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THEOREM
Consider a spatially homogeneous stochastic particle system as defined by Eq. (2), which exhibits condensation as

defined by Eq. (3), and has stationary product measures. If we have finite critical density,

ρc :=
1

z(1)

∞∑
n=0

nw(n) <∞ where z(1) :=

∞∑
n=0

w(n), (1)

then the canonical measures, πL,N , are not stochastically ordered and the process is necessarily not monotone.
The same is true if the finite mean assumption is replaced by the assumption that w(n) = n−bf(n), w(0) = 1 and
f(n)→ c ∈ (0,∞) as n→∞ with b ∈ (3/2, 2], i.e. ρc =∞.

DEFINITIONS AND BACKGROUND
• Finite lattices Λ = {1, . . . , L}.
• State space XL = NL.
• Configurations η ∈ XL, ηx ∈ N ∀ x ∈ Λ.
• Jump rates c(η, ξ) ≥ 0 from configurations η → ξ.
• f ∈ C(XL), generator given by

Lf(η) =
∑

{ξ∈XL:ξ 6=η}

c(η, ξ)
(
f(ξ)− f(η)

)
. (2)

• Conserved quantity SL(η) :=
∑
x∈Λ ηx.

• Conditioned on SL = N processes is irreducible and
therefore ergodic with unique stationary measure πL,N .

• Spatially homogeneous systems such that the marginal
distributions πL,N [ηx ∈ .] are identical for all x ∈ Λ.

CONDENSATION
• Maximum occupation ML(η) := maxx∈Λ ηx.
• A stochastic particle system with canonical measures
πL,N on XL with L ≥ 2 exhibits condensation if

lim
K→∞

lim
N→∞

πL,N [ML ≥ N −K]→ 1 . (3)

• Condensation is equivalent to the convergence of

lim
N→∞

ZL,N
w(N)

= L

( ∞∑
n=0

w(n)

)L−1

∀L ≥ 2 . (4)

SUFFICIENT CONDITIONS
Condensation occurs if either of the following hold

• sup1≤k≤n/2
w(n−k)
w(n) ≤ K ∈ (0,∞), or

• w(n) = e−nψ(n),
where ψ(x) is a smooth function on R with ψ(x) ↘ 0
and x2|ψ′(x)| ↗ ∞ as x→∞, and∫∞

0
dx e−

1
2x

2|ψ′(x)| <∞.

PRODUCT STRUCTURE
Definition

• µ(L(f)) =
∑
η∈S µ(η)Lf(η) = 0 for all f ∈ C(XL).

The canonical ensemble

State
space XL,N =

{
η ∈ S :

∑
ηx = N

}
Stationary
measure πL,N [η] =

∏
x∈ΛL

w(ηx)

ZL,N

Partition
function ZL,N =

∑∏
x∈ΛL

w(ηx)

Site
marginals πL,N [η1 = n] =

w(n)ZL−1,N−n

ZL,N

MISANTHROPE & MONOTONICITY
• Transition rates c(η, ηx,y) = r(ηx, ηy)p(x, y) [1].
• Stationary measures if translation invariant dynamics
p(x, y) = q(x − y) and for all n ≥ 1 and m ≥ 0 the
rates satisfy

r(n,m)

r(m+ 1, n− 1)
=

r(n, 0)r(1,m)

r(m+ 1, 0)r(1, n− 1)
.

• Monotone if and only if r(n,m) ≤ r(n + 1,m) and
r(n,m) ≥ r(n,m+1) [2], see coupling example below

• (ηt)t≥0 monotone, if η0 ≤ ξ0 implies ηt ≤ ξt for all
t ≥ 0.

• The existence of a coupling implies monotonicity.
• Monotonicity implies the stationary measures are

stochastically ordered, i.e. πL,N ≤ πL,N+1.

OVERSHOOT: TEST FUNCTION AND BACKGROUND DENSITY

• HL(N) :=
ZL,N

w(N)
1

Lz(1)L−1 , monotonicity implies HL(N) ≤ HL(N + 1) for all N ∈ N.

• Background density RbgL (N) := 1
L−1πL,N (N −ML), monotonicity implies RbgL (N) ≤ RbgL (N + 1) for all N ∈ N.

Figure: Overshoot and non-monotonicity of the functions HL(N) and RbgL (N) in condensing systems. (Top Left and
Right) Power law tails w(n) ∼ n−b. (Bottom Left and Right) Log-normal tails w(n) ∼ 1

n exp(−(log(n))2).

EXAMPLES OF CONDENSATION
In addition to power law and log-normal tails, condensa-
tion also occurs if the weights are of the following form
[3]:

• Stretched exponential w(n) ∼ exp(−nγ) where γ ∈
(0, 1).
• Almost exponential w(n) ∼ exp(−n/(log(n))β)

where β > 0.
• Log-gamma w(n) ∼ (log(n))α−1nβ−1 where α > 0

and β > 1.

THE CHIPPING MODEL
• Particles ‘chip’ at rate w > 0 and blocks jump at rate 1.
• Condensation with critical density ρc(w) ∼

√
w [4].

• Process does not exhibit
stationary product mea-
sures.
• Constructing of a basic

coupling implies mono-
tonicity of the process.

PREVIOUS WORK
• Condensation on finite lattices with power law tails [5].
• Non-monotonicity of condensing zero-range processes

with stationary product measures [6].
• Non-monotonicity of condensing Misanthrope process

[7].
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