Condensation and Monotone Particle Systems

Pioneering research and skills

Paul Chleboun \& Stefan Grosskinsky

WWW.WARWICK.AC.UK/TRAFFERTY

T.RAFFERTY@WARWICK.AC.UK

Theorem

Consider a spatially homogeneous stochastic particle system as defined by Eq. (2), which exhibits condensation as defined by Eq. (3), and has stationary product measures. If we have finite critical density,

$$
\begin{equation*}
\rho_{c}:=\frac{1}{z(1)} \sum_{n=0}^{\infty} n w(n)<\infty \quad \text { where } \quad z(1):=\sum_{n=0}^{\infty} w(n), \tag{1}
\end{equation*}
$$

then the canonical measures, $\pi_{L, N}$, are not stochastically ordered and the process is necessarily not monotone. The same is true if the finite mean assumption is replaced by the assumption that $w(n)=n^{-b} f(n), w(0)=1$ and $f(n) \rightarrow c \in(0, \infty)$ as $n \rightarrow \infty$ with $b \in(3 / 2,2]$, i.e. $\rho_{c}=\infty$

DEFINITIONS AND background

- Finite lattices $\Lambda=\{1, \ldots, L\}$.

- State space $X_{L}=\mathbb{N}^{L}$
- Configurations $\eta \in X_{L}, \eta_{x} \in \mathbb{N} \forall x \in \Lambda$.
- Jump rates $c(\eta, \xi) \geq 0$ from configurations $\eta \rightarrow \xi$
- $f \in C\left(X_{L}\right)$, generator given by

$$
\begin{equation*}
\mathcal{L} f(\eta)=\sum_{\left\{\xi \in X_{L}: \xi \neq \eta\right\}} c(\eta, \xi)(f(\xi)-f(\eta)) \tag{2}
\end{equation*}
$$

- Conserved quantity $S_{L}(\eta):=\sum_{x \in \Lambda} \eta_{x}$
- Conditioned on $S_{L}=N$ processes is irreducible and therefore ergodic with unique stationary measure $\pi_{L, N}$
- Spatially homogeneous systems such that the marginal distributions $\pi_{L, N}\left[\eta_{x} \in.\right]$ are identical for all $x \in \Lambda$.

Condensation

- Maximum occupation $M_{L}(\eta):=\max _{x \in \Lambda} \eta_{x}$
- A stochastic particle system with canonical measures $\pi_{L, N}$ on X_{L} with $L \geq 2$ exhibits condensation if

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \lim _{N \rightarrow \infty} \pi_{L, N}\left[M_{L} \geq N-K\right] \rightarrow 1 \tag{3}
\end{equation*}
$$

- Condensation is equivalent to the convergence of

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{Z_{L, N}}{w(N)}=L\left(\sum_{n=0}^{\infty} w(n)\right)^{L-1} \forall L \geq 2 . \tag{4}
\end{equation*}
$$

Sufficient Conditions

Condensation occurs if either of the following hold

- $\sup _{1 \leq k \leq n / 2} \frac{w(n-k)}{w(n)} \leq K \in(0, \infty)$, or
- $w(n)=e^{-n \psi(n)}$,
where $\psi(x)$ is a smooth function on \mathbb{R} with $\psi(x) \searrow 0$ and $x^{2}\left|\psi^{\prime}(x)\right| \nearrow \infty$ as $x \rightarrow \infty$, and $\int_{0}^{\infty} d x e^{-\frac{1}{2} x^{2}\left|\psi^{\prime}(x)\right|}<\infty$.

Product Structure

Definition

- $\mu(\mathcal{L}(f))=\sum_{\eta \in S} \mu(\eta) \mathcal{L} f(\eta)=0$ for all $f \in C\left(X_{L}\right)$ The canonical ensemble

State space	$X_{L, N}=\left\{\eta \in S: \sum \eta_{x}=N\right\}$
Stationary measure	$\pi_{L, N}[\eta]=\frac{\prod_{x \in \Lambda_{L}} w\left(\eta_{x}\right)}{Z_{L, N}}$
Partition function	$Z_{L, N}=\sum \prod_{x \in \Lambda_{L}} w\left(\eta_{x}\right)$
Site marginals	$\pi_{L, N}\left[\eta_{1}=n\right]=\frac{w(n) Z_{L-1, N-n}}{Z_{L, N}}$

Misanthrope \& Monotonicity

- Transition rates $c\left(\eta, \eta^{x, y}\right)=r\left(\eta_{x}, \eta_{y}\right) p(x, y)$ [1] - Stationary measures if translation invariant dynamic $p(x, y)=q(x-y)$ and for all $n \geq 1$ and $m \geq 0$ the rates satisfy

$$
\frac{r(n, m)}{r(m+1, n-1)}=\frac{r(n, 0) r(1, m)}{r(m+1,0) r(1, n-1)}
$$

- Monotone if and only if $r(n, m) \leq r(n+1, m)$ and $r(n, m) \geq r(n, m+1)$ [2], see coupling example below

- $\left(\eta_{t}\right)_{t \geq 0}$ monotone, if $\eta_{0} \leq \xi_{0}$ implies $\eta_{t} \leq \xi_{t}$ for all $t \geq 0$.
- The existence of a coupling implies monotonicity
- Monotonicity implies the stationary measures are stochastically ordered, i.e. $\pi_{L, N} \leq \pi_{L, N+1}$

Overshoot: Test Function and Background Density

- $H_{L}(N):=\frac{Z_{L, N}}{w(N)} \frac{1}{L z(1)^{L-1}}$, monotonicity implies $H_{L}(N) \leq H_{L}(N+1)$ for all $N \in \mathbb{N}$.
- Background density $R_{L}^{b g}(N):=\frac{1}{L-1} \pi_{L, N}\left(N-M_{L}\right)$, monotonicity implies $R_{L}^{b g}(N) \leq R_{L}^{b g}(N+1)$ for all $N \in \mathbb{N}$.

Figure: Overshoot and non-monotonicity of the functions $H_{L}(N)$ and $R_{L}^{b g}(N)$ in condensing systems. (Top Left and Right) Power law tails $w(n) \sim n^{-b}$. (Bottom Left and Right) Log-normal tails $w(n) \sim \frac{1}{n} \exp \left(-(\log (n))^{2}\right)$.

EXAMPLES OF CONDENSATION

In addition to power law and log-normal tails, condensation also occurs if the weights are of the following form [3]:

- Stretched exponential $w(n) \sim \exp \left(-n^{\gamma}\right)$ where $\gamma \in$ (0,1).
- Almost exponential $w(n) \sim \exp \left(-n /(\log (n))^{\beta}\right)$ where $\beta>0$.
- Log-gamma $w(n) \sim(\log (n))^{\alpha-1} n^{\beta-1}$ where $\alpha>0$ and $\beta>1$.

The Chipping Model

- Particles 'chip' at rate $w>0$ and blocks jump at rate 1. - Condensation with critical density $\rho_{c}(w) \sim \sqrt{w}$ [4].
- Process does not exhibit
stationary product measures.
- Constructing of a basic coupling implies monotonicity of the process.

Previous Work

- Condensation on finite lattices with power law tails [5]
- Non-monotonicity of condensing zero-range processes with stationary product measures [6].
- Non-monotonicity of condensing Misanthrope process [7].

References

[1] C Cocozza-Thivent, Z. Wahrscheinlichkeitstheorie 70 (1985), no. 4, 509-528.
[2] T Gobron and E Saada, Ann. I. H. Poincare-PR 46 (2010), no. 4, 1132-1177
[3] C M Goldie and C Klüppelberg, 1998, pp. 453-459 Birkhäuser.
[4] S N Majumdar, S Krishnamurthy, and M Barma, Journal of Statistical Physics 99, no. 1-2, 1-29 (en).
[5] P A Ferrari, C Landim, and V Sisko, J. Stat. Phys. 128 (2007), no. 5, 1153-1158.
[6] P Chleboun and S Grosskinsky, J.Stat. Phys. 140 (2010), no. 5, 846-872.
[7] B Waclaw and M R Evans, Phys. Rev. Lett. 108(7):070601, 2012.

