
Entropy Production in Small Systems
A study of the Jarzynski equality

Author: Robert Eyre Supervisor: Prof. Ian Ford

Department of Physics and Astronomy
University College London

5th March 2013

Robert Eyre (University College London) Entropy Production in Small Systems 5th March 2013 1 / 19



Outline

1 The Jarzynski Equality

2 Systems with Feedback Control

3 Non-isothermal Systems

4 Summary

Robert Eyre (University College London) Entropy Production in Small Systems 5th March 2013 2 / 19



Outline

1 The Jarzynski Equality

2 Systems with Feedback Control

3 Non-isothermal Systems

4 Summary

Robert Eyre (University College London) Entropy Production in Small Systems 5th March 2013 2 / 19



Outline

1 The Jarzynski Equality

2 Systems with Feedback Control

3 Non-isothermal Systems

4 Summary

Robert Eyre (University College London) Entropy Production in Small Systems 5th March 2013 2 / 19



Outline

1 The Jarzynski Equality

2 Systems with Feedback Control

3 Non-isothermal Systems

4 Summary

Robert Eyre (University College London) Entropy Production in Small Systems 5th March 2013 2 / 19



The Jarzynski Equality

Outline

1 The Jarzynski Equality

2 Systems with Feedback Control

3 Non-isothermal Systems

4 Summary

Robert Eyre (University College London) Entropy Production in Small Systems 5th March 2013 3 / 19



The Jarzynski Equality

The Jarzynski Equality

φ(x , λ(t)) - conservative potential, x - position, λ(t) - time dependent protocol.
Work done from t = 0 to t = τ :

∆W =

∫ τ

0

∂φ(x , λ(t))

∂λ

dλ(t)
dt

dt (1)

β = 1/kBT , kB - Boltzmann’s constant, T - constant environment temperature,
∆F - change in Helmholtz free energy. Jarzynski equality:〈

e−β∆W
〉

= e−β∆F (2)

From Jensen’s inequality 〈exp(z)〉 ≥ exp 〈z〉:

〈∆W 〉 ≥ ∆F (3)

c.f. ∆W ≥ ∆F .

Robert Eyre (University College London) Entropy Production in Small Systems 5th March 2013 4 / 19



The Jarzynski Equality

The Jarzynski Equality

φ(x , λ(t)) - conservative potential, x - position, λ(t) - time dependent protocol.
Work done from t = 0 to t = τ :

∆W =

∫ τ

0

∂φ(x , λ(t))

∂λ

dλ(t)
dt

dt (1)

β = 1/kBT , kB - Boltzmann’s constant, T - constant environment temperature,
∆F - change in Helmholtz free energy. Jarzynski equality:〈

e−β∆W
〉

= e−β∆F (2)

From Jensen’s inequality 〈exp(z)〉 ≥ exp 〈z〉:

〈∆W 〉 ≥ ∆F (3)

c.f. ∆W ≥ ∆F .

Robert Eyre (University College London) Entropy Production in Small Systems 5th March 2013 4 / 19



The Jarzynski Equality

The Jarzynski Equality

φ(x , λ(t)) - conservative potential, x - position, λ(t) - time dependent protocol.
Work done from t = 0 to t = τ :

∆W =

∫ τ

0

∂φ(x , λ(t))

∂λ

dλ(t)
dt

dt (1)

β = 1/kBT , kB - Boltzmann’s constant, T - constant environment temperature,
∆F - change in Helmholtz free energy. Jarzynski equality:〈

e−β∆W
〉

= e−β∆F (2)

From Jensen’s inequality 〈exp(z)〉 ≥ exp 〈z〉:

〈∆W 〉 ≥ ∆F (3)

c.f. ∆W ≥ ∆F .

Robert Eyre (University College London) Entropy Production in Small Systems 5th March 2013 4 / 19



The Jarzynski Equality

The System of Interest

φ(x , λ(t)) = φ(x , κ(t)) = 1
2κ(t)x2. Overdamped Langevin equation:

ẋ =
κ(t)
mγ

x +

(
2kBT
mγ

)1/2

ξ(t) (4)

κ(t) - spring constant, γ - friction coefficient, m - particle mass, ξ(t) - gaussian
white noise: 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = δ(t − t ′).

Cyclic - ∆F = 0. Position at step up is x0, position at step down is x1, so
∆W = 1

2 (κ1 − κ0) x2
0 + 1

2 (κ0 − κ1) x2
1 .
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The Jarzynski Equality

Modelling the System

Dimensionless variables:

t ′ = γt x ′ =

(
κ0

kBT

)1/2

x ξ′(t) = γ−1/2ξ(t) (5)

xn+1 = x(t + ∆t), xn = x(t), small timestep ∆t . Finite difference update:

xn+1 = (1− α(t) ∆t) xn +
√

2α0 ∆t N t+∆t
t (0, 1) (6)

where αi = κi/mγ2, N t+∆t
t (0, 1) - unit normal random variable.

Perform step-up/step-down process for N cycles. Measure dimensionless work
values ∆W ′i = ∆Wi/kBT for each cycle i = 1, . . . ,N. Find average:

〈
e−∆W ′

〉
=

1
N

N∑
i=1

e−∆W ′i (7)
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Systems with Feedback Control

Measurement and Feedback

Maxwell’s demon - takes measurement, applies feedback to system based on
measurement so as to reduce entropy.
Systems with feedback control - converts information into energy.
Applied to our system:

Landauer’s principle - entropy increase associated with information erasure.
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Systems with Feedback Control

Generalization of the Jarzynski Equality

Jarzynski-Sagawa-Ueda equality:〈
e−β(∆W +∆F )

〉
= γE (8)

Efficacy parameter, zero error in measurement:

γE = erf
(√

κ1

2kBT
xa

)
− erf

(√
κ0

2kBT
xa

)
+ 1 (9)

Optimal range, zero error in measurement:

x2
a =

kBT
κ1 − κ0

ln
(
κ1

κ0

)
(10)
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Systems with Feedback Control

Results

α1 Average γE
1.01 1.0017 ± 0.0001 1.0018
1.05 1.0086 ± 0.0008 1.0087
1.10 1.0169 ± 0.0015 1.0171
1.20 1.0336 ± 0.0036 1.0332
1.40 1.0614 ± 0.0077 1.0630
1.75 1.1096 ± 0.0160 1.1087
2.00 1.1410 ± 0.0270 1.1376
4.00 1.2639 ± 0.0878 1.2998
6.00 1.2937 ± 0.0870 1.3964

Table : Results for numerical test of the Jarzynski-Sagawa-Ueda equality, with
α0 = 1.0, ∆t = 10−5, and N = 103.
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Systems with Feedback Control

Optimal Change in Spring Constant
For maximising γE , optimal protocol - step change to κ1. Optimal value of κ1 to change to?
For position x0 at start of cycle, optimal change: κ1(x0) ∝ 1/x2

0 .
Problems - divergent.
Use features of optimal solution:

For zero error in measurement:

γE = erf
(√

κu

2kBT
xa

)
− erf

(√
κ0

2kBT
xa

)
+ erf

(√
κ0

2kBT
xb

)
− erf

(√
κl

2kBT
xb

)
+ 1

(11)

Optimal ranges, zero error in measurement:

x2
a =

kBT
κu − κ0

ln
(
κu

κ0

)
x2

b =
kBT

κ0 − κl
ln
(
κ0

κl

)
(12)
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Systems with Feedback Control

Results

αu Average γE
1.01 1.047 ± 0.007 1.056
1.05 1.054 ± 0.003 1.066
1.10 1.065 ± 0.005 1.077
1.20 1.084 ± 0.006 1.098
1.40 1.117 ± 0.010 1.135
1.75 1.174 ± 0.023 1.188
2.00 1.198 ± 0.033 1.220
4.00 1.362 ± 0.221 1.377
6.00 1.388 ± 0.275 1.461

Table : Results for numerical test of the optical protocol of the
Jarzynski-Sagawa-Ueda equality, with α0 = 1.0, αl = 0.8, ∆t = 10−5, and
N = 103.
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Non-isothermal Systems

Generalization of the Jarzynski Equality

ẋ = −κ(t)
mγ

x +

(
2kBT (x)

mγ

)1/2

ξ(t) (13)

where T (x) = T0
(
1 +

(
κT x2/2kBT0

))
.

The Jarzynski-Tsallis equality for cyclic step-up/step-down non-isothermal
processes: 〈

expq+
(−∆W0→1/kBT0) expq− (−∆W1→0/kBT0)

〉
= 1 (14)

where ∆W0→1 = 1
2 (κ1 − κ0) x2

0 , ∆W1→0 = 1
2 (κ0 − κ1) x2

1 , and

expq(z) = (1 + (1− q) z)
1

1−q (15)

with q± = 1± κT/ (κ1 − κ0).
Non-isothermal finite difference update with dimensionless variables:

xn+1 = (1− α(t) ∆t) xn +
[(

2α0 + αT x2
n

)
∆t
]1/2

N t+∆t
t (0, 1) (16)

where αi = κi/mγ2.
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Non-isothermal Systems

Results

α1 αT Average
1.01 1.005 1.0000 ± 0.0001
1.05 1.025 1.000 ± 0.0011
1.10 1.050 1.000 ± 0.0017
1.20 1.100 0.9996 ± 0.0021
1.40 1.200 1.0008 ± 0.0072
1.75 1.375 0.9963 ± 0.0122
2.00 1.000 1.0016 ± 0.0245
4.00 2.500 1.0019 ± 0.0852
6.00 3.500 1.0157 ± 0.1150

Table : Results for numerical test of the Jarzynski-Tsallis equality, with
α0 = 1.0, ∆t = 10−5, and N = 103.
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Summary

Summary

Jarzynski equality.

Overdamped Langevin equation.

Jarzynski-Sagawa-Ueda equality.

Optimal change in κ.

Jarzynski-Tsallis equality.
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Summary

Outlook

Optimal protocol - experimental work in department.

Errors in measurement.

Jarzynski-Tsallis equality - further confirmation.

Ponmurugan, M. Tsallis statistics generalization of non-equilibrium work
relations. arXiv preprint arXiv:1110.5153 (2011).

Non-isothermal case - Tsallis statistics.

More general non-isothermal processes.
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