

THEOREM

Consider a spatially homogeneous stochastic particle system as defined by Eq. (2), which exhibits condensation as defined by Eq. (3), and has stationary product measures. If we have finite critical density,

$$\rho_c := \frac{1}{z(1)} \sum_{n=0}^{\infty} n w(n) < \infty \qquad \mathbf{v}$$

then the canonical measures, $\pi_{L,N}$, are not stochastically ordered and the process is necessarily not monotone. The same is true if the finite mean assumption is replaced by the assumption that $w(n) = n^{-b} f(n)$, w(0) = 1 and $f(n) \to c \in (0,\infty)$ as $n \to \infty$ with $b \in (3/2,2]$, *i.e.* $\rho_c = \infty$.

DEFINITIONS AND BACKGROUND

- Finite lattices $\Lambda = \{1, \dots, L\}$.
- State space $X_L = \mathbb{N}^L$.
- Configurations $\eta \in X_L, \eta_x \in \mathbb{N} \ \forall x \in \Lambda$.
- Jump rates $c(\eta, \xi) \ge 0$ from configurations $\eta \to \xi$.
- $f \in C(X_L)$, generator given by

$$\mathcal{L}f(\eta) = \sum_{\{\xi \in X_L : \xi \neq \eta\}} c(\eta, \xi) \left(f(\xi) - f(\eta) \right) .$$
(2)

- Conserved quantity $S_L(\eta) := \sum_{x \in \Lambda} \eta_x$.
- Conditioned on $S_L = N$ processes is irreducible and therefore ergodic with unique stationary measure $\pi_{L,N}$.
- Spatially homogeneous systems such that the marginal distributions $\pi_{L,N}[\eta_x \in .]$ are identical for all $x \in \Lambda$.

CONDENSATION

- Maximum occupation $M_L(\eta) := \max_{x \in \Lambda} \eta_x$.
- A stochastic particle system with canonical measures $\pi_{L,N}$ on X_L with $L \geq 2$ exhibits condensation if

$$\lim_{K \to \infty} \lim_{N \to \infty} \pi_{L,N} [M_L \ge N - K] \to 1.$$
 (3)

• Condensation is equivalent to the convergence of

$$\lim_{N \to \infty} \frac{Z_{L,N}}{w(N)} = L\left(\sum_{n=0}^{\infty} w(n)\right)^{L-1} \forall L \ge 2.$$
(4)

SUFFICIENT CONDITIONS

Condensation occurs if either of the following hold

• $\sup_{1 \le k \le n/2} \frac{w(n-k)}{w(n)} \le K \in (0,\infty)$, or

•
$$w(n) = e^{-n\psi(n)}$$
,

where $\psi(x)$ is a smooth function on \mathbb{R} with $\psi(x) \searrow 0$ and $x^2 |\psi'(x)| \nearrow \infty$ as $x \to \infty$, and $\int_{0}^{\infty} dx \, e^{-\frac{1}{2}x^{2}|\psi'(x)|} < \infty.$

THOMAS RAFFERTY PAUL CHLEBOUN & STEFAN GROSSKINSKY WWW.WARWICK.AC.UK/TRAFFERTY T.RAFFERTY@WARWICK.AC.UK

where z

$$x(1) := \sum_{n=0}^{\infty} w(n)$$

PRODUCT STRUCTURE

Definition

•
$$\mu(\mathcal{L}(f)) = \sum_{\eta \in S} \mu(\eta) \mathcal{L}f(\eta) = 0$$
 for all $f \in C(X_L)$.

The canonical ensemble

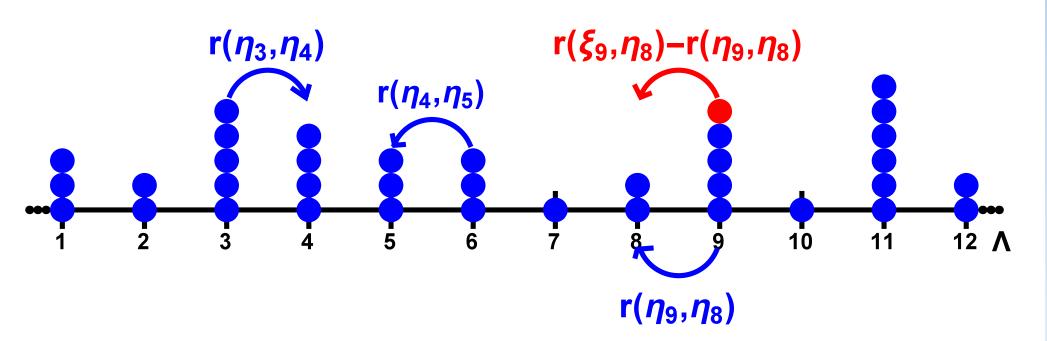
State	$X_{L,N} = \{\eta \in S : \sum \eta_x = N\}$
space	$\prod_{x \in L, N} = \{\eta \subset D : \sum_{x \in I} \eta_x = N \}$
Stationary	$\pi_{L,N}[\eta] = \frac{\prod_{x \in \Lambda_L} w(\eta_x)}{Z_{L,N}}$
measure	$ \qquad \qquad$
Partition	$\overline{7} = \sum \prod au(m)$
function	$Z_{L,N} = \sum \prod_{x \in \Lambda_L} w(\eta_x)$
Site	$\pi_{L,N}[\eta_1 = n] = \frac{w(n)Z_{L-1,N-n}}{Z_{L,N}}$
marginals	$\begin{bmatrix} nL, N \begin{bmatrix} n \\ 1 \end{bmatrix} - \begin{bmatrix} n \\ 2 \end{bmatrix} = \begin{bmatrix} Z_{L,N} \end{bmatrix}$

MISANTHROPE & MONOTONICITY

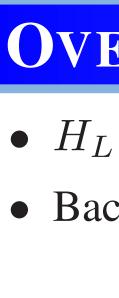
- Transition rates $c(\eta, \eta^{x,y}) = r(\eta_x, \eta_y)p(x, y)$ [1].
- Stationary measures if translation invariant dynamics p(x,y) = q(x-y) and for all $n \ge 1$ and $m \ge 0$ the rates satisfy

$$\frac{r(n,m)}{r(m+1,n-1)} = \frac{r(n,0)r(1,m)}{r(m+1,0)r(1,n-1)} \,.$$

• Monotone if and only if $r(n,m) \leq r(n+1,m)$ and $r(n,m) \ge r(n,m+1)$ [2], see coupling example below



- $(\eta_t)_{t>0}$ monotone, if $\eta_0 \leq \xi_0$ implies $\eta_t \leq \xi_t$ for all $t \ge 0.$
- The existence of a coupling implies monotonicity.
- Monotonicity implies the stationary measures are stochastically ordered, *i.e.* $\pi_{L,N} \leq \pi_{L,N+1}$.



(1)

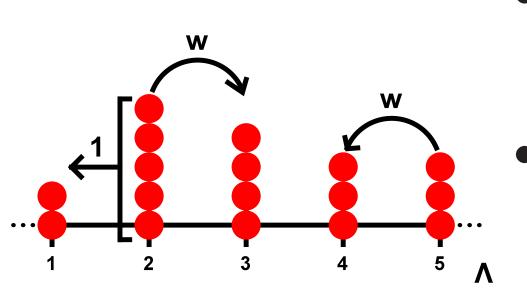
Figure: Overshoot and non-monotonicity of the functions $H_L(N)$ and $R_L^{bg}(N)$ in condensing systems. (Top Left and Right) Power law tails $w(n) \sim n^{-b}$. (Bottom Left and Right) Log-normal tails $w(n) \sim \frac{1}{n} \exp(-(\log(n))^2)$.

EXAMPLES OF CONDENSATION

In addition to power law and log-normal tails, condensation also occurs if the weights are of the following form [3]:

- (0, 1).

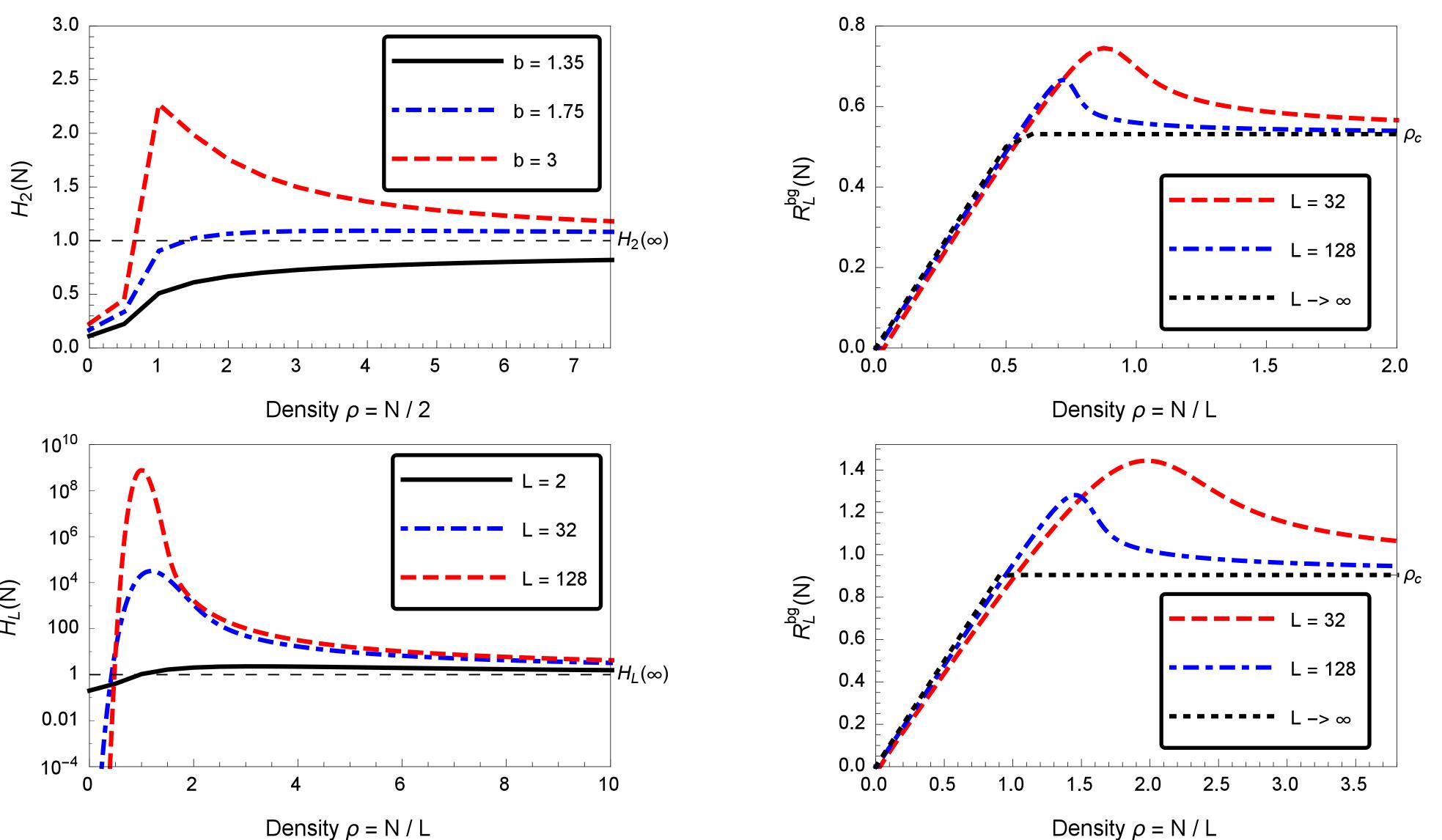
THE CHIPPING MODEL



CONDENSATION AND MONOTONE PARTICLE SYSTEMS

OVERSHOOT: TEST FUNCTION AND BACKGROUND DENSITY

• $H_L(N) := \frac{Z_{L,N}}{w(N)} \frac{1}{Lz(1)^{L-1}}$, monotonicity implies $H_L(N) \le H_L(N+1)$ for all $N \in \mathbb{N}$. • Background density $R_L^{bg}(N) := \frac{1}{L-1} \pi_{L,N}(N - M_L)$, monotonicity implies $R_L^{bg}(N) \le R_L^{bg}(N+1)$ for all $N \in \mathbb{N}$.



• Stretched exponential $w(n) \sim \exp(-n^{\gamma})$ where $\gamma \in$

• Almost exponential $w(n) \sim \exp(-n/(\log(n))^{\beta})$ where $\beta > 0$.

• Log-gamma $w(n) \sim (log(n))^{\alpha-1} n^{\beta-1}$ where $\alpha > 0$ and $\beta > 1$.

• Particles 'chip' at rate w > 0 and blocks jump at rate 1. • Condensation with critical density $\rho_c(w) \sim \sqrt{w}$ [4].

- Process does not exhibit stationary product measures.
- Constructing of a basic coupling implies monotonicity of the process.

PREVIOUS WORK

- [7]

REFERENCES

[1] C Cocozza-Thivent, Z. Wahrscheinlichkeitstheorie 70 (1985), no. 4, 509-528. [2] T Gobron and E Saada, Ann. I. H. Poincare-PR 46 (2010), no. 4, 1132-1177. [3] C M Goldie and C Klüppelberg, 1998, pp. 453-459 Birkhäuser. [4] S N Majumdar, S Krishnamurthy, and M Barma, Journal of Statistical Physics 99, no. 1-2, 1-29 (en). [5] P A Ferrari, C Landim, and V Sisko, J. Stat. Phys. 128 (2007), no. 5, 1153-1158. [6] P Chleboun and S Grosskinsky, J.Stat. Phys. 140 (2010), no. 5, 846-872. [7] B Waclaw and M R Evans, Phys. Rev. Lett., 108(7):070601, 2012.

THE UNIVERSITY OF WARWICK

• Condensation on finite lattices with power law tails [5]. • Non-monotonicity of condensing zero-range processes with stationary product measures [6].

• Non-monotonicity of condensing Misanthrope process