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Abstract

We discuss several forms of surface effect in antiferromagnetic and ferromagnetic materi-
als. We begin by introducing the Heisenberg exchange interaction model and show that
the introduction of a surface boundary condition into this model can result in distinct be-
haviour in the surface region. We next discuss Dzyaloshinsky’s symmetry arguments which
explain the possibility of the existence of a ferromagnetic moment in an antiferromagnetic
material and breifly discuss the microscopic theory developed by Moriya to describe the
effect. The possibility of chirality being introduced by the anisotropic superexchange in-
teraction proposed by Dzyaloshinsky and Moriya is then investigated and a model for the
chiral energy in the surface region is given from phenomenological principles. The form of
this energy is then found to depend upon a distribution function η(z). By minimization
of this chiral energy the z dependence of η(z) is determined.
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1 Introduction

1.1 Magnetism

The magnetic properties of materials are determined by the quantum mechanical nature
of the electrons within them. The intrinsic spin of an electron leads to a magnetic moment
of an atom, which in turn leads to a force on the atom when placed inside a magnetic field,
as shown in several experiments utilising the Stern-Gerlach effect. This magnetic moment
is also important within materials even in the absence of an applied magnetic field, as the
magnetic moments of neighbouring atoms interact with one another.

These inter-atomic interactions between neighbouring atoms can effectively be treated
as an exchange field. This exchange interaction is particularly important for determining
the behaviour of magnetic materials in ordered magnetic states. The model which is of
interest here, concerning these ordered magnetic states is the Heisenberg model [8, p. 288].

1.2 Heisenberg Model

As has already been mentioned, magnetism is a quantum mechanical effect. The magnetic
moment of a particle is proportional to it’s intrinsic spin. Therefore in order to model the
interactions between the magnetic moments within matter it is necessary to form a model
from quantum mechanical groundings. Since the electrons which are primarily responsible
for the magnetic behaviour of materials are usually localised around atoms on a regular
lattice, we will consider the simple case of two interacting localised electrons. The electrons
are spin 1/2 particles and are aligned either up or down with respect to the axis defined by
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the applied magnetic field. It is possible to partially describe the system of two interacting
electrons by the wavefunction ψ(~r1, ~r2) where ~r1 and ~r2 are the position vectors of the two
electrons. In order to describe the total state of the system this spatial wavefunction
must be multiplied by the spin eigenstates of the system. For this we must define a basis
for these spin eigenstates. We will concern ourselves only with the eigenstates of the z
component Ŝz of the total spin operator Ŝ. Our basis states are therefore

| ↑↑〉, | ↓↓〉, | ↑↓〉, | ↓↑〉. (1.2.1)

This basis results in an eigenvalue for the z component of spin Ŝz which is equal to the
sum of the spins in the z direction. Since electrons are fermions it is not adequate to
simply use the states given in (1.2.1) since if two fermions have their positions exchanged
the wavefunction must transform in an antisymmetric manner. We therefore require that
ψ(~r1, ~r2) = −ψ(~r2, ~r1). The simplest normalised linear combination of the states given in
(1.2.1) which conform to this additional condition are

1√
2

[| ↑↓〉 − | ↓↑〉], (1.2.2a)

| ↑↑〉, (1.2.2b)

1√
2

[| ↑↓〉+ | ↓↑〉], (1.2.2c)

| ↓↓〉. (1.2.2d)

The state shown in (1.2.2a) is antisymmetric since interchanging of the two electrons leads
to minus the original state. This state is know as the singlet state of the electron pair and
has total spin S = 0. The last three states are known collectively as the triplet state of the
pair. All of the states shown in (1.2.2) are eigenstates of both the total angular momentum
operator and the z component operator. The physical interpretation of the states is that
the singlet state refers to an arrangement of electrons with spins aligned antiparallel and
net total angular momentum Sz = 0, while the triplet state defines a situation where the
spins of the electrons are aligned parallel to one another resulting in a net total angular
momentum Sz = 1[5, p. 105].

We now wish to find a relation between the spins of the system and the energy. In
order to do this we define Ŝ1 as the spin operator acting on the first electron and Ŝ2 to be
the spin operator acting on the second electron. We can now write

Ŝ · Ŝ = (Ŝ1 + Ŝ2)2 = Ŝ2
1 + Ŝ2

2 + 2Ŝ1 · Ŝ2, (1.2.3)

where Ŝ is the total spin operator for the system of two electrons. Since both electrons
have spin 1/2, the eigenvalues of Ŝ2

1 and Ŝ2
2 are identicle and are given by S(1 + S) =

(1/2)(1+1/2) = 3/4. We can see that the eigenvalue of Ŝ is zero for the singlet state and one
for the triplet state. We can therefore find the eigenvalues of Ŝ2,which are S(1 + S) = 0
for the singlet state and 1(1 + 1) = 2 for the triplet state. Similarly we find that the
eigenvalue S12 of Ŝ1 · Ŝ2 is −3/4 for the singlet state and 1/4 for the triplet state. From
these eigenvalues and eigenstates we now derive an expression for the energy of the pair.
The energy of the system can be written as follows

E = c− JS12. (1.2.4)

In this expression c and J are constants with J being known as the exchange constant. If
we let the exchange constant J be equal to the difference in the energies of the possible
states, therefore J = Esinglet − Etriplet. It is now possible to calculate c by noting that
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when S12 = −3/4, E = Esinglet and when S12 = 1/4, E = Etriplet. The energy can now be
written as

E =
1

4
(Esinglet + 3Etriplet)− JS12. (1.2.5)

The first term of this equation is a constant and can therefore be ignored if the zero energy
of the system is appropriately defined. The second term gives a convenient form of the
interaction energy between two spins.

It is this form of interaction energy which is used in the Heisenberg model allowing
the Hamiltonian of a magnetic system of interacting moments to be described by

Ĥ =

N∑
i<j=1

JijŜi · Ŝj +H

N∑
i=1

Ŝzi , (1.2.6)

where Ĥ is the Hamiltonian of the system, J is the exchange constant between sites i
and j, the operators Ŝi and Ŝj are the spin operators of the neighbouring sites i and j
with the sum over all of the nearest neighbour sites j to a given site i. The second term
is concerned with an applied magnetic field H and its interaction with the z spin of the
site i. If the exchange constant J is greater than 0 the neighbouring magnetic moments
will tend to align antiparallel to each other and the material will be antiferromagnetic, in
this phase the material will have no net magnetic moment. If J is less than zero then the
neighbouring moments will tend to align parallel to one another creating a ferromagnetic
state and leading to a net magnetic moment for the material even in the absence of an
applied magnetic field [9, p. 341].

Figure 1: Left: Spin arrangement for exchange integral J > 0 (Antiferromagnet) Right:
Spin arrangement for exchange integral J < 0 (Ferromagnet)

The Heisenberg model is quantum mechanical in nature as can be seen from the use
of operators rather than vectors, it assumes that all interactions can be treated in terms
of pairs of spins. This requires that the neighbouring sites must be spaced sufficiently
such that the wavefunctions of neighbouring magnetic ions have little overlap. Despite
the quantum mechanical nature of this model it is the aim of this study to treat the
system quasi-classically. This means treating the spin operators as classical 3-component
vectors, while this approach will be inadequate to achieve quantitively accurate results
the aim is to study the effects of a surface boundary condition on the direction of the
magnetic moments near the surface and this approach is sufficient to obtain qualitative
results regarding this. The quasi-classical model which will be used is

E =

N∑
i<j=1

Jij ~Si · ~Sj +H

N∑
i=1

~Szi . (1.2.7)

Ferromagnetism and antiferromagnetism are ordered states of magnetism which only exist
below a critical (Néel) temperature Tc. Above this temperature thermal vibrations oppose
the ordering of the system typically leading to the material becoming paramagnetic. These
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ordered phases of magnetism are of great interest in recent research, particularly in fields
such as spintronics where ferromagnetic materials are regularly used to build devices based
on the nature of electron spin rather than charge. Antiferromagnets are also of interest
in the field of spintronics[13] and since the nature of these devices relies on the direction
of spin of electrons passing through the materials, surface effects which may differ from
those in the bulk could have an impact on behaviour at interfaces etc. The aim of this
report is to establish the nature of surface effects in ferromagnetic and antiferromagnetic
materials and to study their qualitative behaviour.

Examples of the kind of spontaneous symmetry breaking observed in these ordered
magnetic materials occur in many areas of physics, such as changes of phase between solid
and liquid or the change of behaviour of superconducting materials. Phase changes are
therefore a well established area of study in thermodynamics and there is a system of
classification of phase changes, which establishes the order of phase change based upon
which order of derivate of a state variable of the system becomes discontinuous. Since
the magnetic phase change of interest is of second order it is possible to apply Ginzburg-
Landau theory to analyze the behaviour of the system near the critical temperature.

1.3 Ginzburg-Landau theory of second order phase transitions

Landau’s theory of second order phase transitions is a very important method for studying
systems which exhibit phase changes. Many of the effects and theories discussed later make
extensive use of the theory and as such a brief introduction to the method is included here.

Landau theory is concerned with writing down a Landau functional L which depends
on an order parameter η of the system, and coupling constants Ki. There are several
further constraints placed on the form of L,

• L must be consistent with all of the symmetries of the system.

• The order parameter should be any state variable of the system which is zero in
the disordered phase but non-negative in the ordered phase. The order parameter
should also be small near the critical temperature so that L can be approximated
by a taylor expansion in η.

• L should be minimised by η = 0 for T > Tc and by η 6= 0 for T < Tc

• L should be analytic in η near the critical temperature allowing L to be expanded in
a power series of η. In a homogeneous system this allows the Landau free energy
density L to be expressed as

L =
L

V
=
∞∑
n=0

an(K)η (1.3.1)

• Should the system be inhomogeneous with an order parameter η(r), L is a local
function, depending only upon η(r) and a finite number of derivatives.

From these assumptions is it now possible to explicitly formulate the Landau free energy
density. Since η is expected to be small we assume that terms beyond the fourth order
can be neglected, the expansion is therefore [14].

L = a0 + a1η + a2η
2 + a3η

3 + a4η
4. (1.3.2)

Minimising with respect to η gives.

∂L
∂η

= a1 + 2a2η + 3a3η
2 + 4a4η

3 = 0. (1.3.3)

4



Now for T > Tc we have η = 0, therefore it follows that a1 = 0. Due to the symmetries
of the system concerned, such as symmetry under time inversion, we require that L is an
even function, i.e. L(η) = L(−η) and this means that all coefficients of odd powers of η
must also be equal to 0.

For T < Tc, since L should be minimised for η > 0 it is necessary to require a4 > 0
otherwise a minimum could be approached by η →∞ and we are concerned with behaviour
where η is positive, finite and small in the vicinity of Tc.

For T = Tc, a2 should be equal to zero, this is because for temperatures above Tc the
Landau free energy should be minimised by η = 0, requiring a2 > 0 while for temperatures
below Tc it should be minimised by η 6= 0 requiring a2 < 0.

Taking all of the above into consideration we arrive at

L = A(K,T )η2 +B(K,T )η4, (1.3.4)

where A(K,T ) and B(K,T ) are coefficients which depend upon the temperature and
coupling constants of the system. Since the ordered phase of the system is the lower
temperature phase then after expanding A around Tc.

A(K,T ) = a(K)(T − Tc).

It follows that a will be positive. We can therefore set the coefficient B(K,T ) = b(K) > 0.
Now L has the following form.

L = a(K)(T − Tc)η2 + b(k)η4. (1.3.5)

Now to check the behaviour of the function we differentiate with respect to η and minimise.

∂L
∂η

= 0 ⇒ η(A+ 2bη2) = 0.

Solving for η leads to:

η = 0 or η = ±
√
−a
2b

(T − Tc).

Now that the positions of the extrema have been established, differentiating a second time
will yield their classifications.(

∂2L
∂η2

)
η=0

= 2a(T − Tc),
(
∂2L
∂η2

)
η=±

√
−a
2b

(T−Tc)
= −4a(T − Tc). (1.3.6)

Since we wish to find the minima of the function we require that the second derivatives
in (1.3.6) are positive. This leads to the conclusion that the energy density is minimised

for T > Tc with η = 0 and for T < Tc with η = ±
√
−a
2b (T − Tc). These conditions are

consistent with the requirements stated earlier and allow the Landau free energy density
to be used as a state variable in a similar way to the Gibbs free energy to calculate other
values such as the magnetization of the system, by differentiating.

2 Surface Effects Induced by a Surface Boundary Condition

2.1 2-Lattice Antiferromagnetic Model

It is possible to theoretically show the existence of distinct surface effects in antiferromag-
netic materials using a quasi-classical adaptation of the Heisenberg model shown in (1.2.7)
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by introducing a surface boundary condition. This method was adopted by Mills[10]. In
that investigation an fcc antiferromagnetic lattice was studied by treating the total lattice
as an intersection of two ferromagnetic sublatticies. Using this model each site from a
given sublattice will have nearest neighbours, all of which belong to the other sublattice.
It is therefore possible to write an expression for the average magnetization of a site in
one sublattice as a function depending only on interactions with the other sublattice as
shown.

〈SAz (~l)〉 = SBs

gµBH(~l)

kbT
− J

KBT

∑
~δ

〈SBz (~l + ~δ)〉

 . (2.1.1)

This equation is valid under the assumption that the site ~l lies well within the bulk of the
crystal where boundary conditions are negligible. In equation (2.1.1) gµB is the Landé g
factor multiplied by the Bohr magneton, kB is the Boltzmann constant, T is the absolute
temperature of the system, S is the spin of the magnetic ions, with subscripts denoting
components of spin and superscripts used to show belonging to either sublattice A or B,
the sum over ~δ is a summation over the 6 B sites which are the nearest neighbours of the
A spin. Finally the function Bs(x) is Brillouin function defined as follows.

Bs(x) =

(
1 +

1

2S

)
coth

(
S +

1

2

)
x− 1

2S
coth

(x
2

)
, (2.1.2)

Bs(x) =
1

3
(s+ 1)

{
x− 1

15
[S(S + 1) +

1

2
]x3 + . . .

}
. (2.1.3)

In order to use Landau theory to study this model it is useful to introduce two quan-
tities which simplify the dimensionality of the model. These quantities are the reduced
temperature

τ = T/TN ,

where TN is the Néel temperature which for this model is TN = 2Js(S + 1) and the
dimensionless quantity

h(~l) =

(
gµB
kBTN

)
HA(~l).

Now defining the order parameters as follows

ηA,B(~l) = 〈Sz
A,B(~l)〉/S,

equation (2.1.1) may then be rewritten as

ηA(~l) = BS

h(~l)

τ
− 1

2τ(S + 1)

∑
~δ

ηB(~l + ~δ)

 . (2.1.4)

The assumption is made that hA(~l) induces effects which vary slowly in space on the scale
of the lattice constant. This enables us to regard ηB(~l) as a continuous function of ~l and
write ∑

~δ

ηB(~l + ~δ) ∼= 6ηB(~l) + a2
0∇2ηB(~l), (2.1.5)

(2.1.4) now becomes

ηA(~l) = BS

(
h(~l)

τ
− 3

τ(S + 1)
ηB(~l)− 3a2

0

τ(S + 1)
∇2ηB(~l)

)
. (2.1.6)
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Now by applying the expansion in (2.1.3) to the Brillouin function in (2.1.6) using the
assumption that the order parameter ηA,B is small and retaining only the first order terms

in hA(~l) and ∇2ηB one obtains a Ginzburg-Landau equation of the following form

1

6
a2

0∇2ηB(~x) +
1

τ
ηB(~x) + ηA(~x)− βη3

B(~x) =
(S + 1)

3τ
h(~x). (2.1.7a)

In (2.1.7a) β = 3

5
[S(S + 1) + 1

2
]/(S + 1)2 is introduced as a dimensionless quantity with a

constant value approximately equal to one.
If instead of a spin on the A lattice we consider a spin on the B lattice we find a further

similar equation linking ηA,B(~x) to the externally applied field.

1

6
a2

0∇2ηA(~x) +
1

τ
ηA(~x) + ηB(~x)− βη3

A(~x) =
(S + 1)

3τ
h(~x). (2.1.7b)

2.2 Introducing a Surface Boundary Condition

We will now attempt to apply equations (2.1.7) to a semi-infinite crystal. In order to do
this we must impose a boundary condition at the surface. In this example we take the
crystal surface to lie in the x-y plane with the crystal occupying the region from z = 0 to
z =∞. It is now necessary to find appropriate boundary conditions for the functions ηA
and ηB at the crystal surface, i.e. for z = 0.

To construct the boundary conditions we consider that the exchange integral varies
near the surface of the crystal due to the lowering of localised reflectional symmetry, this
variance will contribute to a change in the energy states of the system near the boundary.
If J(~δ) is the exchange interaction seen between a given site on the A lattice and it’s
neighbour on the B lattice separated by a distance ~δ one can show that

∑
~δ

J(~δ)

J
ηB(~l + ~δ) =

(
5ηB − 4∆ηB + a0

∂ηB
∂z

+ (1−∆)a2
0∇2
||ηB +

a2
0

z

∂2ηB
∂z2

)
z=0

, (2.2.1)

where ∆ = ∆J/J is the ratio of the variation in exchange interaction caused by the intro-
duction of the surface and the exchange interaction within the bulk of the material. Also
∇2
|| =

∂2/∂x2 + ∂2/∂y2. It is now possible to notice from the forms of (2.1.5) and (2.2.1) that
it is possible to apply Ginzburg-Landau equations throughout the entire crystal, including
the surface layers. This requires the imposition of the boundary condition

(1 + 4∆)ηB + a2
0∆∇2

||ηB +
a2

0

6

∂2ηB

∂z2

∣∣∣∣
z=0

= a0
∂ηB
∂z

∣∣∣∣
z=0

. (2.2.2)

Since equations (2.1.7) are only applicable for values of the order parameter which vary
slowly over the scale of lattice constant we will neglect spatial derivatives on the left hand
side of (2.2.2) of higher than first order. This gives

(1 + 4∆)ηB|z=0 = a0
∂ηB
∂z

∣∣∣∣
z=0

. (2.2.3a)

For a field experienced by a spin in the B lattice near the surface. Similarly a boundary
condition of the same form is obtained for a spin belonging to the A lattice,

(1 + 4∆)ηA|z=0 = a0
∂ηA
∂z

∣∣∣∣
z=0

. (2.2.3b)

7



2.3 Emergence of Surface Effects Due To Boundary Condition

Now that an appropriate boundary condition has been obtained for the surface region of
the crystal it is possible to use Ginzburg-Landau equations to determine the spatial and
temperature dependence of the ordering of the crystal near the Néel temperature.

For a case where T < TN (τ < 1) and in the absence of an applied magnetic field,
equations (2.1.7) with boundary conditions (2.2.3) accept a solution with

ηA(~x) = −ηB(~x) = η(~x).

This solution describes a state below the critical temperature exhibiting antiferromagnetic
order. The function of η(~x) satisfies the homogeneous nonlinear equation

1

6
a2

0∇2η(~x) +

(
1

τ − 1

)
η(~x)− βη3(~x) = 0 (2.3.1)

along with the boundary condition at z = 0

η =
a0

1 + 4∆

∂η

∂z
. (2.3.2)

For temperatures near the Néel temperature and in the absence of an external field we
find that η(~x) depends only on z so that (2.3.1) becomes

a0

6

∂2η

∂z2
+ (1− τ)η(z)− βη3(z) = 0. (2.3.3)

It is expected that in the bulk of the crystal, i.e. far away from the surface, that η will
be independent of z. It is therefore equal to the value η∞ which can be deduced from
equation (2.3.3) taking η to be independent of z to give

η∞ = (1− τ)
1
2/β 1

2 . (2.3.4)

It is predicted by molecular field thoery that the order parameter vanishes as (TN − T )
1
2

as T approaches TN from below.
If we now express η(z) as follows

η(z) = η∞f(z) (2.3.5)

and measure distance in terms of the correlation length ξ = a0/[6(1− τ)]
1
2 by writing z = ξy.

equations (2.3.2) and (2.3.3) become

∂2f

∂y2
+ f(y)− f3(y) = 0, (2.3.6)

where at y = 0,

f =
a0

(1 + 4∆)ξ

∂f

∂y
. (2.3.7)

It is not possible to obtain an exact solution to equation (2.3.6) with the boundary condi-
tions f(y)→ 1 as y →∞ and the y = 0 boundary condition given in (2.3.7). It is however
possible to obtain an approximate solution which is valid near the critical temperature.
Near the critical temperature ξ � a0, so since it is expected that ∂f

∂y is of the order of
unity then

f(0) =
a0

(1 + 4∆)ξ

∂f

∂y
= order of

a0

ξ
� 1. (2.3.8)
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The function f(0) will therefore be very small at y = 0 when T is near TN . If we
now introduce a function f (0)(y) that satisfies equation (2.3.6) subject to the boundary
conditions

f (0)(0) = 1, f (0)(∞) = 1. (2.3.9)

The exact solution of equation (2.3.6) with boundary conditions from (2.3.7) may now be
written as

f(y) = f (0)(y) + f (1)(y), (2.3.10)

where for T near TN , f (1)(y) is small compared with f (0)(y). When
f (1) � f (0), it is possible to obtain f (1) from the differential equation

∂2f (1)

∂y2
+ (1− 3f (0)2)f (1) = 0 (2.3.11)

where

f (1)(0) =
a0

(1 + 4∆)ξ

∂f (0)(0)

∂y
, f (1)(∞) = 0. (2.3.12)

If we now limit our interest to the surface layer we can see that f(0) = f (0)(0) + f (1)(0) ≡
f (1)(0). Therefore if f (0)(y) is known it is possible to find the order parameter with no
need to solve equation (2.3.11). It may be shown that

f (0)(y) = tanh(y/
√

2). (2.3.13)

It therefore follows that

f (1)(0) =
a0√

2(1 + 4∆)ξ
=

√
3

(1 + 4∆)

(
TN − T
TN

)1/2

. (2.3.14)

It is now possible to express the sublattice magnetization 〈Sz〉|surf in the surface as

〈Sz〉|surf = Sη(0) = Sη∞f
(1)(0)

or

〈Sz〉|surf =

√
3S√

β(1 + 4∆)

(
TN − T
TN

)
. (2.3.15)

In molecular field theory, near the Néel temperature the temperature dependence of
〈Sz〉|surf is proportional to TN − T . From equation (2.3.15) we can see that the sur-
face magnetization 〈Sz〉|surf near the Néel temperature depends on the value of ∆. If the
exchange constants are softened, i.e. ∆ > 0 then the magnitude of the surface magnetiza-
tion is decreased but the temperature dependence is unaffected. If however the exchange
integral is stiffened (∆ < 0) then for |∆| > 1

4 , 〈Sz〉|surf becomes negative. From molecular
field theory it is predicted that the surface will order antiferromagnetically at a temper-
ature above the Néel temperature of the bulk. Since this effect is confined to only a few
layers in the surface region and it is known that true antiferromagnetic order cannot be
realised in two-dimensions, it is unlikely that this magnetic ordering of surface regions
above the Néel temperature of the bulk would take place in a real crystal. It is likely
that this effect is a remnant of the molecular field theory from which it is derived, it is
interesting to note however that this theoretical result does predict that for a surface ex-
change appreciably larger than that in the bulk, at temperatures far above TN there may
be long range correlations between spins in the surface region where correlations between
bulk spins remain of the order a0.
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3 Dzyaloshinsky-Moriya Exchange Interactions

The Heisenberg model described above takes into account a simple form of interaction
between neighbouring particles as denoted by the exchange constant J . However it was
noticed that in certain antiferromagnetic crystals, a ”weak” net magnetic moment was
observed experimentally, despite the crystal being in the antiferromagnetic regime. It was
initially proposed that this moment may be present due to the formation of antiferro-
magnetic domains with magnetized walls. It was noted however, that this situation is
energetically unfavourable and is only likely to exist in the vicinity of crystal impurities.
Experiments undertaken with very pure samples found that the magnitude of the net
magnetic moment was unaffected by sample purity, and was present even in very pure
sample crystals.

3.1 Symmetry Argument for Existence of ”Weak” Ferromagnetism

Despite the non dependence of the spontaneous moment on the purity of the crystal,
dependence on the symmetry of the structure was apparent. In order to attempt to explain
the presence of the ferromagnetic moment in the antiferromagnetic crystal, Dzyaloshinsky
[6] proposed a solution based on symmetry arguments. If it is possible to construct a
spin arrangement which is invariant under all transformations of the space group of the
magnetic lattice, where the net magnetization within the unit cell is non-zero, then there
may be another mechanism responsible for the ferromagnetism than the one proposed
above. Such an arrangement would allow for the existence of such a moment without the
need for crystal impurities.

In order to try and construct such a scenario a rhombohedral lattice example is used,
in particular the isomorphous crystals α-Fe2O3 and Cr2O3. This unit cell consists of four
magnetic ions with spins arranged such that the net magnetic moment of the unit cell is
zero. The four ions lie along the space diagonal of the rhombohedron. The direction of
the spins has not been determined for Cr2O3 but for α- Fe2O3 the orientations depend
on temperature. Two antiferromagnetic states are observed in α-Fe2O3, at T < 250K the
spins are along the crystal axis (state 1), and at 250K < T < 950K the spins lie in one
of the vertical axes of symmetry. Neutron diffraction studies of these two crystals have
shown that the magnetic unit cell is identicle to the space unit cell with the spins of the
four ions differing in sign only and the sum of spins in a cell being equal to zero. The spin
arrangements are s1 = −s2 = −s3 = s4 for α-Fe2O3 and s1 = −s2 = s3 = −s4 in Cr2O3.
From experimental measurement it appears that Cr2O3 is not ferromagnetic at all while
α-Fe2O3 is ferromagnetic in state 2.

If we now assume that the symmetry of the antiferromagnetic distribution is known, we
can consider the question of whether it is possible, within this symmetry, to construct an
arrangement where the sum of the spins within the unit cell is non zero. One possibility to
consider is the situation where the four spins rotate out of their symmetry plane towards
one another. The question is now to determine whether the symmetry of this distribution
is identicle to the symmetry of the arrangement in state 2.

When determining the symmetry properties of a magnetic crystal it is not merely
the distribution of the atoms within the unit cell which must be considered. It is also
necessary to consider the average spin s(x, y, z) at every point. This vector quantity
may be invariant under a number of spatial transformations but it is also possible that
an extra symmetry element R may exist which consists of a reversal of the spin sign
s(x, y, z) → −s(x, y, z). This operation arises from the invariance of the equations of
mechanics with respect to the changing of the sign of time and of the sign of magnetic
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fields and spins simultaneously. For a spin distribution to be invariant under R by itself we
must have s(x, y, z) = −s(x, y, z) = 0 and the crystal will be in the paramagnetic phase.
It is possible though for an arrangement with non zero s(x, y, z) to have invariance with
respect to R when it is combined with other symmetry operations. The ”magnetic” space
group is therefore not entirely identicle to the space symmetry group.

The aim is now to determine the class of symmetry in each antiferromagnetic state. As
well as the two possible antiferromagnetic states mentioned above it is also worth noting
for considerations of symmetry a third state with the spins aligned along one of the second
order axes. It is now possible, using the description of the space group of the lattice to find
the classes to which the three states belong and to write down the elements of symmetry
which relate to each state [7].

C3, U2, I, S6, σd (State 1)

U2, I, σd (State 2)

U2R, I, σdR. (State 3)

Now that the elements of symmetry for each state have been identified we can now consider
whether a magnetic moment can exist in any of the states which is invariant under all of
the symmetry transformations in the class. We can see that state one cannot possess a net
magnetic moment as the symmetry group contains a third-order axis with a second-order
one perpendicular to it. It is therefore not possible to choose a direction for a magnetic
moment which would allow it to be invariant under the necessary transformations. For
the cases of states 2 and 3 however, it is possible to choose a direction for a non zero net
magnetic moment. For case 2 the moment lies along the second order axis and in state 3
it lies in a plane of symmetry.

We can therefore see that the experimental observation that α-Fe2O3 does not possess
a ferromagnetic moment in the state 1 arrangement follows directly from the magnetic
symmetry of the crystal structure. We can also see why a moment is observed experimen-
tally in the state 2 and show that it must be directed along one of the second order axes,
perpendicular to the plane of symmetry in which the antiferromagnetic components of the
spins lie.

As shown above it is therefore allowable within the symmetry of the crystal for a
ferromagnetic moment to occur. The symmetry does not however, limit the magnitude of
this moment, it is permissible without breaking symmetry for the spins within the cell to
rotate so as to coincide creating a purely ferromagnetic material. In order to investigate
the weak nature of the experimentally observed net magnetic moment we will now apply
Ginzburg-Landau theory.

3.2 Ginzburg-Landau Analysis

In order to describe the state of a magnetic crystal we define the average density of the spin
distribution as s(x, y, z). Where there is more than one magnetic ion present within each
unit cell the state of each ion is described by its own spin density function si(x, y, z). Since
the spin function s(x, y, z) describes the crystals magnetic state it must posses the same
symmetry properties as the magnetic crystal. The phase transitions being investigated
are of the second kind and as such the spin density function s(x, y, z) (and therefore the
magnitude and direction of the spins within the crystal) varies continuously while it’s
symmetry changes suddenly. This also means that at the point of transition between
phases, the symmetries of both are identicle.

The specific transition we are concerned with is between the paramagnetic and the
antiferromagnetic phases. In the paramagnetic phase s(x, y, z) = 0 and the symmetry
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group is described by one of the 230 which contain the operation R by itself. In the
antiferromagnetic phase s(x, y, z) 6= 0, although since the phase is antiferromagnetic the
integral of the spin density over the entire unit cell

∫
sdV = 0 and the crystal’s magnetic

symmetry is the same as the symmetry of the function s(x, y, z).
From group theory it is known that any basis function can be represented by a linear

combination of functions which transform one into the other under all transformations
of the group since the resulting representation while different, differs only by a similar-
ity transform from the one representing the original basis function. If we therefore let
φ1(x, y, z), φ2(x, y, z) . . . be functions which transform one into another under all trans-
formations of the symmetry group of the paramagnetic phase it is possible to represent
the spin density function in the antiferromagnetic phase as a linear combination of these
functions

sα(x, y, z) =
∑
i

aαiciφi(x, y, z), (3.2.1)

where we have chosen the coefficients aαi to be temperature and pressure independent in
such a way as to allow sα(x, y, z) to transform as pseudovector components.

As mentioned above it is possible to replace the functions φi by any linear combination
of them. It is also always possible to select φi in such a way as to be able to form a series
of sets, each containing the minimum number of functions which transform one set into
another under all symmetry operations of the symmetry group. Each of these minimal sets
of functions is then an irreducible representation of the symmetry group and the expansion
of s(x, y, z) can be rewritten as

sα(x, y, z) =
∑
n

∑
i

a
(n)
αi c

(n)
i φ

(n)
i (x, y, z), (3.2.2)

where n denotes the number of an irreducible representation and i is the number of a
function in it’s base.

Since in the paramagnetic phase the crystal symmetry group contains R by itself we
now consider the behaviour of the irreducible representations under the action of R. It is
possible to split them into two types, those which reverse their sign under the action of
R and those which are invariant. Since the spin density function s(x, y, z) itself changes
sign under the action of R the expansion given by (3.2.2) will contain only those functions
who also change their sign under the action of R.

If we now consider the thermodynamic potential Φ of the crystal with spin density

s(x, y, z), this depends on temperature, pressure and the coefficients c
(n)
i . The depen-

dence of the coefficients c
(n)
i on temperature, pressure and the symmetry of the crystal

in the antiferromagnetic phase can be determined through the minimization of Φ. Since

s(x, y, z) = 0 in the paramagnetic phase, c
(n)
i are zero in this phase. at the transition

point the coefficients will become zero and below but near the critical temperature they
will have a small non-negative value. This suggests that we can expand Φ as a power

series of c
(n)
i .

When we previously expanded s(x, y, z) we considered c
(n)
i to be constants and φ

(n)
i (x, y, z)

to be functions which were changeable under the transformations of the group. It is equally

valid to consider φ
(n)
i to be constant and allow c

(n)
i to vary under the group transforma-

tions. Since Φ is invariant under all symmetry operations of the group then to expand it

as a power series of c
(n)
i the expansion must contain only terms which are also invariant.

Since all of the coefficients c
(n)
i change their sign under the action of R the expansion must

therefore only contain terms which are even powers of c
(n)
i and which are therefore invari-

ant under such a transformation. From group theory we know that there is only one way
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to construct an invariant from quantities transforming under an irreducible representation
and that it is a definite quadratic form always expressible as a sum of squares. We can
therefore see that the expansion of Φ will be of the form

Φ = Φ0 +
∑
n

A(n)
∑
i

c
(n)2
i , (3.2.3)

where here, Φ0 is the potential of the paramagnetic phase, and A(n) are functions of P
and T .

If we now consider the paramagnetic phase, when Φ is a minimum, c
(n)
i = 0, this means

that all of the functions A(n) > 0. The phase transition to antiferromagnetism therefore
takes place when one of the functions A(n) becomes negative. At the point of transition

A(n) = 0. This leads to the constant c
(n)
i of the corresponding irreducible representation

becoming non-zero. The symmetry of the crystal now changes into the antiferromagnetic
regime and is the same as the symmetry of the spin density function

sα(x, y, z) =
∑
i

a
(n)
αi c

(n)
i φ

(n)
i (x, y, z). (3.2.4)

In order to find the actual form of the symmetry it is necessary to take into account the

fourth order terms in c
(n)
i . If we introduce the order parameter η as follows (from now on

the index n will be omitted for brevity).

η2 =
∑
i

c2
i , ci = γiη, (3.2.5)

we can now rewrite our previous expansion of Φ as

Φ = Φ0(P, T ) + η2A(P, T ) + η4
∑
k

Bk(P, T )f4
k , (γi) (3.2.6)

where the functions f4
k are invariants of the fourth order which can be made up from γi.

It is now possible to find γi from the minimum condition of Φ, allowing us to rewrite
Φ in the more usual form used in Landau theory similar to the form shown in (1.3.4)

Φ = Φ0(P, T ) + η2A(P, T ) + η4B(P, T ) (3.2.7)

and in the usual way determine the dependence of the order parameter η on P and T .
Calculation of η2 and γi in this manner can then be used to determine the symmetry

of the average spin density function sα and therefore the symmetry of the crystal in the
antiferromagnetic phase.

We next note that the change in magnetic phase of α-Fe2O3 takes place without any
change of the unit cell. This allows us to consider the average spin density function
s(x, y, z) as being coordinate independent and therefore the symmetry of the crystal is
governed simply by the average values of the spins of the four ions. It is now not necessary

to distinguish between the coefficients c
(n)
i and the functions φ

(n)
i in equation (3.2.2) and

we can now regard their product c
(n)
i φ

(n)
i as a linear combination of the components of

the four ions ~s1, ~s2, ~s3, ~s4. This linear combination must also transform according to the
appropriate irreducible representation of the paramagnetic phase symmetry group. For
the crystal being considered this group is D6

3d ×R [7, p. 548-551].
Near the critical temperature the average spins of the ions will be small and the

thermodynamic potential Φ can be expanded as a power series of their components. As

was the case when expanding about c
(n)
i we are only concerned with terms which are
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invariant under the transformation R and therefore only even powered terms are retained.
Φ must also be invariant under the operations of the crystal symmetry group. Since
there is no change of the unit cell we regard any translation by a whole period as an
identicle transformation. The space group D6

3d therefore becomes D̃6
3d which differs by

the replacement of certain rotation axes and symmetry planes with helical axes and glide
surfaces.

The axial vectors ~s1, ~s2, ~s3, ~s4 form a reducible representation of the D̃6
3d space group.

In order to form an irreducible representation we introduce new basis vectors ~m,~l1,~l2,~l3
which are given by

~m = ~s1 + ~s2 + ~s3 + ~s4 ~s1 = 1
4(~m+~l1 +~l2 +~l3)

~l1 = ~s1 − ~s2 − ~s3 + ~s4 ~s2 = 1
4(~m−~l1 −~l2 +~l3)

~l2 = ~s1 − ~s2 + ~s3 − ~s4 ~s3 = 1
4(~m−~l1 +~l2 −~l3)

~l3 = ~s1 + ~s2 − ~s3 − ~s4 ~s4 = 1
4(~m+~l1 −~l2 −~l3).

The vector ~m here simply represents the average magnetic moment of a unit cell.
The components of ~m and ~li transform independently under each of the symmetry

transformations. These components transform according to unidimensional representa-
tions A2g, A1g, A1u, A2u of the point group D3d. The x and y components of the vectors

~m and ~l1 transform according to the same two-dimensional representation Eg and these

components of the vectors ~l2 and ~l3 according to Eu.
Now that we have established the irreducible representations according to which the

components of the basis vectors transform we may construct the most general form of
the expansion of Φ allowable by the symmetry of the system. Limiting the expansion to
second order terms gives

Φ =
A1

2
l21 +

A2

2
l22 +

A3

2
l23 +

B

2
m2 +

α1

2
l21z
α2

2
l22z
α3

2
l23z+

+
b

2
m2
z + β1(l1xmy − l1ymx) + β2(l2xl3y − l2yl3x). (3.2.8)

In the expansion (3.2.8) there are several magnetic energy terms which correspond to
various types of spin interactions. The terms of the form Al2 do not depend on the
orientation of the ~l vector or the spin orientations and represent exchange interactions such
as those described by the Heisenberg model. Terms of the from αl2z and (lxmy − lymx)
are due to relativistic spin-lattice interactions and the magnetic dipole interaction and
determine the magnetic anisotropy of the crystal.

The important feature of the thermodynamic potential of crystals with symmetries
such as those discussed here is the presence of the mixed terms l1xmy− l1ymx and l2xl3y−
l2yl3x. From a purely mathematically point of view these terms are a result of the x
and y components of ~m and ~l1 (and also ~l2 and ~l3) transforming according to the same
representations. The physical interpretation however, is that it is the first of these mixed
terms which is responsible for the ferromagnetic moment in the crystal, and that this
moment is a result of relativistic rather than exchange interactions.

3.3 Moriya’s Microscopic picture of Anisotropic Superexchange Inter-
action

The Dzyaloshinsky picture described above is a purely phenomenological argument show-
ing that the existence of a ferromagnetic moment is possible in an antiferromagnetic crystal
structure. The nature of the interaction described in Dzyaloshinsky’s phenomenological
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picture shows that there is a term which favours a canted alignment of spins rather than
an antiferromagnetic arrangement, which is necessary in establishing a ferromagnetic mo-
ment. The term responsible for this can be expressed as

~D · (~S1 × ~S2), (3.3.1)

where ~D is a constant vector [11]. It can be seen that (3.3.1) is the antisymmetric part
of the most general expression for a bilinear spin-spin interaction. These spin-spin inter-
actions can be due to either isotropic superexchange interaction, magnetic dipole-dipole
interaction or anisotropic superexchange interaction. It is the anisotropic superexchange
interaction which was investigated by Moria in a quantitative manner in order to provide
a method for calculating the vector ~D, the approach involves the use of the formalism
proposed by Anderson [1] for consideration of superexchange interactions. This involves
treatment of the d-orbital electrons as single electron wavefunctions interacting with a
field sufficiently modified to represent the lattice of ions. The Hamiltonian is then con-
structed and diagonalized accounting for the localization of the electrons to the cations
of the lattice and the repulsive nature of the inter-electron interactions. The approach
involves second-quantization and as such, the specifics of the mathematical techniques
employed are beyond the scope of the present discussion, but the treatment leads to an
expression for the ~D vector of the form

~DRR′ = −
(
i

U2

){∑
m′

Jn′m′(R
′)
[
bnm′(R−R′)× ~Cm′n(R′ −R)

−~Cnm′(R−R′)bm′n(R′ −R)
]

+
∑
m

Jnm(R)[bn′m(R′ −R)~Cmn′(R−R′)

−~Cn′m(R′ −R)bmn′(R−R′)]
}
.

Direct calculation of this coefficient is possible only in the simplest of configurations and the
real insight gained is that the order of magnitude of ~D can be estimated by D ∼ (∆g/g)J .
It is also simple to establish a set of conditions which will determine the direction of the
~D vector depending on the crystal arrangement. If we consider a case where there are two
ions located at the points A and B with a point bisecting the line AB denoted by C

• When C is a centre of inversion symmetry

~D = 0

• When a mirror plane perpendicular to AB passes through C

~D ‖ mirror plane, or ~D ⊥ AB

• When there is a mirror plane including A and B

~D ⊥ mirror plane

• When a two-fold rotation axis perpendicular to AB passes through C

~D ⊥ two-fold axis
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• When there is an n-fold axis (n > 2) along AB

~D ‖ AB

Symmetry again plays a large roll in determining the magnitude of the effect induced
by these interactions. In crystals with high symmetry the coupling vanishes and it is only
in low symmetry situations where it becomes of significance.

4 Dzyaloshinsky-Moriya Interactions Induced by the Intro-
duction of a Surface

Since high local symmetry causes the antisymmetric interaction mentioned above to be-
come negligable. Then in the presence of local disorder the effect is expected to have a
noticeable influence on the magnetic structure. We will now consider a scenario where
the bulk crystal has high enough symmetry to negate these interactions but where the
introduction of a surface lowers local symmetry to a point where they become significant.

The interaction described in section 3 can be treated as an extra term in the interaction
energy between two sites. This modifies the Heisenberg model shown in (1.2.7) to become

E =
N∑

i<j=1

Jij ~Si · ~Sj +
N∑

i<j=1

~D · (~Si × ~Sj) +H
N∑
i=1

~Szi . (4.0.2)

However, in the situations we will be looking at in this and future sections we will be
assuming the absence of an external magnetic field leaving

E =
N∑

i<j=1

Jij ~Si · ~Sj +
N∑

i<j=1

~D · (~Si × ~Sj). (4.0.3)

Equation (4.0.3) will be the expression for the interaction energy used in the consideration
of all of the situations which follow.

4.1 Dependence of ~D vector on surface geometry

Since it is the local symmetry breaking induced by the addition of the surface which causes
the D-M interaction to become significant it is also important to consider the orientation
of the surface in order to ascertain the direction of the ~D vector. We can apply the
conditions described at the end of section 3.3 to establish the direction of the ~D vector
for a number of geometries. We will be limiting our consideration to nearest neighbour
interactions since these are expected to have by far the greatest influence on the magnetic
structure of the crystal. Next nearest neighbour interactions are not expected to have a
significant impact on magnetic ordering.

Here we will consider several types of cubic crystal with three distinct surface planes.
From Table 1 [4] it is clear to see that the direction of the ~D vector is largely affected by
the crystal geometry and is also influenced by the type of surface plane considered.
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(0 0 1) surface (1 0 1) surface (1 1 1) surface

Simple cubic lattice
(a) 1 neighbour in
1st layer
~D1 = Dẑ

(d) 2 neighbours in 1st
layer
~D1 = Dŷ
~D2 = −Dŷ

(g) 3 neighbours in 1st
layer
~D1 = −Dx̂
~D2 = D( 1

2 x̂−
1
2

√
3ŷ)

~D3 = D( 1
2 x̂+ 1

2

√
3ŷ)

BCC lattice

(b) 4 neighbours in
1st layer
~D1 = D(−x̂+ ŷ)
~D2 = D(−x̂− ŷ)
~D3 = D(x̂− ŷ)
~D4 = D(x̂+ ŷ)

(e) 2 neighbours in 1st
layer
~D1 = −Dx̂
~D2 = Dx̂

(h) 3 neighbours in 1st
layer, 1 neighbour in
3rd layer
~D1 = D(− 1

2 x̂+ 1
2

√
3ŷ)

~D2 = D(− 1
2 x̂−

1
2

√
3ŷ)

~D3 = Dx̂
~D4 = D′ẑ

FCC lattice

(c) 4 neighbours in
the 1st layer
~D1 = Dŷ
~D2 = −Dx̂
~D3 = −Dŷ
~D4 = Dx̂

(f) 4 neighbours in the 1st
layer, 1 neighbour in the
2nd layer

~D1 = D(−
√

2
3 x̂+

√
1
3 ŷ)

~D2 = D(−
√

2
3 x̂−

√
1
3 ŷ)

~D3 = D(
√

2
3 x̂−

√
1
3 ŷ)

~D4 = D(
√

2
3 x̂+

√
1
3 ŷ)

~D5 = D′ẑ

(i) 3 neighbours in 1st
layer
~D1 = D(− 1

2 x̂+ 1
2

√
3ŷ)

~D2 = D(− 1
2 x̂−

1
2

√
3ŷ)

~D3 = Dx̂

Table 1: Direction of the ~D vector for nearest neighbour sites at the surface and in the
bulk for cubic crystal structures. The z axis is always normal to the surface plane while
the x and y axes lie in the surface plane. D refers to the magnitude of the ~D vector for
sites in the 1st layer and D’ to sites in the 2nd (or 3rd) layer below the surface

Figure 2: Direction of ~D vector for arrangement (c) from table 1

4.2 Effect of Dzyaloshinksy Moriya Interaction on Magnetic Order Near
the Surface of an Antiferromagnet

We have discussed the nature of the Dzyaloshinsky Moriya interaction and have used
the symmetry rules postulated by Dzyaloshinsky to determine the direction of the ~D
vector coefficient at the surface boundary of several different crystal geometries and surface
orientations. We now consider whether the inclusion of this effect will have any influence
on the nature of the magnetic ordering near the surface boundary of an antiferromagnet.

If we consider the same geometry as in the Mills investigation discussed in section
2, then after treating the lattice as a system of 2 intersecting sublatticies, we find that
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the structure including the Dzyaloshinsky Moriya interactions will cause this model to
be modified into a 4 sublattice model where each of the initial 2 sublatticies is split into
2 further intersecting sublattices with a small canting between the spins of the order of
D/J. This leads to the formation of a small ferromagnetic moment in the region close to
the surface (within the first 1 or 2 atomic layers) with a direction normal to the surface
plane. It is simple to see that this modification applies only in the antiferromagnetic
phase. If the material is in a ferromagnetic state the the sum of the interactions leads to
no net modification of the magnetic ordering and ferromagnetic order is maintained and
unaltered.

If we further consider directions of the ~D vectors for the individual interactions between
a surface site and each of it’s nearest neighbours in case (c) from Table 1 wtih axes as
defined in figure 2 [4] we can see that the D-M interaction will tend to rotate the spins into
a spiral magnetism state, i.e. chirality is induced into the system. This chirality will again
be limited to a region which spans the first 2 or 3 atomic layers of the material from the
surface. This induced chirality itself leads to the possibility of new effects arising within
this region which will be discussed in the next section.

4.3 Effect of Induced Chirality in the Surface Region

The direction of the ~D vector in case (c) will tend to cause the directions of the spins of
the nearest neighbours to modify in such a way as to break chiral symmetry in the surface
region [3].

Chiral symmetry breaking in crystals has been observed experimentally in several
noncentrosymmetric ferromagnetic and antiferromagnetic compounds. For the purposes
of our investigation into the chiral nature induced by the D-M interactions it is conveinient
to describe the antisymmetric exchange interaction term in the form of a Lifshitz invariant
linear in first spacial derivatives of the magnetization ~M(~r) of the form

~Mi
∂ ~Mj

∂xl
− ~Mj

∂ ~Mi

∂xl
, (4.3.1)

where xl denotes a spatial coordinate.
These interactions cause a breaking in chiral symmetry and lead to the stabilization of

localized vorticies, with a fixed rotation sense of the magnetization. It is also possible to
observe these effects in centrosymmetric crystals where stresses or applied magnetic fields
may be used to induce chiral magnetic couplings. These effects, since they are largely due
to the D-M interaction energy are expected to be negligable in the bulk, however they
are expected to potentially play a role in the behaviour of magnetic thin films or near
the surface of a larger crystal where local symmetry is sufficiently low as discussed in the
previous section.

From experimental data collected regarding ferromagnetic layer sysytems, it can be
seen that the magnetic propeties of nanomagnets are substantially influenced by inho-
mogenous stresses. We therefore assume that the chiral couplings should also be inhomo-
geneous within a magnetic structure where local symmetry is low. This allows us to write
a phenomenological expression for the chiral energy density as

wD = Dη(~r)L(~m), (4.3.2)

where D is a constant, L is a Lifshitz invariant with the form given in (4.3.1) and the
function η(~r) is a distribution function describing the inhomogeneous distribution of the
magnetic chiral energy. This function η(~r) can be treated as field present in the crystal
in addition to the magnetization field. This function then takes on the role of the chiral
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order parameter and by application of Ginzburg-Landau theory it is possible to express
the coupling energy as

wc =
∑
i

Ã

(
∂η

∂xi

)2

+ f(η2) +Dη(~r)L(~m). (4.3.3)

It is now our aim to find a form of η(~r) and of the Lifshitz invariant L(~m) which will
minimise this chiral coupling energy. In order to do this we will consider the following
geometry, a semi-infinite crystal which has a surface in the z = 0 plane and which ocupies
the region z ≤ 0. We will assume that the function η(~r) is homgeneous along the surface
and varies only with z, i.e. η(~r)→ η(z). Equation (4.3.3) then becomes

wc = Ã

(
∂η

∂z

)2

+ f(η2) +Dη(z)L(~m). (4.3.4)

Next we assume that the homogeneous energy function f(η2) can be expressed in a form
similar to that of the Landau free energy given in equation (1.3.4)

f(η2) =
α

2
η2 +

b

2
η4

and take a Lifshitz coupling coupling function as follows

L( ~M) = mz
∂mx

∂x
−mx

∂mz

∂x
+mz

∂my

∂y
−my

∂mz

∂y
. (4.3.5)

We now have sufficient knowledge of the form of wc to attempt to minimize with respect to
η(z). Minimization with respect to ~M requires a more in depth mathematical treatment
involving the coupling of the chiral energy with the magnetic energy, which will not be
discussed in this report. We will however consider the minimization with respect to η
neglecting the magnetic energy, since this will have no dependence on η and can be done
self consistentely by minimization of wc.

Minimizing with respect to η(z) requires that we impose boundary conditions on the
problem. If we assume some form of normalization such that at the surface (where chiral
effects are expected to be a maximum) η(z) has a maximal value and that the function
decreases rapidly with z (since chiral effects are not expected to propogate any significant
distance into the bulk) we can formulate the boundary conditions

η(z)(z=0) = 1,

η(z)(z=−∞) = 0.

Now minimizing (4.3.4) with respect to η(z) gives

Ãη′2 +
α

2
η2 +

b

4
η4 = constant, (4.3.6)

where η′ = dη
dz .

We can now consider the boundary condition for z = −∞ to establish the value of the
constant in equation (4.3.6). Since we expect η to decrease to near zero within a relatively
short distance of the surface we assume that η′ = 0 at z = −∞ which along with our
initial boundary conditions leads to the conclusion that the constant in (4.3.6) is equal to
zero.

Ãη′2 +
α

2
η2 +

b

4
η4 = 0. (4.3.7)
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This differential equation is easily solved by seperation of variables (and upon noting from
Landau theory that the coefficient α

2 < 0 for the purposes of the integration) to give

η(z) =
2
√

2|α|√
|b|

e

√
|α|√
2

( z
Ã

+c)

e
√

2|α|( z
Ã

+c) − 1
, (4.3.8)

Where we have taken the absolute values of α and b to ensure that η(z) is positive and
real as required. The constant arising from the integration can easily be found using the
boundary condition for z = 0 to give

c =
1√

2
√
α

1

1 + 1
2

[
log(2

√
2
√
α)

log(
√
b)

] .
The distribution function η(z) then results in chiral behaviour near the surface of an
ordered magnetic crystal with these effects vanishing to zero as we enter the bulk.

The spiral nature of the magnetic order induced by this chiral energy in the surface
region can also lead to further changes in behaviour. The spiral ordering can lead to an
incommesurate spin density wave state which can further lead to a coupling between the
magnetization and the electric polarization leading to multiferroic behaviour [12]. This
suggests that near a surface both magnetic and ferroelectic order coexist, enabling the
control of magnetic properties by the apllication of magnetic fields or vice versa [2].
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5 Apendix

5.1 Schedule of Meetings with Supervisor

06/10/11:General introductory discussion about direction of project. Set several papers
to read regarding surface effects and Dzyaloshinsky-Moriya interactions

13/10/11, 20/10/11, 27/10/11 & 03/11/11:Discussed the content of the papers from first
meeting specifically with a view to fully understanding the mathematical techniques in-
volved.

17/11/11, 24/11/11, 01/12/11, 08/12/11 & 15/12/11:Began to discuss papers more specif-
ically related to Dzyaloshinsky-Moriya interactions induced by symmetry breaking at a
surface, the nature of these interaction and the idea of finding the form of the distribution
function determining how far they might propogate into the bulk.

19/01/12, 26/01/12 & 09/02/12:Discussed possibility of the introduction of spiral mag-
netism and consequences. First attempt to mathematically represent spiral magnetism
using spherical polar co-ordinates.

16/02/12:After attempting to describe spiral state using spherical polar coordinates, ap-
proach resulted in free energy in the form of an expression with over 40 terms which I
could not simplify.

27/03/12:Discussed a paper relating to chiral symmetry breaking in magnetic systems.
Introduced possibility of solving problem faced with before the easter break by using Lif-
shitz invariants.

05/04/12, 12/04/12, 26/04/12 & 03/05/12:General progress updates on my research into
Lifshitz invariants and Dzyaloshinsky’s paper on symmetry arguments.

17/05/12 & 28/05/12:Discussed approach to mathematically deriving the distribution
function η and other details such as the form that the Lifshitz invariant should take.

31/05/12 & 06/06/12:Met to discuss progress and to get assistance with mathematical
derivation of the form of the distribution function η. Also discussed progress on final
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report so far.

07/06/12:Discussed feedback on final report so far.
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