology of influenza A. We initially describe the dynamics in two simplified settings; a one
host, multi-strain model, and a multi-host, one strain model. The one host, multi-strain model is used to
explore how the transmission and recovery rates impact the ability of a strain to out compete all others,
when every strain has the same reproductive ratio. The multi-host, one strain model is used to study
the critical value of the cross-host transmission parameters that would prevent a cross-transmission event
occurring, and how this is impacted by population size. We then consider a four-host multi-strain model,
involving ducks, chickens, pigs, and humans, and consider two general questions: how does strain specific
transmission, where some strains are more likely to cross into the human population than others (through
different zoonotic pathways for example), impact the strain hit time? What happens to the strain hit time
if varying strengths of cross-strain immunity, where infection by past strains may help protect individuals
against infection from new strains, are introduced?
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2. Methods

In standard models of disease transmission, individuals are classified with respect to their disease sta-
tus. The chosen model was a stochastic susceptible-infected-recovered (SIR) model, which incorporated a
demographic process. A given individual in a host population is classified in one of three classes for each
strain. Susceptible individuals can catch the given strain if they are exposed to it. Infected individuals are
infectious. They can spread the strain to any susceptible individuals they have contact with. Recovered
individuals, alternatively referred to as removed individuals, are immune against infection from that strain.
Either they have had the disease and recovered, or being infected by a different strain made them immune
via cross-immunity.

The model was simulated by applying the Gillespie algorithm, a dynamic Monte Carlo method. Doing
this allowed us to interpret parameters we could actually measure. In theory it would have been possible to
derive analytic expressions describing the process, though these would have been too complex to solve (for
example, see equation 1). A deterministic model was also considered, modelling the problem using ordinary
differential equations. However, with each added strain and/or host the number of classes required grew,
quickly becoming computationally intensive. Though this model gave the right temporal dynamics, a major
issue using the deterministic model was we could get classes with occupancy values less than 1. Having
such small values was not realistic. This would have prevented us from capturing features such as stochastic
die out, which are of biological interest. A stochastic model analysed via simulations was deemed the most
appropriate approach.

In what follows we made a number of assumptions; all newborns were susceptible to all strains, every
individual was equally susceptible to a given strain, there was homogeneous mixing within the population,
super infection was not possible (i.e. an individual could only be infected by at most one strain at a par-
ticular time), frequency dependence was used for intra-host susceptible/infected interactions, while density
dependence was used for inter-host susceptible/infected interactions.

We made an important distinction between intra-host and inter-host interactions, following the approach
used by Keeling and Rohani [11] in their multi-host and multi-strain models. Frequency dependence is where
the force of infection (involving the interaction between susceptibles and infectious) is divided by the total
population size. This is more applicable when the density of individuals is independent of population size.
Therefore, frequency dependence was used to model intra-host susceptible/infected interactions. To model
inter-host susceptible/infected interactions, the transmission term was not divided by the total population
size. As we were dealing with separate populations and the interaction was likely to depend on the density
of the species involved, we assumed density dependence.

The transition rates used in the model were assumed to be Poisson. For a given strain k, they were
defined as follows:

Host j susceptible individual infected by host j infectious individual:
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where N j is the host j population size, Sjk, I
j
k and Rjk are the total number of susceptible, infected and

recovered host j individuals with respect to strain k, βi,jk is the transmission rate of strain k to host species

i from host species j, gjk is the recovery rate of a host j individual from strain k, and αjk is the spontaneous
infection rate of a host j individual with strain k. Spontaneous infection was included here for completeness,
but was not included in any of the simulations that produced our results.

Note, as we assumed an individual could not be infected by more than one strain at any given time, while
they were infected by strain k they were no longer susceptible to any other strain. Thus, the number of
individuals in class Sjl , where l 6= k, also decreased by one. Once an individual had recovered from strain k,

they became susceptible to all other strains once more. Thus, the number of individuals in class Sjl , where
l 6= k, increased by one. Cross-immunity was added in by assigning a probability to an individual gaining
immunity to strain l when infected by strain k, where l 6= k, assuming they were not already immune to
strain l. If the cross-immunity event was a success, the individual was re-classified as being recovered with
respect to strain l.

A demographic process was also included, with both a birth/death of a host j individual given by the
rate δjN j , where δj is the individual death rate/birth rate for host species j.

One host, multi-strain model

Using a simplified version of the full model described above, we first looked at a one host, multi-strain
model. In this section, we assumed there was no cross-strain immunity. The dynamics for a three strain,
four strain, and five strain model were obtained. All results obtained for this model were averaged over
100 simulation runs. Each strain had the same reproductive ratio of 2, but no two strains had identical
transmission and recovery rates. This allowed us to analyse what factors resulted in a particular strain
emerging as the dominant strain (i.e. cause the greatest number of infected cases) out of a group, and
whether this was impacted by the initial population size. In all simulations the initial conditions were fixed,
with 5 distinct individuals infected by each strain, and all remaining individuals infected by all strains.
Rather than starting with 1 infected individual per strain, 5 was chosen to reduce the chance of immediate
die out. As the process is Markovian, and so memoryless, any future dynamics are not impacted by the
starting initial condition. However, we still chose a low level of initial infected to be able to capture events
such as die out, and to avoid biasing the probabilities in such a way that meant we influenced the dynamics.

Multi-host, one strain model

The second simplified version of the full model to be studied was a multi-host, one strain model. In this
section we also assumed there was no cross-strain immunity.

Our main focus was on a two host, one strain model. The two hosts represented chickens and ducks. A
single influenza A strain has two different behaviours for these species. In chickens, influenza A is highly
transmissible, but the infectious period is very short. In contrast, due to influenza A being asymptomatic
in ducks, less is known about the transmission rate from this species due to the difficulty in spotting when a
duck is infected. However, the infectious period of influenza A is longer in ducks compared to chickens. The
strain was set to have a reproductive ratio of 2 in both ducks and chickens. We investigated the dynamics
obtained for the various susceptible and infected classes. Following this, we looked at the impact of adding
more hosts.

One part of our analysis for the two host, one strain model was the critical value of the cross-host
transmission parameters that would prevent a cross-transmission event occurring, and how this was impacted
by population size. To find the critical value, the number of cross-species transmission events from one host
to another was recorded up until the simulation run time reached 50 years. This was averaged over a number
of simulations. As stochastic fluctuations were possible, the approximate critical value was taken to be when
the average number of cross-transmission events was below 1 in the specified time period.

Further analysis was performed on the time series corresponding to the number of susceptible and infected
individuals for a given host, by calculating cross-correlations and power spectra. The cross-correlation gives
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Fig. 3. Diagram of the possible routes of cross-transmission between different host species for the four host model.
The numbers in the subscripts indicate the strains that are able to cross between those two particular hosts.

a measure of the similarity of two waveforms as a function of a time-lag applied to one of them. Defined
mathematically:

(f ? h)[n] =

∞∑
m=−∞

f∗[m]h[n+m]

where f and h are continuous functions, and f∗ denotes the complex conjugate of f . The power spectrum
quantified the periodicity of the oscillations. This showed how the variance of the fluctuations was distributed
over different spectral frequencies. A sharply peaked spectrum indicated structured oscillations with a
dominant frequency where the spectrum was peaked. Due to the time series data points being unevenly
spaced, the data was first interpolated, creating a time series with evenly spaced data points, on which a
power spectrum calculation could be performed.

Full Model - four hosts, two/three strains

An application of the full model was used with four hosts and both two and three strains. The four hosts
represented ducks, chickens, pigs and humans. The possible routes for strain cross-transmission are shown
by the directed arrows in Fig. 3. Each simulation would begin with only the duck population containing
infected individuals. Cross-transmission between hosts had to occur for any strain to infect a different host
population from ducks. The model was simplified by each strain only having one possible transmission route
from ducks to humans.

The magnitudes of the cross-transmission parameters chosen satisfied the following criteria:

βC,D > βP,C ≥ βH,P > βH,C

The cross-transmission between ducks and chickens is more regular due to their genetic similarity, while the
geographical closeness of chicken and pig populations results in cross-transmission events being a common
occurrence. Compared to chickens, humans have a greater genetic similarity to pigs, due to them both being
mammals. This increases the likelihood that the source species of a strain cross-transmitted into humans
being pigs.

We were interested in how the pathway of infection and varying cross-immunity parameters would in-
fluence the hit time. Three distinct sets of cross-immunity parameters were defined; no cross-immunity,
intermediate cross-immunity, full cross-immunity. In the no cross-immunity scenario, all cross-immunity
parameters were zero for every host. For intermediate cross-immunity and full cross-immunity, chicken, pig
and human individuals had a probability of 0.5 and 1 respectively of gaining cross-immunity to a strain they
were still susceptible to, when infected by any strain. All strains the individual was still susceptible to were
considered, each one separately. Ducks were assumed to gain no cross-immunity in both the intermediate
and full cross-immunity scenarios, all related parameters were zero. This was to fit with the assumption
that they are a reservoir for all influenza A strains.
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A final factor that was considered was the impact cross-immunity had on the hit time of a strain that was
introduced into the system at a later time. We investigated this using two strains. At the system start time,
a strain was introduced in the duck population. A second strain was introduced into the duck population
after a specified delay time. This was set to be equivalent to a week, and allowed time for the first strain to
spread. Each of the three cross-immunity parameter sets was tested.

We used a survival function to capture the probability that a given strain will not have reached humanity
by a specified time. The survival function is a property of any random variable that maps a set of events
onto time. With T being a continuous random variable with cumulative distribution function F (t), it is
formally defined as follows:

P (T > t) =

∫ ∞
t

f(u)du = 1− F (t)

It was possible to derive an expression for the probability that a given strain will have reached humanity by
a specified time. The survival function could then be obtained. With the cross-transmission rate assumed
to be Poisson, the waiting time for a cross-transmission event follows an exponential distribution. At time
t, the probability a cross-transmission event occurs from an infected host j individual to a susceptible host
i individual is:

F (t) =
(

1− e−
∫ t
0
βi,jIj(s)Si(s)ds

)
Taking into account all possible routes a strain can take to reach the target host, and the individual cross-
transmission steps within each route, the solution for the probability of the strain reaching humanity by
time t is given by:

F (t) =
∑

routes

 ∏
Steps in route

(
1− e−

∫ t
0
βi,jIj(s)Si(s)ds

) (1)

We are unable to solve equation (1) analytically, due to the number of infected and susceptible individuals
of each host changing with time. Therefore, simulations were used to obtain an approximate value for the
probability of a strain reaching humanity by a given time t. Corresponding survival curves were produced
using this approximation, calculated by 1− F (t).

3. Results

One host, multi-strain model

For a three strain, four strain, and five strain model, with one host that starts with an initial population of
10,000, there was a consistent pattern in the number of individuals infected (Fig. 4). Under the assumption
of all strains having the same reproductive ratio, the strain that is most transmissible is the first to have a
large outbreak in the host population. However, these strains have a short infectious period (a week or less,
corresponding to g ≥ 52), so die out quickly. The strains that are less transmissible have an initial outbreak
that occurs later, though the length of this is longer compared to the more transmissible strains. This is
shown by the wider spikes in number of infected individuals in Fig. 4. The strains with longer infectious
periods are able to persist, oscillating around a stable number. Comparing all the strains, the dominant
strain is the one that has the longest infectious period, rather than the greatest transmission rate. Note,
as the model is stochastic, the number infected by each strain goes to zero eventually when there is no
spontaneous infection of individuals included in the system.

The major features of the dynamics appeared unaffected when the initial host population sizes were
varied (Fig. 5). One noticeable difference was an increase in initial population size resulted in a slower
decline in the number of infected to 0 for strains that are highly transmissible, but with a short infectious
period. In our case, this can be seen with the dynamics for strain 1 and 2 with the varied initial population
sizes. This corresponded to the average extinction time of these strains being increased.
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Fig. 4. Number of individuals infected by each strain for a (a) three strain, (b) four strain, and (c) five strain model,
averaged over 100 simulations. All strains had a reproductive ratio of 2. For each simulation, the initial starting
populations were 10,000 individuals, with 5 distinct individuals infected by each strain. Individual birth and death
rates were set to 1.
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Fig. 5. Number of individuals infected by each strain in a four strain model. The initial starting populations were (a)
1,000 and (b) 100,000 individuals, with 5 distinct individuals infected by each strain. All strains had a reproductive
ratio of 2. The model with an initial host population of 1,000 individuals was averaged over 100 simulations. The
model with an initial host population of 100,000 individuals was averaged over 10 simulations. Individual birth and
death rates were set to 1.
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(b)

Fig. 6. Two host, one strain plots from one simulation. The strain had an R0 value of 2 in both host species. For
both types of host, the initial population size was 100,000. Individual birth and death rates were set to 1. Graph (a)
shows the number of individuals per host infected by the strain with respect to time. Dark blue line - Host 1 infected,
Green line - Host 2 infected. Graph (b) shows the number of individuals per host infected by, and susceptible to the
strain with respect to time. Dark blue line - Host 1 susceptible, Green line - Host 2 susceptible, Red line - Host 1
infected, Light blue line - Host 2 infected. On all graphs, for host 1 (chickens), β1 = 208, g1 = 104, and for host 2
(ducks), β2 = 26, g2 = 13. Cross-transmission was only possible from host 2 to host 1, with β1,2 = 1 × 10−8. At the
start of the simulation, there were 5 host 2 individuals infected and 0 host 1 individuals infected.

Multi-host, one strain model

A representative example of the infection dynamics for our two host, one strain model, where the two
hosts represented chickens and ducks is given in Fig. 6a. It shows the number of individuals per host infected
by the strain with respect to time. We restricted our attention to a strain that could be transmitted from
ducks to chickens, but not from chickens to ducks. Following an initial epidemic, the number of host 2
infected individuals settles and oscillates about a stable value. In the host 1 population, the strain caused
a series of intermittent short epidemics. After each outbreak, the strain was unable to persist in the host 1
population. The dynamics presented here replicate what was observed in real life during influenza pandemics,
for example HPAIV H5N1 in South Asia. The spatial and temporal dynamics, along with risk factors, of
the H5N1 infection in humans and poultry have been well studied in this region, in particular within China
[12, 13], Thailand [14], Vietnam [15] and Bangladesh [16].

The number of individuals per host infected by, and susceptible to the strain with respect to time is
shown in Fig. 6b. When a large outbreak occurred in either host population, the respective susceptible
population suffered a sharp decline. A larger pool of host 1 individuals susceptible to the disease when the
strain was cross-transmitted into the population resulted in greater numbers of infected individuals for that
particular outbreak. Following each outbreak the number of host 1 susceptibles would recover, due to being
replenished by births. The number of host 2 susceptible individuals eventually settled to a relatively stable
value, corresponding to when the number of host 2 infected individuals also became more settled. However,
both still display minor fluctuations.

Adding in more hosts, for which the strain has properties similar to when it infects chickens, led to
the dynamics replicating the two host case (Fig. 7). Assuming the strain only initially infects individuals
within one host population, the frequency of outbreaks for all remaining hosts was dependent on the cross-
transmission parameter between itself and the host population where the strain initially started. It was
found that raising the order of magnitude of the total number of individuals across all hosts results in a
drop in the critical value of the cross-transmission parameter by the same order of magnitude (Table 1).

Using a representative example of two host, one strain dynamics (Fig. 8a), Figs. 8b-8g give the cross-
correlations for all 6 pairs of combinations for the host 1 susceptible and infected, and host 2 susceptible and
infected time series. The sequences were normalised so the autocorrelations at zero lag were identically 1.
Both the host 1 susceptible and infected, and host 2 susceptible and infected cross-correlations (Figs. 8b-8c)
had a negative peak when the time lag was 0, with a positive peak with a time lag of approximately −1
year. The remaining 4 combinations gave outputs that were viewed as noise, with no similarity between
the waveforms. The power series for the host 2 infected time series, and both susceptible time series show
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(b)

Fig. 7. Three host, one strain plots from one simulation. The strain had an R0 value of 2 in all host species. For all
three hosts, the initial population size was 100,000. Individual birth and death rates were set to 1. Graph (a) shows
the number of individuals per host infected by the strain with respect to time. Dark blue line - Host 1 infected, Green
line - Host 2 infected, Red line - Host 3 infected. Graph (b) shows the number of individuals per host infected by, and
susceptible to the strain with respect to time. Dark blue line - Host 1 susceptible, Green line - Host 2 susceptible, Red
line - Host 3 susceptible, Light blue line - Host 1 infected, Purple line, Host 2 infected, Yellow line - Host 3 infected.
On all graphs, for host 1 and host 3 , β1,3 = 208, g1,3 = 104, and for host 2, β2 = 26, g2 = 13. Cross-transmission was
only possible from host 2 to host 1, with β1,2 = 1 × 10−8, and host 2 to host 3, with β3,2 = 1 × 10−9. At the start
of the simulation, there were 5 host 2 individuals infected, 0 host 1 individuals infected, and 0 host 3 individuals
infected.

notable peaks for frequencies under 1Hz (Fig. 9).

Full Model - four hosts, two/three strains

All simulations using this model started with initial host population sizes of 100,000 for ducks, chickens
and pigs, and 10,000 for humans. Individual birth and death rates were set to 1. Within each host, all
strains had the same transmission and reproductive rates. The rates used were: Ducks, β = 26, g = 13;
Chickens, β = 208, g = 104; Pigs and Humans, β = 52, g = 26. For each strain, the possible routes of
cross-transmission between host species were different (Fig. 3), as were the values of the cross-transmission
parameters.

First, we considered only two strains that were both introduced into the duck population at the same
time. For all three cross-immunity conditions, on average strain 2 reached humanity in less time compared
to strain 1. While the strain 2 hit times obtained similar mean and standard deviation values for each
cross-immunity case, the strain 1 hit time was more varied and longer when full cross-immunity was used
(Fig. 10a). The strain 2 survival curves are very similar for each cross-immunity condition, further showing
the little impact cross-immunity condition had on the strain 2 hit time. The strain 1 survival curves are also
similar up until a probability of approximately 0.15, where the curve corresponding to full cross-immunity
begins to decrease less severely (Fig. 11a). This is what results in the increased variability and higher average
hit time for strain 1 in the full cross-immunity case.

For the three strain case, the relative hit times values when comparing strains 1 and 2 are similar to the
two strain case, though both have slightly longer and more variable hit times. Strain 3 is the quickest strain

Table 1. Approximate critical rates for cross-species transmission for varying starting population sizes. Both host
1 and host 2 start with the same initial population size. The strain transmission and recovery rates used were for
host 1 (chickens), β1 = 208, g1 = 104, and for host 2 (ducks), β2 = 26, g2 = 13.

Initial population Approximate critical cross-transmission rate)

1, 000 O(10−7)
10, 000 O(10−9)
100, 000 O(10−11)
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Fig. 8. Cross-correlations from a representative example of two host, one strain dynamics, shown in (a). The
sequences were normalised so the autocorrelations at zero lag were identically 1.0. (b)-(g) show the cross-correlations
for: (b) host 1 susceptibles and infected, (c) host 2 susceptibles and infected, (d) host 1 and host 2 susceptibles, (e)
host 1 and host 2 infected, (f) host 1 susceptibles and host 2 infected, (g) host 2 susceptibles and host 1 infected.
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Fig. 9. Power spectra for the (a) host 1 susceptible time series, (b) host 2 susceptible times series, (c) host 1 infected
time series, (d) host 2 infected time series from a representative example of two host, one strain dynamics (Fig. 8a).
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Fig. 10. Mean values for the humanity hit times from the (a) four host, two strain model, (b) four host, three strain
model. The error bars give the range of values that were both within 1 standard deviation of the mean and greater
than 0.

to reach humanity on average in all three cross-immunity scenarios (Fig. 10b). We note that just like strain
2, the mean and standard deviation values show little variation between the different cross-immunity cases.
As in the two strain case, the strains that can only reach humanity via transmission from chickens to pigs
and then pigs to humans (i.e. strains 2 and 3) have very similar survival functions, regardless of the type
of cross-immunity condition used. The strains that could be transmitted directly from chickens to humans
(i.e. strain 1) did see variation in the survival function based on the cross-immunity condition imposed
(Fig. 11b). The strain 1 survival curves are similar up until a probability of approximately 0.2, where the
curve corresponding to full cross-immunity begins to flatten and decrease with a shallower gradient.

Using a modified four host, two strain model, that had the two strains being introduced at separate
times, Figs. 12a-12b present the mean humanity hit times for the strains. Both cases of either strain 1
or strain 2 being introduced first, followed by the remaining strain after the simulation time reached a
week were considered. All other aspects of the four host, two strain model remained the same as before.
The following comparisons are with respect to the case where both strains were introduced into the duck
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Fig. 11. Survival function of the probability of each strain not reaching humanity by time t for the (a) four host, two
strain model and (b) four host, three strain model, with varying cross-immunity parameters. Initial host population
sizes were as follows: Ducks, chickens and pigs - 100,000, humans - 10,000. Within each host, the two or three strains
had the same transmission and reproductive rates. These were: Ducks, β = 26, g = 13; Chickens, β = 208, g = 104;
Pigs and Humans, β = 52, g = 26. In (a), there were initially 5 ducks infected by strain 1, and 5 infected by strain
2. Cross-transmission rates were all zero except: βD,C

1,2 = 0.01, βC,H
1 = 0.000001, βC,P

1,2 = 0.0001, βP,H
2 = 0.001.

In (b), each of the 3 strains initially had 5 distinct ducks infected. Cross-transmission rates were all zero except:
βD,C
1,2,3 = 0.01, βC,H

1 = 0.000001, βC,P
1,2 = 0.0001, βC,P

3 = 0.001, βP,H
2 = 0.001, βC,P

3 = 0.001. The survival function
were constructed using humanity hit times obtained from 100 simulation runs.
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Fig. 12. Mean values for the humanity hit times from the four host, two strain model for (a) strain 1, and (b)
strain 2, with a time delay included before the introduction of the second strain. No delay corresponds to strains 1
and 2 having their initial duck infected cases introduced at the same time. S1 delay corresponds to strain 1 having
their initial duck infected cases introduced a week after the first strain 2 infected duck cases. S2 delay corresponds
to strain 2 having their initial duck infected cases introduced a week after the first strain 1 infected duck cases. The
error bars give the range of values that were both within 1 standard deviation of the mean and greater than 0. In
the delay model where strain 2 was introduced first with the full cross-immunity condition, strain 1 never reached
humanity within the permitted number of events (10 million). The simulation time finished greater than 8.6 years
in every run, so this was taken as the value in the plot, though the average had to be greater. As a result, there was
no standard deviation value available for that specific example, and no error bar is plotted.

population together at the same time. For the case where strain 1 was introduced before strain 2, strain 1
had a slight reduce in variability in hit time, though only in the full cross-immunity case did the average hit
time drop significantly. The average strain 1 hit time seemed unaffected by the cross-immunity condition
imposed if strain 1 was introduced before strain 2. Strain 2 had an approximate 50% increase in average
hit time in all cross-immunity cases, with a slight increase in variability. Despite this, and being introduced
into the system after strain 1, strain 2 still had a lower average hit time in all cross-immunity cases. Strain
2 also once again had the characteristic of the hit time not being affected by the cross-immunity criteria.

This was also seen when strain 2 was introduced before strain 1. The mean and standard deviation
values for strain 2 saw little change from the no delay case. In contrast, strain 1 was heavily impacted by
being introduced later. With stronger cross-immunity effects strain 1 saw a rapid rise in hit time, and the
variability in hit time grew. The effect was so great that in the full cross-immunity scenario strain 1 never
reached humanity before the maximum number of events allowed by the simulation, 10 million, was reached.
The simulation time finished greater than 8.6 years on each run, so the average hit time had to exceed this
value. The mean hit time values and standard deviations used in Figs. 10 and 12 are given in the Appendix.

Fig. 13 gives the survival functions of the probability of each strain not reaching humanity a time t after
being introduced, with one strain introduced after a specified delay time, compared to the survival curves
obtained for the case with no time delay. The graphs in the left-hand column (Figs. 13a, 13c and 13e) were
for the case when strain 1 had a delayed introduction, and the graphs in the right-hand column (Figs. 13b,
13d and 13f) were for the case when strain 2 had a delayed introduction.

First, looking at the strain 1 delay case, the strain 2 survival functions are very similar for each cross-
immunity scenario. They also match the survival function obtained for strain 2 in the case when both
strains 1 and 2 are introduced at the same time. The strain 1 survival curves had vast differences to the
no delay strain 1 survival curves. Each one had a longer tail and a less severe negative gradient, with a
higher estimated probability of the strain not having reached humanity for any given time after strain 1 was
introduced.

Second, looking at the strain 2 delay case, the strain 1 survival functions are this time similar to each
other across each cross-immunity scenario and compared to the no delay case. One discrepancy is in the
full cross-immunity case (Fig. 13f), where the strain 1 survival function has a much longer tail. The strain
2 survival function appears shifted compared to the respective no delay survival function. This was caused
by the increase in average hit time, but little change in the variability in the hit time from the no delay case
to the strain 2 delayed case.
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Fig. 13. Survival functions of the probability of each strain not reaching humanity a time t after being introduced for
the four host, two strain model, with the following conditions: (a) no cross-immunity, strain 2 introduced before strain
1, (b) no cross-immunity, strain 1 introduced before strain 2, (c) intermediate cross-immunity, strain 2 introduced
before strain 1, (d) intermediate cross-immunity, strain 1 introduced before strain 2, (e) full cross-immunity, strain
2 introduced before strain 1, (f) full cross-immunity, strain 1 introduced before strain 2. The survival functions were
compared to those obtained when no time delay was included. Initial host population sizes were as follows: Ducks,
chickens and pigs - 100, 000, humans - 10, 000. Within each host, the two strains had the same transmission and
reproductive rates. These were: Ducks - β = 26; g = 13, Chickens, β = 208, g = 104; Pigs and Humans, β = 52,
g = 26. For the graphs in the left-hand column, there were initially 0 ducks infected by strain 1, and 5 infected by
strain 2. For the graphs in the right-hand column, there were initially 5 ducks infected by strain 1, and 0 infected
by strain 2. After the time since the first strain was introduced exceeded 1/52, corresponding to a week, 5 ducks
were infected by the second strain. Cross-transmission rates were all zero except: βD,C

1,2 = 0.01, βC,H
1 = 0.000001,

βC,P
1,2 = 0.0001, βP,H

2 = 0.001. The survival functions were constructed using humanity hit times obtained from 100
simulation runs.
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4. Discussion

This study presents a model that captures two main features of influenza A; the large number of different
strains it consists of, and the ability to infect multiple host species.

One host, multi-strain model

For a number of strains with the same reproductive ratio, R0, a longer infectious period results in that
particular strain dominating. The strain with the longest infectious period has the largest susceptible pool
of individuals to infect. This results in an effective reproductive ratio Reff = R0S̄ that is greater than other
strains, where S̄ is the number of individuals susceptible to the given strain.

We saw that as the initial host population size increases, the extinction time for each strain grew. It is
known that the probability of extinction, for a population of size n, is given by [11]:

Pext(n) =
1

Rnk

where Rk = R0Sk

N is the effective reproductive ratio for strain k, and Sk is the number of individuals
susceptible to strain k. Our findings correspond with this result. With a larger initial host population size,
on average that particular strain will persist and spread infection for a longer period of time.

Multi-host, one strain model

The infection number dynamics observed for the two host, one strain model (see Fig. 6) and the three
host, one strain model (see Fig. 7) can be explained with similar reasoning used for the one host, multi-
strain model. Duck-like influenza dynamics, with lower transmission but a longer infectious period, sees the
number of infected settle and have small fluctuations, with the disease able to persist in the population. The
low transmissibility means only a small portion of the initial susceptible pool of individuals is infected in the
first epidemic. Together with the long recovery period, this allows natural births to replenish the susceptible
pool at a rate that keeps up the number becoming no longer susceptible, either through infection or natural
death. The result is a high effective reproductive ratio (above 1) with a relatively stable number of infected,
and a strain that is able to persist in the host population. Chicken-like influenza dynamics, with higher
transmission but a very short infectious period, sees frequent outbreaks in the population occur, with none
able to persist. High transmissibility leads to the majority of the susceptible pool of individuals becoming
infected at the start of each outbreak. The result is a low effective reproductive ratio (below 1), causing the
outbreak to die out. The short infectious period is what causes the overall length of each outbreak to be
short-lived.

With regards to the critical value of the cross-transmission parameter in the two host model (Table 1),
our result suggests the critical value of the cross-transmission parameter β1,2 is reduced by the same order the
total population size was increased by. An increase in either population size by a certain order of magnitude
will result in the number of susceptible chickens and/or infected ducks increasing by a similar order of
magnitude (dependent on the host type whose population size was increased). Consequently, the number of
cross-transmission events will increase if the cross-transmission parameter β1,2 remains unchanged. Reducing
the value of β1,2 by a similar order of magnitude to the increase in total population size counteracts this
and would make the occurrence of a cross-transmission event relatively rare.

The cross-correlations obtained for the pairs of combinations of host 1 susceptible and infected, and host
2 susceptible and infected time series from Fig. 8a are an expected result (Fig. 8). When an individual in
one of the host populations becomes infected, the number of infected increases by one, and the number of
susceptibles decreases by one at the same time. The result is the peaks in the number of infected occurring
at a similar time to the troughs in the number of susceptibles, though they do not occur at the exact same
time due to the existence of a recovered class and the presence of a demographic process. This gives a
negative correlation when the time lag is 0 (Figs. 8b-8c). The remaining 4 pairs of combinations for the
host 1 susceptible and infected, and host 2 susceptible and infected time series do not directly influence one
another, resulting in waveforms that are dissimilar. Therefore, there was no significant cross-correlations
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observed for these cases (Figs. 8d-8g). In the two host model, the susceptible and infected number of
individuals per host may oscillate with some underlying frequencies (Fig. 9). The exception to this was the
host 1 (corresponding to chickens) infected curve. An outbreak could only occur in the host 1 population
to begin with if there was a cross-transmission event from host 2 (corresponding to ducks), and there was
no immediate infection die out. Due to the process being stochastic, this would lead to outbreaks occurring
at irregular intervals, resulting in an uninformative power spectrum as shown in Fig. 9c. Further study is
required however to obtain more conclusive results.

Full Model - four hosts, two/three strains

We initially considered the scenario of a group of strains emerging within the duck population at the
same time, effectively competing against each other to reach humanity first. Comparing the average hit
times (Fig. 10) and the survival functions (Fig. 11), the suggestion is the zoonotic pathway with two cross-
transmission steps required, rather than one step that has a lower rate of transmission, appears to be a
more efficient way for a strain to reach humanity in the shortest time. This is not impacted by the three
cross-immunity conditions that we imposed. Adding in additional strains that reached humanity via the
longer zoonotic pathway, via chickens to pigs, and then pigs to humans, appears to further lengthen the
average hit time of strains that can be transmitted directly from chickens to humans, in our case strain 1.

The alterations seen in the survival functions when one strain is introduced later than the other, and no
cross-immunity occurs, compared to the no delay model are purely created by the assumption that super
infection is not possible. The strain that was introduced first had time to establish an infected population
in the various host species. Therefore, when the second strain was introduced later on the susceptible pool
of individuals that could be infected within each host species was reduced by the number currently infected
by the other strain. The average time taken for the strain to cross from one species to the next increased as
a result, due to the probability of a cross-transmission event reducing relative to other event rates. This is
what caused the average hit time to increase in the strain that was introduced last in comparison to when
both strains cause their first infected cases at the same time (see Figs. 13a-13b).

In the case of strain 1 being introduced last, the effect caused by not allowing super infection was further
compounded when intermediate cross-immunity or full cross-immunity was assumed. This is captured by
the strain 1 delay model survival functions in Figs. 13c and 13e. Now individuals infected by strain 2 would
potentially or definitely always gain immunity to strain 1. This would result in a permanently reduced strain
1 susceptible pool. The rate of cross-transmission of strain 1 from ducks to chickens, and then chickens to
humans would reduce relative to the other event rates. As a consequence the average hit time will grow,
and the variability in hit time will also increase.

When strain 2 was introduced last, the type of cross-immunity did not seem to influence the average hit
time. The survival functions in all three cases were also similar (see Figs. 13b, 13d and 13f). One suggestion
as to why this occurred is the time delay corresponding to one week was not enough of a head start for strain
1 to establish a large enough infected population within each host species, and not reducing the susceptible
pool enough for strain 2 as a result. The cross-transmission parameters for strain 2 were high enough for
the rate of a cross-transmission event occurring in each step of the strain 2 pathway to humanity to not be
significantly impacted by the slightly reduced susceptible pool of individuals.

There are currently several strains circulating in the human population, such as H5N1, H7N9 and H1N1.
If a new strain of influenza were to emerge in humanity, we would want to know the characteristics that
would make it capable of causing an epidemic. Our delay model simulations provide us an insight into
those characteristics. Those strains would need to have significant antigenic difference to the strains already
present, to lower the potential cross-immunity to the strain, and be able to reach humanity via the quickest
zoonotic pathway. Further work is needed to establish what is required for the strains to be able to persist
in the human population, following the initial infection event.

Further Work

A number of extensions to this work can be pursued. The assumption of no super infection can be
relaxed, allowing an individual to be infected by more than one strain at once. How this changes the
infection dynamics observed can be explored. In reality strains are continually mutating, creating new
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strains that no individual is immune to. We currently do not capture this behaviour. We would require the
use of real life data to get accurate parameter values. The four host model can be extended to cope with
populations that are not randomly mixing and that have some form of spatial structure. Metapopulation
techniques can be used to model communities or patches, all containing a population of each host species.
The effect of cross-community transmission rates on the total number infected by each strain could then be
explored. For this extended community model, we would expect the initial condition for infected individuals
to be more influential on the dynamics observed. This provides another potential direction for further
study.
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Appendices
The following tables give the mean and standard deviation values for strain hit times in the four host, two
strain and four host, three strain models.

Table .2. Mean and standard deviation values for the humanity hit times from the four host, two strain model. All
values are given to 3 significant figures.

Mean humanity hit time (yrs) Hit time standard deviation (yrs)
Cross-immunity condition Strain 1 Strain 2 Strain 1 Strain 2

None 0.0518 0.0288 0.0171 0.00800
Intermediate 0.0485 0.0296 0.0136 0.00800

Full 0.0713 0.0298 0.152 0.00848

Table .3. Mean and standard deviation values for the humanity hit times from the four host, three strain model.
All values are given to 3 significant figures.

Mean humanity hit time (yrs) Hit time standard deviation (yrs)
Cross-immunity condition Strain 1 Strain 2 Strain 3 Strain 1 Strain 2 Strain 3

None 0.0633 0.0290 0.00846 0.0470 0.00735 0.00269
Intermediate 0.0655 0.0306 0.00880 0.0800 0.00723 0.00266

Full 0.260 0.0297 0.00910 0.598 0.00834 0.00277

Table .4. Mean values for the humanity hit times from the four host, two strain model, with a time delay included
before the introduction of the second strain. All values are given to 3 significant figures. No delay corresponds to
strains 1 and 2 having their initial duck infected cases introduced at the same time. S1 delay corresponds to strain
1 having their initial duck infected cases introduced a week after the first strain 2 infected duck cases. S2 delay
corresponds to strain 2 having their initial duck infected cases introduced a week after the first strain 1 infected duck
cases.

Strain 1 mean hit time (yrs) Strain 2 mean hit time (yrs)
Cross-immunity condition No delay S1 delay S2 delay No delay S1 delay S2 delay

None 0.0518 0.0852 0.0498 0.0288 0.0292 0.0436
Intermediate 0.0485 0.353 0.0522 0.0296 0.0300 0.0447

Full 0.0713 > 8.6 0.0501 0.0298 0.0300 0.0445
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Table .5. Standard deviation values for the humanity hit times from the four host, two strain model, with a time
delay included before the introduction of the second strain. All values are given to 3 significant figures. In the delay
model where strain 2 was introduced first, strain 1 never reached humanity within the permitted number of events (10
million). As a result, there was no standard deviation value available for that specific example. No delay corresponds
to strains 1 and 2 having their initial duck infected cases introduced at the same time. S1 delay corresponds to strain
1 having their initial duck infected cases introduced a week after the first strain 2 infected duck cases. S2 delay
corresponds to strain 2 having their initial duck infected cases introduced a week after the first strain 1 infected duck
cases.

Strain 1 hit time standard dev.(yrs) Strain 2 hit time standard dev.(yrs)
Cross-immunity condition No delay S1 delay S2 delay No delay S1 delay S2 delay

None 0.0171 0.0884 0.0138 0.00800 0.00850 0.0111
Intermediate 0.0136 0.947 0.0127 0.00800 0.00800 0.0127

Full 0.152 - 0.0149 0.00848 0.00855 0.0131
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