Entropy Production in Small Systems A study of the Jarzynski equality

Author: Robert Eyre Supervisor: Prof. Ian Ford

Department of Physics and Astronomy University College London

5th March 2013

< 6 b

■ ► < ■ ► ■ 5th March 2013

1/19

Robert Eyre (University College London) Entropy Production in Small Systems

🚺 The Jarzynski Equality

Systems with Feedback Control

4 Summary

Robert Eyre (University College London)

🚺 The Jarzynski Equality

- Systems with Feedback Control
- 3 Non-isothermal Systems

4 Summary

Robert Eyre (University College London)

🚺 The Jarzynski Equality

Systems with Feedback Control

Non-isothermal Systems

Robert Eyre (University College London)

🚺 The Jarzynski Equality

Systems with Feedback Control

Non-isothermal Systems

Robert Eyre (University College London)

The Jarzynski Equality

Systems with Feedback Control

3 Non-isothermal Systems

4 Summary

The Jarzynski Equality

φ(x, λ(t)) - conservative potential, x - position, λ(t) - time dependent protocol.
 Work done from t = 0 to t = τ:

$$\Delta W = \int_0^\tau \frac{\partial \phi(x, \lambda(t))}{\partial \lambda} \frac{d\lambda(t)}{dt} dt$$
(1)

• $\beta = 1/k_BT$, k_B - Boltzmann's constant, T - constant environment temperature, ΔF - change in Helmholtz free energy. Jarzynski equality:

$$\left\langle e^{-\beta\Delta W}\right\rangle = e^{-\beta\Delta F}$$
 (2)

• From Jensen's inequality $\langle \exp(z) \rangle \ge \exp(z)$:

$$\langle \Delta W \rangle \ge \Delta F$$
 (3)

(日)

c.f. $\Delta W \ge \Delta F$.

The Jarzynski Equality

φ(x, λ(t)) - conservative potential, x - position, λ(t) - time dependent protocol.
 Work done from t = 0 to t = τ:

$$\Delta W = \int_0^\tau \frac{\partial \phi(x,\lambda(t))}{\partial \lambda} \frac{d\lambda(t)}{dt} dt$$
(1)

• $\beta = 1/k_BT$, k_B - Boltzmann's constant, T - constant environment temperature, ΔF - change in Helmholtz free energy. Jarzynski equality:

$$\left\langle e^{-\beta\Delta W}\right\rangle = e^{-\beta\Delta F}$$
 (2)

• From Jensen's inequality $\langle \exp(z) \rangle \ge \exp(z)$:

$$\langle \Delta W \rangle \ge \Delta F$$
 (3)

c.f. $\Delta W \ge \Delta F$.

The Jarzynski Equality

φ(x, λ(t)) - conservative potential, x - position, λ(t) - time dependent protocol.
 Work done from t = 0 to t = τ:

$$\Delta W = \int_0^\tau \frac{\partial \phi(x, \lambda(t))}{\partial \lambda} \frac{d\lambda(t)}{dt} dt$$
(1)

• $\beta = 1/k_BT$, k_B - Boltzmann's constant, T - constant environment temperature, ΔF - change in Helmholtz free energy. Jarzynski equality:

$$\left\langle e^{-\beta\Delta W}\right\rangle = e^{-\beta\Delta F}$$
 (2)

● From Jensen's inequality (exp(z)) ≥ exp (z):

$$\langle \Delta W \rangle \ge \Delta F$$
 (3)

c.f. $\Delta W \geq \Delta F$.

The System of Interest

• $\phi(x,\lambda(t)) = \phi(x,\kappa(t)) = \frac{1}{2}\kappa(t)x^2$. Overdamped Langevin equation:

$$\dot{x} = \frac{\kappa(t)}{m\gamma} x + \left(\frac{2k_BT}{m\gamma}\right)^{1/2} \xi(t)$$
(4)

 $\kappa(t)$ - spring constant, γ - friction coefficient, m - particle mass, $\xi(t)$ - gaussian white noise: $\langle \xi(t) \rangle = 0$ and $\langle \xi(t) \xi(t') \rangle = \delta(t - t')$.

• Cyclic - $\Delta F = 0$. Position at step up is x_0 , position at step down is x_1 , so $\Delta W = \frac{1}{2} (\kappa_1 - \kappa_0) x_0^2 + \frac{1}{2} (\kappa_0 - \kappa_1) x_1^2$.

The System of Interest

• $\phi(x,\lambda(t)) = \phi(x,\kappa(t)) = \frac{1}{2}\kappa(t)x^2$. Overdamped Langevin equation:

$$\dot{x} = \frac{\kappa(t)}{m\gamma} x + \left(\frac{2k_BT}{m\gamma}\right)^{1/2} \xi(t)$$
(4)

 $\kappa(t)$ - spring constant, γ - friction coefficient, *m* - particle mass, $\xi(t)$ - gaussian white noise: $\langle \xi(t) \rangle = 0$ and $\langle \xi(t) \xi(t') \rangle = \delta(t - t')$.

• Cyclic - $\Delta F = 0$. Position at step up is x_0 , position at step down is x_1 , so $\Delta W = \frac{1}{2} (\kappa_1 - \kappa_0) x_0^2 + \frac{1}{2} (\kappa_0 - \kappa_1) x_1^2$.

The System of Interest

• $\phi(x,\lambda(t)) = \phi(x,\kappa(t)) = \frac{1}{2}\kappa(t)x^2$. Overdamped Langevin equation:

$$\dot{x} = \frac{\kappa(t)}{m\gamma} x + \left(\frac{2k_BT}{m\gamma}\right)^{1/2} \xi(t)$$
(4)

 $\kappa(t)$ - spring constant, γ - friction coefficient, *m* - particle mass, $\xi(t)$ - gaussian white noise: $\langle \xi(t) \rangle = 0$ and $\langle \xi(t) \xi(t') \rangle = \delta(t - t')$.

• Cyclic - $\Delta F = 0$. Position at step up is x_0 , position at step down is x_1 , so $\Delta W = \frac{1}{2} (\kappa_1 - \kappa_0) x_0^2 + \frac{1}{2} (\kappa_0 - \kappa_1) x_1^2$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Modelling the System

Dimensionless variables:

$$t' = \gamma t \qquad \qquad \mathbf{x}' = \left(\frac{\kappa_0}{k_B T}\right)^{1/2} \mathbf{x} \qquad \qquad \boldsymbol{\xi}'(t) = \gamma^{-1/2} \boldsymbol{\xi}(t) \tag{5}$$

• $x_{n+1} = x(t + \Delta t), x_n = x(t)$, small timestep Δt . Finite difference update:

$$x_{n+1} = (1 - \alpha(t) \Delta t) x_n + \sqrt{2\alpha_0 \Delta t} N_t^{t+\Delta t} (0, 1)$$
(6)

where $\alpha_i = \kappa_i / m\gamma^2$, $N_t^{t+\Delta t}(0, 1)$ - unit normal random variable.

• Perform step-up/step-down process for *N* cycles. Measure dimensionless work values $\Delta W'_i = \Delta W_i / k_B T$ for each cycle i = 1, ..., N. Find average:

$$\left\langle e^{-\Delta W'} \right\rangle = \frac{1}{N} \sum_{i=1}^{N} e^{-\Delta W'_i}$$
 (7)

Robert Eyre (University College London)

Entropy Production in Small Systems

5th March 2013 6 / 19

Modelling the System

Dimensionless variables:

$$t' = \gamma t \qquad \qquad x' = \left(\frac{\kappa_0}{k_B T}\right)^{1/2} x \qquad \qquad \xi'(t) = \gamma^{-1/2} \xi(t) \tag{5}$$

• $x_{n+1} = x(t + \Delta t), x_n = x(t)$, small timestep Δt . Finite difference update:

$$x_{n+1} = (1 - \alpha(t) \Delta t) x_n + \sqrt{2\alpha_0 \Delta t} N_t^{t+\Delta t} (0, 1)$$
(6)

where $\alpha_i = \kappa_i / m \gamma^2$, $N_t^{t+\Delta t}(0, 1)$ - unit normal random variable.

 Perform step-up/step-down process for N cycles. Measure dimensionless work values ΔW_i = ΔW_i/k_BT for each cycle i = 1,..., N. Find average:

$$\left\langle e^{-\Delta W'} \right\rangle = \frac{1}{N} \sum_{i=1}^{N} e^{-\Delta W'_i}$$
 (7)

Robert Eyre (University College London)

Entropy Production in Small Systems

5th March 2013 6 / 19

Modelling the System

Dimensionless variables:

$$t' = \gamma t \qquad \qquad x' = \left(\frac{\kappa_0}{k_B T}\right)^{1/2} x \qquad \qquad \xi'(t) = \gamma^{-1/2} \xi(t) \tag{5}$$

• $x_{n+1} = x(t + \Delta t), x_n = x(t)$, small timestep Δt . Finite difference update:

$$x_{n+1} = (1 - \alpha(t) \Delta t) x_n + \sqrt{2\alpha_0 \Delta t} N_t^{t+\Delta t} (0, 1)$$
(6)

where $\alpha_i = \kappa_i / m \gamma^2$, $N_t^{t+\Delta t}(0, 1)$ - unit normal random variable.

• Perform step-up/step-down process for *N* cycles. Measure dimensionless work values $\Delta W'_i = \Delta W_i / k_B T$ for each cycle i = 1, ..., N. Find average:

$$\left\langle e^{-\Delta W'} \right\rangle = \frac{1}{N} \sum_{i=1}^{N} e^{-\Delta W'_i}$$
 (7)

Robert Eyre (University College London)

Entropy Production in Small Systems

5th March 2013 6 / 19

The Jarzynski Equality

4 Summary

Robert Eyre (University College London) Entropy Production in Small Systems

- Maxwell's demon takes measurement, applies feedback to system based on measurement so as to reduce entropy.
- Systems with feedback control converts information into energy.
- Applied to our system:

Landauer's principle - entropy increase associated with information erasure.

- Maxwell's demon takes measurement, applies feedback to system based on measurement so as to reduce entropy.
- Systems with feedback control converts information into energy.
- Applied to our system:

Landauer's principle - entropy increase associated with information erasure.

- Maxwell's demon takes measurement, applies feedback to system based on measurement so as to reduce entropy.
- Systems with feedback control converts information into energy.
- Applied to our system:

Landauer's principle - entropy increase associated with information erasure.

3 > < 3 >

• • • • • • • • • •

- Maxwell's demon takes measurement, applies feedback to system based on measurement so as to reduce entropy.
- Systems with feedback control converts information into energy.
- Applied to our system:

• Landauer's principle - entropy increase associated with information erasure.

3 > < 3 >

Jarzynski-Sagawa-Ueda equality:

$$\left\langle e^{-\beta(\Delta W + \Delta F)} \right\rangle = \gamma_E$$
 (8)

Efficacy parameter, zero error in measurement:

$$\gamma_E = \operatorname{erf}\left(\sqrt{\frac{\kappa_1}{2k_BT}} \, x_a\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_0}{2k_BT}} \, x_a\right) + 1 \tag{9}$$

Optimal range, zero error in measurement:

$$x_a^2 = \frac{k_B T}{\kappa_1 - \kappa_0} \ln\left(\frac{\kappa_1}{\kappa_0}\right) \tag{10}$$

< ロ > < 同 > < 回 > < 回 >

Robert Eyre (University College London) Entro

Entropy Production in Small Systems

Jarzynski-Sagawa-Ueda equality:

$$\left\langle e^{-\beta(\Delta W + \Delta F)} \right\rangle = \gamma_E$$
 (8)

• Efficacy parameter, zero error in measurement:

$$\gamma_E = \operatorname{erf}\left(\sqrt{\frac{\kappa_1}{2k_BT}} \, x_a\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_0}{2k_BT}} \, x_a\right) + 1 \tag{9}$$

Optimal range, zero error in measurement:

$$x_a^2 = \frac{k_B T}{\kappa_1 - \kappa_0} \ln\left(\frac{\kappa_1}{\kappa_0}\right) \tag{10}$$

< ロ > < 同 > < 回 > < 回 >

Robert Eyre (University College London)

Entropy Production in Small Systems

Jarzynski-Sagawa-Ueda equality:

$$\left\langle e^{-\beta(\Delta W + \Delta F)} \right\rangle = \gamma_E$$
 (8)

• Efficacy parameter, zero error in measurement:

$$\gamma_E = \operatorname{erf}\left(\sqrt{\frac{\kappa_1}{2k_BT}} \, x_a\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_0}{2k_BT}} \, x_a\right) + 1 \tag{9}$$

Optimal range, zero error in measurement:

$$x_a^2 = \frac{k_B T}{\kappa_1 - \kappa_0} \ln\left(\frac{\kappa_1}{\kappa_0}\right) \tag{10}$$

Results

α_1	Average	γ_E		
1.01	1.0017 ± 0.0001	1.0018		
1.05	1.0086 ± 0.0008	1.0087		
1.10	1.0169 ± 0.0015	1.0171		
1.20	1.0336 ± 0.0036	1.0332		
1.40	1.0614 ± 0.0077	1.0630		
1.75	1.1096 ± 0.0160	1.1087		
2.00	1.1410 ± 0.0270	1.1376		
4.00	1.2639 ± 0.0878	1.2998		
6.00	1.2937 ± 0.0870	1.3964		

Table : Results for numerical test of the Jarzynski-Sagawa-Ueda equality, with $\alpha_0 = 1.0$, $\Delta t = 10^{-5}$, and $N = 10^3$.

3

- For maximising γ_E, optimal protocol step change to κ₁. Optimal value of κ₁ to change to?
- For position x_0 at start of cycle, optimal change: $\kappa_1(x_0) \propto 1/x_0^2$ Problems - divergent.
- Use features of optimal solution:

For zero error in measurement:

$$\gamma_E = \operatorname{erf}\left(\sqrt{\frac{\kappa_U}{2k_BT}} \, x_a\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_0}{2k_BT}} \, x_a\right) + \operatorname{erf}\left(\sqrt{\frac{\kappa_0}{2k_BT}} \, x_b\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_I}{2k_BT}} \, x_b\right) + 1 \tag{11}$$

Optimal ranges, zero error in measurement:

$$x_a^2 = \frac{k_B T}{\kappa_u - \kappa_0} \ln\left(\frac{\kappa_u}{\kappa_0}\right) \qquad \qquad x_b^2 = \frac{k_B T}{\kappa_0 - \kappa_l} \ln\left(\frac{\kappa_0}{\kappa_l}\right)$$

Robert Eyre (University College London)

Entropy Production in Small Systems

- For maximising γ_E, optimal protocol step change to κ₁. Optimal value of κ₁ to change to?
- For position x_0 at start of cycle, optimal change: $\kappa_1(x_0) \propto 1/x_0^2$. Problems - divergent.
- Use features of optimal solution:

For zero error in measurement:

$$\gamma_E = \operatorname{erf}\left(\sqrt{\frac{\kappa_u}{2k_BT}} \, x_a\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_0}{2k_BT}} \, x_a\right) + \operatorname{erf}\left(\sqrt{\frac{\kappa_0}{2k_BT}} \, x_b\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_I}{2k_BT}} \, x_b\right) + 1 \tag{11}$$

Optimal ranges, zero error in measurement:

Robert Eyre (University College London)

Entropy Production in Small Systems

- For maximising γ_E, optimal protocol step change to κ₁. Optimal value of κ₁ to change to?
- For position x_0 at start of cycle, optimal change: $\kappa_1(x_0) \propto 1/x_0^2$. Problems - divergent.
- Use features of optimal solution:

For zero error in measurement:

$$\gamma_E = \operatorname{erf}\left(\sqrt{\frac{\kappa_u}{2k_BT}} \, x_a\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_0}{2k_BT}} \, x_a\right) + \operatorname{erf}\left(\sqrt{\frac{\kappa_0}{2k_BT}} \, x_b\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_l}{2k_BT}} \, x_b\right) + 1$$
(11)

Optimal ranges, zero error in measurement:

$$x_a^2 = \frac{k_B T}{\kappa_u - \kappa_0} \ln\left(\frac{\kappa_u}{\kappa_0}\right) \qquad \qquad x_b^2 = \frac{k_B T}{\kappa_0 - \kappa_I} \ln\left(\frac{\kappa_0}{\kappa_I}\right) \tag{12}$$

Robert Eyre (University College London)

Entropy Production in Small Systems

- For maximising γ_E, optimal protocol step change to κ₁. Optimal value of κ₁ to change to?
- For position x_0 at start of cycle, optimal change: $\kappa_1(x_0) \propto 1/x_0^2$. Problems - divergent.
- Use features of optimal solution:

For zero error in measurement:

$$\gamma_{E} = \operatorname{erf}\left(\sqrt{\frac{\kappa_{u}}{2k_{B}T}} x_{a}\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_{0}}{2k_{B}T}} x_{a}\right) + \operatorname{erf}\left(\sqrt{\frac{\kappa_{0}}{2k_{B}T}} x_{b}\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_{l}}{2k_{B}T}} x_{b}\right) + 1$$
(11)

Optimal ranges, zero error in measurement:

$$x_a^2 = \frac{k_B T}{\kappa_u - \kappa_0} \ln\left(\frac{\kappa_u}{\kappa_0}\right)$$

Robert Eyre (University College London)

Entropy Production in Small Systems

5th March 2013 11 / 19

- For maximising γ_E, optimal protocol step change to κ₁. Optimal value of κ₁ to change to?
- For position x_0 at start of cycle, optimal change: $\kappa_1(x_0) \propto 1/x_0^2$. Problems - divergent.
- Use features of optimal solution:

For zero error in measurement:

$$\gamma_{E} = \operatorname{erf}\left(\sqrt{\frac{\kappa_{u}}{2k_{B}T}} x_{a}\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_{0}}{2k_{B}T}} x_{a}\right) + \operatorname{erf}\left(\sqrt{\frac{\kappa_{0}}{2k_{B}T}} x_{b}\right) - \operatorname{erf}\left(\sqrt{\frac{\kappa_{l}}{2k_{B}T}} x_{b}\right) + 1$$
(11)

Optimal ranges, zero error in measurement:

$$x_a^2 = \frac{k_B T}{\kappa_u - \kappa_0} \ln\left(\frac{\kappa_u}{\kappa_0}\right) \qquad \qquad x_b^2 = \frac{k_B T}{\kappa_0 - \kappa_l} \ln\left(\frac{\kappa_0}{\kappa_l}\right) \qquad (12)$$

Robert Eyre (University College London)

Entropy Production in Small Systems

Results

α_{u}	Average	γ_E		
1.01	1.047 ± 0.007	1.056		
1.05	1.054 ± 0.003	1.066		
1.10	1.065 ± 0.005	1.077		
1.20	1.084 ± 0.006	1.098		
1.40	1.117 ± 0.010	1.135		
1.75	1.174 ± 0.023	1.188		
2.00	1.198 ± 0.033	1.220		
4.00	1.362 ± 0.221	1.377		
6.00	1.388 ± 0.275	1.461		

Table : Results for numerical test of the optical protocol of the Jarzynski-Sagawa-Ueda equality, with $\alpha_0 = 1.0$, $\alpha_l = 0.8$, $\Delta t = 10^{-5}$, and $N = 10^3$.

The Jarzynski Equality

Systems with Feedback Control

Non-isothermal Systems

4 Summary

$$\dot{x} = -\frac{\kappa(t)}{m\gamma}x + \left(\frac{2k_{B}T(x)}{m\gamma}\right)^{1/2}\xi(t)$$
(13)

where $T(x) = T_0 (1 + (\kappa_T x^2/2k_B T_0)).$

The Jarzynski-Tsallis equality for cyclic step-up/step-down non-isothermal processes:

$$\left\langle \exp_{q_{+}}\left(-\Delta W_{0\to 1}/k_{B}T_{0}\right)\exp_{q_{-}}\left(-\Delta W_{1\to 0}/k_{B}T_{0}\right)\right\rangle = 1$$
(14)

where $\Delta W_{0\to 1} = \frac{1}{2} (\kappa_1 - \kappa_0) x_0^2$, $\Delta W_{1\to 0} = \frac{1}{2} (\kappa_0 - \kappa_1) x_1^2$, and

$$\exp_q(z) = (1 + (1 - q)z)^{\frac{1}{1 - q}}$$
 (15)

with $q_{\pm} = 1 \pm \kappa_T / (\kappa_1 - \kappa_0)$.

Non-isothermal finite difference update with dimensionless variables:

$$x_{n+1} = (1 - \alpha(t) \Delta t) x_n + \left[\left(2\alpha_0 + \alpha_T x_n^2 \right) \Delta t \right]^{1/2} N_t^{t+\Delta t}(0, 1)$$
(16)

where $\alpha_i = \kappa_i / m \gamma^2$.

Robert Eyre (University College London)

Entropy Production in Small Systems

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

 $\dot{x} = -\frac{\kappa(t)}{m\gamma}x + \left(\frac{2k_{B}T(x)}{m\gamma}\right)^{1/2}\xi(t)$ (13)

where $T(x) = T_0 (1 + (\kappa_T x^2 / 2k_B T_0)).$

 The Jarzynski-Tsallis equality for cyclic step-up/step-down non-isothermal processes:

$$\left\langle \exp_{q_{+}}\left(-\Delta W_{0\to 1}/k_{B}T_{0}\right)\exp_{q_{-}}\left(-\Delta W_{1\to 0}/k_{B}T_{0}\right)\right\rangle = 1$$
(14)

where $\Delta W_{0\to 1} = \frac{1}{2} (\kappa_1 - \kappa_0) x_0^2$, $\Delta W_{1\to 0} = \frac{1}{2} (\kappa_0 - \kappa_1) x_1^2$, and

$$\exp_q(z) = (1 + (1 - q)z)^{\frac{1}{1 - q}}$$
 (15)

with $q_{\pm} = 1 \pm \kappa_T / (\kappa_1 - \kappa_0)$.

Non-isothermal finite difference update with dimensionless variables:

$$x_{n+1} = (1 - \alpha(t) \Delta t) x_n + \left[\left(2\alpha_0 + \alpha_T x_n^2 \right) \Delta t \right]^{1/2} N_t^{t+\Delta t}(0, 1)$$
(16)

where $\alpha_i = \kappa_i / m \gamma^2$.

Robert Eyre (University College London)

Entropy Production in Small Systems

5th March 2013 14 / 19

 $\dot{x} = -\frac{\kappa(t)}{m\gamma}x + \left(\frac{2k_{B}T(x)}{m\gamma}\right)^{1/2}\xi(t)$ (13)

where $T(x) = T_0 (1 + (\kappa_T x^2 / 2k_B T_0)).$

 The Jarzynski-Tsallis equality for cyclic step-up/step-down non-isothermal processes:

$$\left\langle \exp_{q_{+}}\left(-\Delta W_{0\to 1}/k_{B}T_{0}\right)\exp_{q_{-}}\left(-\Delta W_{1\to 0}/k_{B}T_{0}\right)\right\rangle = 1$$
(14)

where $\Delta W_{0\to 1} = \frac{1}{2} (\kappa_1 - \kappa_0) x_0^2$, $\Delta W_{1\to 0} = \frac{1}{2} (\kappa_0 - \kappa_1) x_1^2$, and

$$\exp_q(z) = (1 + (1 - q)z)^{\frac{1}{1 - q}}$$
 (15)

with $q_{\pm} = 1 \pm \kappa_T / (\kappa_1 - \kappa_0)$.

Non-isothermal finite difference update with dimensionless variables:

$$X_{n+1} = (1 - \alpha(t) \Delta t) X_n + \left[\left(2\alpha_0 + \alpha_T X_n^2 \right) \Delta t \right]^{1/2} N_t^{t+\Delta t}(0, 1)$$
(16)

where $\alpha_i = \kappa_i / m \gamma^2$.

Results

α_1	α_T	Average
1.01	1.005	1.0000 ± 0.0001
1.05	1.025	1.000 ± 0.0011
1.10	1.050	1.000 ± 0.0017
1.20	1.100	0.9996 ± 0.0021
1.40	1.200	1.0008 ± 0.0072
1.75	1.375	0.9963 ± 0.0122
2.00	1.000	1.0016 ± 0.0245
4.00	2.500	1.0019 ± 0.0852
6.00	3.500	1.0157 ± 0.1150

Table : Results for numerical test of the Jarzynski-Tsallis equality, with $\alpha_0 = 1.0$, $\Delta t = 10^{-5}$, and $N = 10^3$.

The Jarzynski Equality

Systems with Feedback Control

Jarzynski equality.

• Overdamped Langevin equation.

• Jarzynski-Sagawa-Ueda equality.

• Optimal change in κ .

• Jarzynski-Tsallis equality.

- Jarzynski equality.
- Overdamped Langevin equation.
- Jarzynski-Sagawa-Ueda equality.
- Optimal change in κ .
- Jarzynski-Tsallis equality.

5th March 2013

- Jarzynski equality.
- Overdamped Langevin equation.
- Jarzynski-Sagawa-Ueda equality.
- Optimal change in κ .
- Jarzynski-Tsallis equality.

- Jarzynski equality.
- Overdamped Langevin equation.
- Jarzynski-Sagawa-Ueda equality.
- Optimal change in κ .

• Jarzynski-Tsallis equality.

- Jarzynski equality.
- Overdamped Langevin equation.
- Jarzynski-Sagawa-Ueda equality.
- Optimal change in κ .
- Jarzynski-Tsallis equality.

- Optimal protocol experimental work in department.
- Errors in measurement.
- Jarzynski-Tsallis equality further confirmation.

- Ponmurugan, M. Tsallis statistics generalization of non-equilibrium work relations. arXiv preprint arXiv:1110.5153 (2011).
- Non-isothermal case Tsallis statistics.
- More general non-isothermal processes.

Robert Eyre (University College London)

Entropy Production in Small Systems

5th March 2013

- Optimal protocol experimental work in department.
- Errors in measurement.

• Jarzynski-Tsallis equality - further confirmation.

• Ponmurugan, M. Tsallis statistics generalization of non-equilibrium work relations. arXiv preprint arXiv:1110.5153 (2011).

Non-isothermal case - Tsallis statistics.

More general non-isothermal processes

Robert Eyre (University College London)

Entropy Production in Small Systems

5th March 2013

- Optimal protocol experimental work in department.
- Errors in measurement.
- Jarzynski-Tsallis equality further confirmation.

 Ponmurugan, M. Tsallis statistics generalization of non-equilibrium work relations. arXiv preprint arXiv:1110.5153 (2011).

Non-isothermal case - Tsallis statistics.

More general non-isothermal processes

Robert Eyre (University College London)

Entropy Production in Small Systems

5th March 2013

- Optimal protocol experimental work in department.
- Errors in measurement.
- Jarzynski-Tsallis equality further confirmation.

- Ponmurugan, M. Tsallis statistics generalization of non-equilibrium work relations. arXiv preprint arXiv:1110.5153 (2011).
- Non-isothermal case Tsallis statistics.
- More general non-isothermal processes.

Robert Eyre (University College London)

Entropy Production in Small Systems

5th March 2013 18 / 19

- Optimal protocol experimental work in department.
- Errors in measurement.
- Jarzynski-Tsallis equality further confirmation.

- Ponmurugan, M. Tsallis statistics generalization of non-equilibrium work relations. arXiv preprint arXiv:1110.5153 (2011).
- Non-isothermal case Tsallis statistics.
- More general non-isothermal processes.

Robert Eyre (University College London) Entro

- Optimal protocol experimental work in department.
- Errors in measurement.
- Jarzynski-Tsallis equality further confirmation.

- Ponmurugan, M. Tsallis statistics generalization of non-equilibrium work relations. arXiv preprint arXiv:1110.5153 (2011).
- Non-isothermal case Tsallis statistics.
- More general non-isothermal processes.

< ロ > < 同 > < 回 > < 回 >

Main Sources

- Spinney, R. E. & Ford, I. J. Fluctuation relations: a pedagogical overview. arXiv preprint arXiv:1201.6381 (2012).
- Gardiner, C. W. Stochastic methods: a handbook for the natural and social sciences, vol. 4 (Springer, 2009).
- Jarzynski, C. Nonequilibrium equality for free energy differences. *Physical Review Letters* 78, 2690 (1997).
- Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. *Physical Review E* 60, 2721 (1999).
- Leff, H. & Rex, A. F. Maxwell's Demon 2 Entropy, Classical and Quantum Information, Computing, vol. 2 (Taylor & Francis, 2002).
- Sagawa, T. & Ueda, M. Information thermodynamics: Maxwell's demon in nonequilibrium dynamics. arXiv preprint arXiv:1111.5769 (2011).
- Sagawa, T. & Ueda, M. Generalized jarzynski equality under nonequilibrium feedback control. *Physical review letters* 104, 90602 (2010).
- Tsallis, C. Introduction to nonextensive statistical mechanics: approaching a complex world (Springer, 2009).

-

イロト 不得 トイヨト イヨト