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Abstract

Within this investigation we have considered the Jarzynski equality and its generalisations to both
systems with feedback control and to non-isothermal systems. To explore and confirm all results, we
have modelled the system of a single classical particle, in one dimension trapped in a harmonic potential
and in thermal contact with an overdamped langevin heat bath, undergoing a cyclic work process of a
step up and step down in spring constant. For feedback control systems, we considered the maximisation
of the efficacy parameter within the Sagawa-Ueda generalisation of the Jarzynski equality, where the
feedback for our system involves either changing or not changing the spring constant of the potential
dependent on what the position of the particle is at the start of the process. We have found that changing
the spring constant for a longer amount of time allows for a greater value in the efficacy parameter. Also,
we have confirmed the expected result that the greater the error in the measurement that the feedback
is based on, the lower the efficacy parameter becomes. Lastly for this generalisation, we considered the
characteristics of the optimal value in spring constant to change to: specifically, an increase for position
close to the centre of the potential, a decrease when far from the centre, and remaining the same otherwise.
Numerical results from modelling these characteristics indeed show an increase in the value of the efficacy
parameter. Finally, we have shown that, for the same cyclic step process, the Jarzynski equality takes
on a different generalisation in terms of Tsallis q-exponentials when considering non-isothermal systems.
Numerical results confirm this new equality. We have also examined the Tsallis distributions that arise in
the process for non-isothermal systems, and shown how the Crooks work relation can also be generalised
in this case when considering a simple single step process. Numerical modelling implies a correlation to
the theoretical prediction in this case, but further numerical confirmation is required.
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Chapter 1

Introduction

The laws of Physics and their consequences are often frought with controversies. Certainly one of the
oldest of these is the second law of thermodynamics and the irreversible nature of processes that arises
as a consequence of it. The second law stated in its most general and applicable form is that there exists
an extensive quantity called entropy, which we shall label S, that never decreases for any process [2].
Mathematically, this can be stated as

∆S ≥ 0 (1.1)

where the equality only occurs for reversible (i.e. quasistatic) processes.
The second law is considered by many to be the strongest of the physical laws. Many quotations can

be found to echo that of Eddington, who stated “The law that entropy always increases . . . holds, I think,
the supreme position among the laws of Nature.” (from P74 of [3]). However, this often prevalent opinion
has not prevented the creation of many challenges to the second law. One such challenge, principally
directed at Boltzmann’s H-theorem, is Loschmidt’s paradox [4] [5]. This paradox is concerned with the
existence of irreversibility, which results from the second law as any process tracing a path through phase
space that involves an increase in entropy, cannot be time-reversed to follow that path back as it would
involve a decrease in entropy. The paradox essentially states that it does not make sense for irreversible
behaviour to arise from microscopic dynamics that are deterministic and therefore must be reversible.
The laws of deterministic dynamics are, after all, symmetric in time.

Boltzmann himself, as well as others, formulated arguments defending the second law against this
paradox. However, in the last few decades, relations acting as statements of the second law have emerged
that reconcile the second law with the contents of this paradox. These are the fluctuation theorems. In
their most general form, the fluctuation theorems act as expressions detailing the likelihood of observing
time-reversed trajectories in phase space which therefore violate the second law [6]. The nature of their
derivations brings reconciliation with Loschmidt’s paradox, and their forms as analytical expressions
shine new light on the second law itself. They also serve an immense practical purpose, as they are some
of the few relations which are valid arbitrarily far from equilibrium.

One particular fluctuation theorem of great importance is the Jarzynski equality. This equality acts
as a strict statistical statement of the second law for work processes. Not only does it allow for greater
exploration of the nature of entropy production for small systems undergoing these processes, but it also
serves immense practical purpose due to the type of process it concerns. The purpose of this report and
the investigation it details is to consider the Jarzynski equality, and to explore theoretical generalisations
of this equality in various different circumstances, comparing all results against numerical modelling.

The second section of this report will introduce the fluctuation theorems by considering a formal
derivation, before deriving the Jarzynski equality itself. We will then proceed to define the system upon
which all our considerations and modelling takes place, which is that of a classical particle trapped in
a harmonic potential and in thermal contact with a langevin heat bath. Lastly, for this section we will
then show how the Jarzynski equality with respect to this system can be modelled, and compare the
results of such modelling to the theoretical prediction.

In the third section of this report, we will consider another challenge to the second law: the famous
Maxwell’s demon [7] [8]. A pictoral representation of the demon is present on the title page for this report.
In essence, Maxwell’s demon states that by introducing an intelligence to the system, the demon, that
is aware of what is happening in the system and makes changes to the system based in this awareness,
we can decrease the entropy of the system. The solution to this problem has been found, and Maxwell’s
demon manages to strengthen the second law. However, it is still a worthy subject to consider, as it
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will be shown that, through the application of Maxwell’s demon through feedback control, the Jarzynski
equality takes on a generalised form involving a constant known as the efficacy parameter which allows
us to explore the relations between information from the demon’s measurements on the system and
the free energy within the system. Thus, section three is concerned with exploring this form further
and comparing all theoretical results against those of numerical modelling. We build on work already
completed to explore the effect that specific changes in the system, errors in the measurements, and
changing the time for which changes are applied have on the efficacy parameter. By doing so, we lay
a theoretical and numerical grounding for experimental work into these kinds of systems, allowing for
greater efficiency in the application of feedback control by maximising the efficacy parameter.

Finally, in section four we will show that, when considering non-isothermal systems, we can derive
a new generalisation in a form involving very different statistics to the traditional Maxwell-Boltzmann
distributions. As with all other cases, we will also look into numerical work in an effort to confirm the
new relation. Then we finish by exploring further the unusual statistics of the system and how they
apply to another fluctuation theorem related to the Jarzynski equality: the Crooks work relation.
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Chapter 2

The Jarzynski Equality

2.1 The Fluctuation Theorems

To give a better understanding of the fluctuation theorems it is informative to consider the derivation
of one of the most general of them. What follows will be a slightly simplified version of the derivation
found in [9]. Alternate versions of this same style of derivation, alternate styles of derivations entirely,
and derivations of other less general fluctuation theorems can be found in [9], [6], [10], [11], and [12].

We consider a path X(t) through phase space, under a protocol λ(t) defining the process occuring
between times t = 0 and t = τ . We define a time reversal operator T̂ . For instance, for position x,
momentum p, and protocol λ, we would have operations T̂ x = x, T̂ p = −p, and T̂ λ = λ. For our path
and protocol, we then define the time reversal quantities as

X̄(t) = T̂X(τ − t) (2.1)

λ̄(t) = λ(τ − t) (2.2)

where we indicate the time reversal values with a bar, and note that time reversal does not change the
form of the protocol.

We can define a measure of the irreversibility I[X] of the path as

I[X] = ln

[
PF [X]

PR[X̄]

]
(2.3)

where PF [. . .] is the probability dependent on the forward protocol, and PR[. . .] is the probability
dependent on the reverse protocol. We can see from the form of the irreversibility that it becomes
increasingly positive as the forward trajectory becomes more likely, increasingly negative as the reverse
trajectory becomes more likely, and equals zero when both are equally likely.

Defining the probability of being at the start of the path X(0) as Pstart[X(0)] and the probability of
the path given the starting point X(0) as PF [X(τ)|X(0)], we can write

PF [X] = Pstart[X(0)]PF [X(τ)|X(0)]. (2.4)

We can consider the process as a Markovian process, such that at any given point in time the process
has no dependency on the history of what has happened up to that point, exhibiting stochastic be-
haviour [13] [14]. We can then approximate it as a series of jump processes occuring over discrete time
jumps, and apply the Markov property to get

PF [X] = Pstart[X0]P [X1|X0, λ(t1)]× . . .× P [Xn|Xn−1, λ(tn)] (2.5)

where t0 = 0, tn = τ , and therefore X0 = X(0) and Xn = X(τ).
Defining Pend[X̄(0)] as the probability of being at the end of the path, and applying the same logic

gives

PR[X̄] = T̂Pend[X̄(0)]PR[X̄(τ)|X̄(0)]

= PRstart[X̄(0)]PR[X̄(τ)|X̄(0)]

= PRstart[X̄0]P [X̄1|X̄0, λ̄(t1)]× . . .× P [X̄n|X̄n−1, λ̄(tn)]. (2.6)
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According to (2.1) and (2.2), this is

PR[X̄] = PRstart[T̂Xn]P [T̂Xn−1|T̂Xn, λ(tn)]× . . .× P [T̂X0|T̂X1, λ(t1)]

= Pend[Xn]P [T̂Xn−1|T̂Xn, λ(tn)]× . . .× P [T̂X0|T̂X1, λ(t1)] (2.7)

where we have used PRstart[T̂Xn] = T̂Pend[T̂Xn] = Pend[Xn].
We now see that

ln

[
PF [X]

PR[X̄]

]
= ln

[
Pstart[X(0)]

Pend[X(τ)]

]
+ ln

[
PF [X(τ)|X(0)]

PR[T̂X(0)|T̂X(τ)]

]

= ln

[
Pstart[X0]

Pend[Xn]

n∏
i=1

P [Xi|Xi−1, λ(ti)]

P [T̂Xi−1|T̂Xi, λ(ti)]

]
. (2.8)

To gain an understanding of the physical meaning of I[X], we can consider a certain model. Namely,
the Ornstein-Uhlenbeck process described by the langevin equation [13] [14]

v̇ = −γv + βξ(t) (2.9)

where the process describes a particle with velocity v subject to a deterministic dissipative friction term
with coefficient γ and a random fluctuative noise term with coefficient β. The noise is characterised as
an idealistic gaussian white noise with

〈ξ(t)〉 = 0 (2.10)

〈ξ(t)ξ(t′)〉 = δ(t− t′) (2.11)

where 〈. . .〉 is the expectation value, δ(t− t′) is the Euler delta distribution, and (2.11) means that the
noise has no autocorrelation in time.

According to the fluctuation-dissipation relation, β2 = 2kBTγ/m, where T is the temperature of the
langevin heat bath, m is the mass of the particle, and kB is Boltzmann’s constant. This relation results
from comparing the stationary state probability distributions of the process to the Maxwell-Boltzmann
velocity distribution. We therefore have

v̇ = −γv +

(
2kBT (t)γ

m

)1/2

ξ(t) (2.12)

where we are allowing the temperature to vary with time.
The evolution in time of the probability densities p(v, t) for the process are given by the Fokker-Planck

equation, which for this process is

∂p(v, t)

∂t
=
∂(γvp(v, t))

∂v
+
kBT (t)γ

m

∂2p(v, t)

∂v2
(2.13)

which, for some initial condition v = δ(v − v0) at initial time t0, has time-dependent solution given by
the Ornstein-Uhlenbeck transition probability density

pTOU (v, t|v0, t0) =

√
m

2πkBT (t)
(
1− e−2γ(t−t0)

) exp

(
−

m
(
v − v0e

−γ(t−t0)
)2

2kBT (t)
(
1− e−2γ(t−t0)

)) . (2.14)

(2.14) corresponds to the probability of an Ornstein-Uhlenbeck process ending at value v at time t
occuring given it started at v0 at time t0. Note that, without any loss of generality, we may substitute
probability densities and their associated infinitessimal volumes into (2.8) and cancel the infinitessimal
volumes to give I[X] for continuous stochastic behaviour.

We now need to consider this system with given forward and reverse processes dictated by the
protocol. To do this, we consider that the temperature varies with the protocol, and that the protocol
is simply a step change such that

T (λ(ti)) = Tj ti ∈ [(j − i)∆t, j∆t] (2.15)

5



for integer j where 1 ≤ j ≤ N with N∆t = τ . The path is then a combination of Ornstein-Uhlenbeck
processes characterised by (2.14), and we can consider the continuous langevin behaviour at fixed tem-
perature to be the limit dt = (ti+1 − ti) → 0 of the discrete jump process, so that the path probability
over one such step change is

lim
dt→0

ti=j∆t∏
ti=(j−1)∆t

P [vi|vi−1, λ(ti)] = pTOU (v(j∆t)|v((j − 1)∆t)) dv(j∆t) =

(
m

2πkBTj (1− e−2γ∆t)

)1/2

exp

(
−
m
(
v(j∆t)− v((j − 1)∆t)e−γ∆t

)2
2kBTj (1− e−2γ∆t)

)
dv(j∆t).

(2.16)

Applying the Markov property, the total path probability density over N step changes is then

pF (v(τ)|v(0)) =

N∏
j=1

(
m

2πkBTj (1− e−2γ∆t)

)1/2

exp

(
−
m
(
v(j∆t)− v((j − 1)∆t)e−γ∆t

)2
2kBTj (1− e−2γ∆t)

)
.

(2.17)

For the reverse process, note that T̂ v = −v, so that

pR(−v(0)| − v(τ)) =

N∏
j=1

(
m

2πkBTj (1− e−2γ∆t)

)1/2

exp

(
−
m
(
−v((j − 1)∆t) + v(j∆t)e−γ∆t

)2
2kBTj (1− e−2γ∆t)

)
.

(2.18)

If we write v(j∆t) = vj , and take the logarithm of the ratio of these probability densities, we see the
second term of (2.8) becomes

ln

[
pF (v(τ)|v(0))

pR(−v(0)| − v(τ))

]
= −

N∑
j=1

m

2kBTj

(
v2
j − v2

j−1

)
. (2.19)

This is equal to the sum of negative changes of the kinetic energy of the particle, i.e. a negative flow of
heat −∆Q, scaled by kB and the environment temperature. As our system is a closed system composed
of a particle and an environment, there must therefore be an associated heat flow ∆Qmed into the
environment such that ∆Qmed = −∆Q. The Langevin equation describes the idealisation of a particle
subject to a large equilibrium Langevin heat bath, so that ∆Qmed = T∆S, where ∆S is the entropy
change of the bath. In this case, N step changes in temperature can be seen as equivalent to letting the
particle come in to thermal contact with N different equilibrium heat baths, each with entropy change
∆Sj . Therefore

kB ln

[
pF (v(τ)|v(0))

pR(−v(0)| − v(τ))

]
=

∑
j

∆Qmed,j
Tj

=
∑
j

∆Sj

= ∆Smed (2.20)

where ∆Smed is the total change in entropy for the environment, or medium.
Writing the first part of (2.8) in terms of the probability density solutions to (2.13), we find

ln

[
Pstart[v(0)]

Pend[v(τ)]

]
= ln

[
p(v, 0)

p(v, τ)

]
= − (ln p(v, τ)− ln p(v, 0)) . (2.21)

Defining the mean entropy Ssys of the particle, or system, as a time dependent Gibbs entropy

〈Ssys〉 =

∫
Ssysp(v, t) dv

= SGibbs

= −kB
∫
p(v, t) ln p(v, t) dv (2.22)
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we see that Ssys = −kB ln p(v, t) so that

kB ln

[
Pstart[v(0)]

Pend[v(τ)]

]
= ∆Ssys. (2.23)

Substituting all our relevant expressions into (2.8) gives kBI[X] = ∆Ssys + ∆Smed. However, as our
system is a closed system composed of just the system and the environment, this is

∆Stot[X] = kBI[X] (2.24)

so we see that the irreversibility has physical meaning in being related to the change in total entropy
Stot over the process. Also, note how the change in entropy is dependent on the path and can therefore
be both positive and negative, a fact that we will come back to later.

Further arguments can also be used to show that kBI[X] is indeed the total entropy production, and
that this relation is a general result within stochastic thermodynamics. The reader is referred to [9] for
these arguments.

Returning to the case of a general path X, from (2.24) we see

∆Stot[X] = kB ln

[
pstart(X(0))pF (X(τ)|X(0))

pRstart(X̄(0))pR(X̄(τ)|X̄(0))

]
. (2.25)

We can construct the probability distribution of entropy production over the forward process as

pF (∆Stot[X] = A) =

∫
dX pstart(X(0))pF (X(τ)|X(0))δ(A−∆Stot[X]). (2.26)

We can define a new functional

R[X] = kB ln

[
pRstart(X(0))pR(X(τ)|X(0))

pstart(X̄(0))pF (X̄(τ)|X̄(0))

]
(2.27)

which evaluated over the reverse path is

R[X̄] = kB ln

[
pRstart(X̄(0))pR(X̄(τ)|X̄(0))

pstart(X(0))pF (X(τ)|X(0))

]
= −∆Stot[X]. (2.28)

We can also construct a probability distribution for this over the reverse process

pR(R[X̄] = A) =

∫
dX̄ pRstart(X̄(0))pR(X̄(τ)|X̄(0))δ(A−R[X̄]). (2.29)

Therefore

pR(R[X̄] = −A) =

∫
dX̄ pRstart(X̄(0))pR(X̄(τ)|X̄(0))δ(A+R[X̄]). (2.30)

We now note that dX = dX̄ as the Jacobian is unity so the path integrals are equivalent, that (2.25)
gives the substitution

pRstart(X̄(0))pR(X̄(τ)|X̄(0)) = pstart(X(0))pF (X(τ)|X(0))e−∆Stot[X]/kB , (2.31)

and that R[X̄] = −∆Stot[X], so that we have

pR(R[X̄] = −A) =

∫
dX pstart(X(0))pF (X(τ)|X(0))e−∆Stot[X]/kBδ(A−∆Stot[X])

= e−A/kB
∫
dX pstart(X(0))pF (X(τ)|X(0))δ(A−∆Stot[X])

= e−A/kBpF (∆Stot[X] = A). (2.32)

This gives the Transient Fluctuation Theorem

pF (∆Stot[X] = A)

pR(R[X̄] = −A)
= e

A
kB (2.33)
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which is fundamental and holds for all protocols and initial conditions. This is our most general fluctua-
tion theorem, but is abstract enough to prevent us from seeing the physical implications of the fluctuation
theorems, which is the purpose of this section.

To gain a physical interpretation, we can define an entropy production functional ∆SRtot[X̄] for the
reverse process by comparing the probability for a path under protocol λ̄(t) starting from an initial
distribution pRstart(. . .) which evolves to a final distribution pRend(. . .) to the probability of a path starting

from T̂ pRend(. . .), which gives

∆SRtot[X̄] = kB ln

[
pRstart(X̄(0))pR(X̄(τ)|X̄(0))

T̂ pRend(X(0))pF (X(τ)|X(0))

]
. (2.34)

If we meet the non-general condition pstart(X(0)) = T̂ pRend(X(0)), then R[X̄] = ∆SRtot[X̄], and our
fluctuation theorem becomes

pF (∆Stot[X] = A)

pR(∆SRtot[X̄] = −A)
= e

A
kB . (2.35)

Assuming the arguments of pR(. . .) implicitly describe the quantity over the reverse process, this becomes

pF (∆Stot)

pR(−∆Stot)
= e

∆Stot
kB (2.36)

which holds when the evolution under the forward process followed by the reverse process brings the
system back into the same intitial distribution.

This final result is not the most general fluctuation theorem, but it allows us to gain some physical
perspective about them. We can see that the essential meaning is that we are exponentially more likely
to observe a forward entropy producing trajectory through phase space than we are to observe the time
reversal of that path. If we integrate over all values of A in (2.33), we get the Integral Fluctuation
Theorem 〈

e
−∆Stot

kB

〉
= 1. (2.37)

Using Jensen’s inequality 〈exp(z)〉 ≥ exp 〈z〉, we see

〈∆Stot〉 ≥ 0 (2.38)

which when compared to (1.1) we see is the second law in a statistical form. We therefore can see that
the fact that ∆Stot[X] can both increase and decrease is still compliant with the second law if the second
law is considered a statistical law. These properties of the fluctuation theorems reconcile the second
law with Loschmidt’s paradox, as now we see that reversed processes are indeed possible, but are much
less likely. We also note that the fluctuation theorems are powerfully general in that they are true for
processes arbitrarily far from equilibrium. We will see that, with the Jarzynski equality, this leads to
immense practical use.

Finally we note that another factor in the reconciliation with Loschmidt’s paradox is the nature of
the derivations of the fluctuation theorems. Here, the use of a master equation approach using stochastic
thermodynamics can lead to the interpretation of the second law and the nature of irreversibility as
arising from the noisiness of the dynamics of the system. As mentioned above, other derivations have
been used, including ones based on deterministic Hamiltonian mechanics [6]. The fluctuation theorems
derived this way are powerful in there connections with classical thermodynamics. For instance, [15] uses
them to enact a proof of Clausius’ theorem, an important result of thermodynamics.

2.2 Derivation of the Jarzynski Equality

The main focus of this report, the Jarzynski equality, is a fluctuation theorem specific for work processes.
In deriving it, we again follow the derivation from [9], as this allows us to see certain ideas and results
that will be core to the actual research discussed in this report: most pertinently, the Crooks work
relation. The standard original derivation of the Jarzynski equality can be found in [16].

For this discussion, and as it will be used greatly later on in the report, we introduce here the
overdamped langevin equation. Consider a particle subject to a langevin heat bath specified by (2.9)
and under influence from a position dependent force F (x). In the overdamped limit the dissipative
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friction term will dominate over the time derivative of the velocity so that the langevin equation takes
on a form in terms of the position x

ẋ =
F (x)

mγ
+

(
2kBT

mγ

)1/2

ξ(t). (2.39)

In consideration of work processes, we can examine the force term. Consider F (x) to be dependent on a
conservative potential φ(x) which varies in time under protocol λ0(t) and an external force f(x) which
varies in time under protocol λ1(t). Therefore

F (x, λ0(t), λ1(t)) = −∂φ(x, λ0(t))

∂x
+ f(x, λ1(t)). (2.40)

Our consideration now falls to identifying the entropy changes in the system and the medium, so
as to see what form (2.36) takes in this case. Recall that, to consider (2.36), the process must obey
the reversibility condition pstart(X(0)) = T̂ pRend(X̄(τ)). One type of process to obey this condition is a
passage from one equilibrium state to another equilibrium state. The probability distributions at the
start and the end of the process are then given by canonical equilibrium distributions, of the form

peq(E) =
1

Z
e−E/kBT (2.41)

where E is the internal energy of the system and Z is the partition function. By consideration of these
distributions, we can identify the changes in entropy in terms of values relevent to the system.

We can identify the energy as being equal to the conservative potential. We can also examine the
change in internal energy ∆E of the system over the process, which is related to the work done on the
system ∆W and the heat flow into the system ∆Q by the first law of thermodynamics, which holds in
stochastic thermodynamics in its standard form

∆E = ∆W + ∆Q. (2.42)

Here
dE = dφ(x(t), λ0(t)) (2.43)

and therefore

∆E =

∫ τ

0

dE

=

∫ τ

0

dφ(x(t), λ0(t))

= φ(x(τ), λ0(τ))− φ(x(0), λ0(0))

= ∆φ. (2.44)

So that we can define any work processes we consider, we must also examine the form of ∆W . In this
discussion, we must consider the differential dx. This can cause difficulties, as x is a stochastic variable
which fluctuates over a change in t, which we will make obvious by denoting x = x(t). We can not treat
a stochastic differential the same way as a deterministic differential, and must therefore define rules as
to which value of t we evaluate dx(t) at. The precise subtleties of this are discussed in [13], or any other
good modern book on stochastic processes. The favourite of mathematicians is to use the Ito rules, and
therefore evaluate dx(t) for t at the start of the increment. However, to maintain the structure of the
chain rule familiar to thermodynamics, we will use Stratanovich rules, whereby dx(t) is evaluated at the
mid-point value of t. We will denote the use of these rules in our calculations by ◦, as is done in [9].
With this in consideration, it is a standard result of mechanics that the work is the sum of contributions
from the change in potential and the application of the external force, so that

dW =
∂φ(x(t), λ0(t))

∂λ0

dλ0(t)

dt
dt+ f(x(t), λ1(t)) ◦ dx (2.45)

and therefore

∆W =

∫ τ

0

dW

=

∫ τ

0

∂φ(x(t), λ0(t))

∂λ0

dλ0(t)

dt
dt+

∫ τ

0

f(x(t), λ1(t)) ◦ dx. (2.46)
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Following these considerations, we see that the equilibrium distributions take the form

peq(x(t), λ0(t)) =
1

Z(λ0(t))
exp

(
−φ(x(t), λ0(t))

kBT

)
. (2.47)

As the partition function is related to the Helmholtz free energy via

F = −kBT lnZ (2.48)

we can assert for our initial and final distributions

pstart(x(0), λ0(0)) ∝ exp

[
F (λ0(0))− φ(x(0), λ0(0))

kBT

]
(2.49)

pend(x(τ), λ0(τ)) ∝ exp

[
F (λ0(τ))− φ(x(τ), λ0(τ))

kBT

]
. (2.50)

We can then see that our change in system entropy is

∆Ssys = kB ln

[
pstart(x(0), λ0(0))

pend(x(τ), λ0(τ))

]

= kB ln

 exp
[
F (λ0(0))−φ(x(0),λ0(0))

kBT

]
exp

[
F (λ0(τ))−φ(x(τ),λ0(τ))

kBT

]


=
(F (λ0(0))− F (λ0(τ)) + φ(x(τ), λ0(τ))− φ(x(0), λ0(0)))

T

=
∆φ−∆F

T
(2.51)

and from before we know our change in medium entropy to be

∆Smed = −∆Q

T

=
∆W −∆φ

T
(2.52)

from (2.42). Therefore

∆Stot =
∆W −∆F

T
(2.53)

where we can define the work ∆W = ∆W0 + ∆W1 as the sum of the work due to the conservative
potential

∆W0 =

∫ τ

0

∂φ(x(t), λ0(t))

∂λ0

dλ0(t)

dt
dt (2.54)

and the work due to the external force

∆W1 =

∫ τ

0

f(x(t), λ1(t)) ◦ dx. (2.55)

If there is no external force, then ∆W = ∆W0, and

∆Stot =
∆W0 −∆F

T
(2.56)

and putting this into (2.36) then gives us

pF ((∆W0 −∆F )/T )

pR (−(∆W0 −∆F )/T )
= exp

(
∆W0 −∆F

kBT

)
. (2.57)

As ∆F and T are path-independent quantities they can be taken out of the probability terms and
cancelled, to give the Crooks work relation [17]

pF (∆W0)

pR(−∆W0)
= exp

(
∆W0 −∆F

kBT

)
. (2.58)
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Like (2.36), the Crooks work relation states that the likelihood of putting ∆W0 of work into the system
in the forward process is exponentially greater than the likelihood of getting ∆W0 of work out of the
system in the reverse process. Like before, we can integrate over both sides of the relation, which gives
us, finally, the Jarzynski equality 〈

e−∆W0/kBT
〉

= e−∆F/kBT . (2.59)

The Jarzynski equality holds for all times for systems starting in equilibrium. Therefore, like the other
fluctuation theorems, it holds for times when the system is arbitrarily far from equilibrium. The equality
tells us that we can get the value for the change in the free energy simply by taking the average over
measurements of the work done over non-equilibrium processes. This is obviously of dramatic practical
importance, as it negates the need to perform the process quasistatically to get the value. The equality
does have an important limitation, though. Notice that if we allow the work values in the process to
fluctuate larger than kBT , like in the macroscopic limit, then we will be allowing for the introduction of
extreme exponential terms which will skew the averaging. Therefore, the equality only holds for small
systems, i.e. microscopic or mesoscopic systems. Lastly, again using Jensen’s inequality, Jarzynski’s
equality gives us a statistical statement of the second law for work processes

〈∆W0〉 ≥ ∆F (2.60)

similar to (2.38). We can compare this to the traditional form ∆W0 ≥ ∆F , and see again that the second
law takes on a statistical form.

Further details on derivations can be found in [18] and [19]. The result has been confirmed both
numerically and experimentally [20]. However, to provide a basis for the modelling required within the
core research, it is informative to numerically confirm the equality ourselves.

2.3 The System of Interest

Before we can model the equality, we need to define the system to model it on.
We will consider the system of a classical particle in one dimension trapped in a harmonic potential

and in thermal contact with an overdamped langevin heat bath. As we have seen before, this is modelled
by equation (2.39), where the force is due to the potential φ(x, λ0(t)) = φ(x, κ(t)) = 1

2κ(t)x2. Therefore,
we wish to model the equation

ẋ =
κ(t)

mγ
x+

(
2kBT

mγ

)1/2

ξ(t). (2.61)

To model the Jarzynski equality we then need to consider a protocol to govern the work process this
particle undergoes. The protocol in particular that we will consider is, starting in equilibrium at a value
κ0, a step change in κ(t) up to the value κ1, then letting the system continue to evolve at κ1 for a time
∆t arbitrarily short when compared to the relaxation time tr, followed by a step back down to κ0, and
then finally letting the system rest back to equilibrium [9]. This protocol can be shown in figure 2.1.

2.4 Modelling the Jarzynski Equality

To model (2.61) we first render it in terms of dimensionless variables. We define the dimensionless time,
position, and noise as

t′ = γt (2.62)

x′ =

(
κ0

kBT

)1/2

x (2.63)

ξ′(t) = γ−1/2ξ(t) (2.64)

which we substitute into (2.61) to give

ẋ′ = − κ(t)

mγ2
x′ +

√
2

(
κ0

mγ2

)1/2

ξ′(t). (2.65)

11



Figure 2.1: Protocol of a step up in κ(t) followed by a step down.

Writing the dimensionless spring constant as α = κ/mγ2 this becomes

ẋ′ = −α(t)x′ +
√

2α0 ξ
′(t). (2.66)

We can express this in finite difference form for a timestep dt′ small enough to model the continuous
behaviour of the system

x′(t′ + dt′)− x′(t′)
dt′

= −α(t)x′(t′) +
√

2α0N
t′+dt′

t′ (0, 1) (2.67)

where we have noted that the noise for finite timestep can be modelled by a unit normal distribution
within the timestep. This can then be rearranged, and we express x′(t′ + dt′) = x′n+1 and x′(t′) = x′n,
to give

x′n+1 = (1− α(t) dt′)x′n +
√

2α0 dt′N
t′+dt′

t′ (0, 1) (2.68)

where we note that N t′+dt′

t′ (0, 1) includes a factor of
√
dt′ implicitly. This then provides a discrete random

walk which can be modelled to give numerical solutions for this system.
We can derive a solution for (2.66) via the method discussed in [21]. As the changes in position

are given by a series of independent normal distributions, the position itself can be given by a normal
distribution. Here

ẋ′ = −α(t)x′ +
√

2α0N
t′+dt′

t′ (0, 1)

⇒ 〈ẋ′〉 = −α(t) 〈x′〉

⇒ d 〈x′〉
dt′

= −α(t) 〈x′〉

⇒ 〈x′〉 = x′0 e
−α(t)t′ (2.69)

where x′0 is the initial position at the start of the process, and

dx′2

dt′
= lim
dt′→0

[x′(t′ + dt′)]
2 − [x′(t′)]

2

dt′

= lim
dt′→0

[
(1− α(t) dt′)x′(t′) +

√
2α0 dt′N

t′+dt′

t′ (0, 1)
]2
− x′(t′)2

dt′

= lim
dt′→0

(1− α(t) dt′)
2
x′(t′)2 + 2 (1− α(t) dt′)x′(t′)

√
2α0 dt′N

t′+dt′

t′ (0, 1)

dt′

+ lim
dt′→0

2α0 dt
′
[
N t′+dt′

t′

]2
− x′(t′)2

dt′

= lim
dt′→0

−2α(t) dt′ x′(t′)2 + 2x′(t′)
√

2α0 dt′N
t′+dt′

t′ (0, 1) + 2α0 dt
′
[
N t′+dt′

t′ (0, 1)
]2

dt′
(2.70)
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dropping the terms of order higher than dt′

⇒
d
〈
x′2
〉

dt′
= −2α(t)

〈
x′2
〉

+ 2
√

2α0 〈x′〉
〈
N t′+dt′

t′ (0, 1)
〉

+ 2α0

〈
N t′+dt′

t′ (0, 1)2
〉

= −2α(t)
〈
x′2
〉

+ 2
√

2α0 〈x′〉
〈
N t′+dt′

t′

〉
+ 2α0

= 2α0 − 2α(t)
〈
x′2
〉

⇒
〈
x′2
〉

= x′20 e
−2α(t)t′ +

α0

α(t)

(
1− e−2α(t)t′

)
(2.71)

then the variance Var(x′) is

Var(x′) =
〈
x′2
〉
− 〈x′〉2

= x′20 e
−2α(t)t′ +

α0

α(t)

(
1− e−2α(t)t′

)
− x′20 e−2α(t)t′

=
α0

α(t)

(
1− e−2α(t)t′

)
. (2.72)

Therefore, the position is given by

x′(t′) = N t′

0

[
x′0e
−α(t)t′ ,

α0

α(t)

(
1− e−2α(t)t′

)]
. (2.73)

This gives the expected result for Ornstein-Uhlenbeck processes of a travelling mean and decreasing
variance over time.

We can therefore compare numerical results from (2.68) with the theoretical prediction given in (2.73).
This can be done by comparing a histogram of the numerical results to a histogram generated from the
distribution in (2.73). For the modelling, we choose dt′ = 10−5, x0 = 0, and α(t) = α0 = 1. Therefore,

the theoretical prediction is x′(t′) = N
(

0,
(

1− e−2t′
))

and the numerical update follows

x′n+1 = 0.99999x′n +N (0, 0.00002) . (2.74)

Results for 10000, 50000, and 100000 time steps with samples of 1000 positions for each are given in
figures 2.2, 2.3, and 2.4 respectively. As can be seen, the numerical results do indeed compare favourably
to the theoretical distribution.

Figure 2.2: Results from sample of 1000 positions from an update of 10000 time steps compared to a
histogram generated from the theoretical distribution.

Finally, the Jarzynski equality can now be modelled by applying the protocol from figure 2.1 to a
particle undergoing the random walk in (2.68) and repeating for N cycles, where N is large enough to
gain an effective average of the exponentiated quantities over all the cycles. From each cycle we measure
a dimensionless work value ∆W ′0 = ∆W ′0→1 + ∆W ′1→0 where

∆W ′0→1 =
α1 − α0

2α0
x′2u =

∆W0→1

kBT
=

1

2
(κ1 − κ0)x2

u/kBT (2.75)

∆W ′1→0 =
α0 − α1

2α0
x′2d =

∆W1→0

kBT
=

1

2
(κ0 − κ1)x2

d/kBT (2.76)
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Figure 2.3: Results from sample of 1000 positions from an update of 50000 time steps compared to a
histogram generated from the theoretical distribution.

Figure 2.4: Results from sample of 1000 positions from an update of 100000 time steps compared to a
histogram generated from the theoretical distribution.

where xu is the position at the step up and xd is the position at the step down, then average the
exponentials of these values over all the cycles

〈
e−∆W ′0

〉
=

1

N

N∑
i=1

e−∆W ′0,i (2.77)

and compare this value to the theoretical Jarzynski equality, which in this case is〈
e−∆W ′0

〉
= 1 (2.78)

as ∆F = 0 due to the cyclic nature of the process. Recall that the time after the step back down must
be long compared to the relaxation time, which is given by tr = 1/γ [22]. Here we will therefore take
tr = 1.

Figure 2.5 shows the results for processes with various increases in spring constant. Each result is
taken from a statistical average of 20 repeats of a process of 1000 cycles of 800000 time steps. Each
time step is dt′ = 10−5, and within each cycle the step up step down protocol takes place over half the
timesteps, so the system is allowed to rest for the other half before the next cycle, and therefore ∆t′ = 4.
Each process starts at an initial position x′0 = 0 and is allowed to reach equilibrium before the cycles
begin. For all the processes, α0 = 1. A different α1 value is used for each different process. The results
show that the numerical modelling successfully reproduces the Jarzynski equality. Also of note is the
increase in statistical error, given in the figure by one standard deviation either side of the data point,
as the increase in α gets larger. This agrees with what was discussed earlier, in that an allowance for
larger fluctuations in the work leads to a skewing of the average of the exponentiated values. This would
then lead to an increase in unpredictability in the actual measured value of the average, as shown here.

Lastly for this section, we can examine the variance of e−∆W ′0 to see how the values of the exponen-
tiated work fluctuates about the mean value of 1. Numerically, this can be done in a similar fashion to
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Figure 2.5: Numerical results for averages of exponentiated work values, given by blue data points,
plotted against the theoretical prediction, given by a red line, for increasing changes in α, ∆α = α1−α0,
from an initial value α0 = 1.

how the mean was modelled

Var
(
e−∆W ′0

)
=

〈
e−2 ∆W ′0

〉
−
〈
e−∆W ′0

〉2

=
1

N

N∑
i=1

e−2 ∆W ′0,i −

(
1

N

N∑
i=1

e−∆W ′0,i

)2

. (2.79)

The theoretical value can be found for the process of a step up and step down in spring constant
by averaging over the equilibrium distribution of being at the start of the process and the transition
distribution of the process given by (2.14)〈

e−2 ∆W ′0

〉
=

∫
dxu dxd peq(xu) pTOU (xd) e

−2 ∆W0/kBT

=

∫
dxu dxd

(
κ0

2πkBT

)1/2

e−κ0x
2
u/2kBT

×

(
κ1

2πkBT
(
1− e−2κ1t/mγ

))1/2

e−κ1(xd−xue−κ1t/mγ)/2kBT(1−e−2κ1t/mγ)

×e−(κ1−κ0)x2
u/kBT e−(κ0−κ1)x2

d/kBT

=

[
1− e2κ1t/mγ

1− e−2κ1t/mγ

κ0κ1

2
(
e2κ1t/mγ − 1

)
(κ2

0 + κ2
1) +

(
4− 5e2κ1t/mγ

)
κ0κ1

]1/2

=

[
1− e2α1t

′

1− e−2α1t′
α0α1

2 (e2α1t′ − 1) (α2
0 + α2

1) + (4− 5e2α1t′)α0α1

]1/2

(2.80)
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rendered in terms of dimensionless variables as before. Therefore, the variance is

Var
(
e−∆W ′0

)
=

[
1− e2α1t

′

1− e−2α1t′
α0α1

2 (e2α1t′ − 1) (α2
0 + α2

1) + (4− 5e2α1t′)α0α1

]1/2

− 1 (2.81)

where the time t′ in the expression is the time from the step up in spring constant to the step back down.

Figure 2.6: Numerical results for variances of exponentiated work values, given by blue data points,
plotted against the theoretical prediction, given by a red curve, for different values of α1 from an initial
value α0 = 1.

The numerical results in figure 2.6 were modelled for a system with the same conditions as that
modelled in figure 2.5 where t′ in (2.81) is given by ∆t′ = 4. As can be seen, the numerical results fit
the theoretical prediction well for small changes in α. However, for larger changes (2.81) appears to be
asymptotic to α1 = 2, and can therefore not be used to calculate the variance for much larger changes
in spring constant. The numerical results do show a continued steady increase in the variance as the
change in spring constant gets larger than the boundary set by the theoretical prediction, but also the
statistical error becomes so large that the result is unreliable.
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Chapter 3

The Jarzynski-Sagawa-Ueda
Equality

3.1 Measurement and Feedback

In chapter 2 we laid down the foundations for the investigation by deriving the Jarzynski equality and
examining how it can be modelled numerically. Now we go on to the main purpose: exploring generalisa-
tions of the Jarzynski equality in the aim of extending the current understanding of the equality and to
provide numerical confirmation in order to strengthen the theoretical foundation for future experimental
work in this area.

The first generalisation is a very intriguing one, combining the non-equilibrium fluctuation theorems
with information thermodynamics: systems with measurement and feedback. This chapter presents and
builds upon the work found in [23], which the reader should refer to for further information on the
theoretical grounding of the investigation here.

The classical example of a system with measurement and feedback is Maxwell’s demon [7], a pictoral
representation of which is shown on the title page. A classical gas of particles is held within an imper-
miable adiabatic container with a wall in the middle separating the gas in to two halves. In the wall
is a door, which when open is the only part of the wall the particles can pass through. An intelligence
(which does not need to be a biological intelligence [24]), the “demon”, observes the particles as they
move about the container. It opens the door only if it allows, for instance, the cold particles on the left
to pass to the right, and the hot particles on the right to pass to the left. By doing so it brings the
system to a more ordered state and thereby reduces the entropy.

The simplest way to see how this applies to work processes, such as the process we considered in
chapter 2, is via Szilard’s engine [25], as depicted in figure 3.1.

The Szilard engine consists of a single particle within a container in thermal contact only with a
heat bath of constant temperature. In figure 3.1 step 1, the particle is in thermal equilibrium with the
heat bath and moves about the container at random. In step 2, an impermiable wall is inserted into the
centre of the container, and a measurement device (the “demon” from Maxwell’s demon) attached to
the system measures whether the particle is on the left or right hand side in step 3. By doing this, the
measurement device gains information from the system. The measurement has an associated error, and
as this error gets larger the amount of information gained via the measurement gets smaller. In step 4,
the device applies feedback to the system based on the measurement. If the measurement states that
the particle is on the left hand side, the central wall is allowed to expand all the way to the right, and
vice versa. By doing so, work is gained from the system. The smaller the error in measurement, the
more effective the feedback applied, and the greater the work gained out of the system. The feedback
uses information to convert one type of energy in the system into another.

Essentially, instead of allowing the process to continue from beginning to end, the measurement de-
vice observes the system part way through the process and changes something in the system so as to
reduce the entropy of the system. Note, though, that this does not result in breaking the second law
of thermodynamics. The measurement device has to be considered part of the total system, and so any
entropy change in the device must also be considered. According to Landauer’s principle, for the process
to truly be cyclic the measurement device must erase the information it has gained. Erasure of informa-
tion is an irreversible process and therefore has an associated increase in entropy which counterracts the
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Figure 3.1: The Szilard engine, from chapter 2 of [23].

decrease in the system. Therefore the overall change in entropy still obeys the second law [26].
Systems with measurement and feedback are of great importance in recent and current research, es-

pecially in modelling nanosystems. The application of measurement and feedback is useful for stabilising
unstable dynamics or increasing performance [27].

Further information on Maxwell’s demon and its applications can be found in [8].

3.2 Alteration of the Jarzynski Equality

From (2.59), taking the free energy term on to the left hand side gives

〈exp (− (∆W0 −∆F ) /kBT )〉 = 1. (3.1)

Therefore, we want to examine how the use of measurement and feedback affects the average of the
quantity exp (− (∆W0 −∆F ) /kBT ). We denote the measurement outcome as y with an associated
error σ. We must then average over both x and y. Therefore

〈exp (− (∆W0 −∆F ) /kBT )〉 =

∫
dy dx p(x, y) 〈exp (− (∆W0 −∆F ) /kBT )〉x (3.2)

where 〈exp (− (∆W0 −∆F ) /kBT )〉x is the average over all trajectories starting in equilibrium at a
specified position x = x0 = x(0), and p(x, y) is the joint distribution of x and y. Here

〈exp (− (∆W0 −∆F ) /kBT )〉x =

∫
dxτ Tλy (xτ |x0) exp (− (∆W0 −∆F ) /kBT ) (3.3)

where we are still only considering the quantity for initial position x, and averaging over final positions
xτ = x(τ) where Tλy (xτ |x0) is the transition probability over the process of going to xτ given the initial
position x0 under a time dependent protocol λy(t) dependent on the measurement y.

From the Crooks work relation, the quantity exp (− (∆W0 −∆F ) /kBT ) can be related to the ratio
of the distribution of the forward trajectory of the process to the distribution of the reverse trajectory
via (2.58). The distribution of the process is given by the product of the starting distribution and the
transition distribution. For the forward process the starting distribution is the equilibrium distribution
peq,λ0

(x) where λ0 = λy(0) is the initial value of the protocol. For the reverse process it is the reverse
equilibrium distribution pReq,λy(τ)(x̄0), where the time reversed position is x̄t = x̄(t) = x(τ − t) and the
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time reversed protocol is λ̄y(t) = λy(τ − t). The transition probabilities are Tλy (xτ |x0) and Tλ̄y (x̄τ |x̄0)
for the forward and reverse process respectively. Therefore

exp ((∆W0 −∆F ) /kBT ) =
peq,λ0

(x)Tλy (xτ |x0)

pReq,λy(τ)(x̄0)Tλ̄y (x̄τ |x̄0)
. (3.4)

From these considerations and as p(x, y) = p(y|x)p(x)

〈exp (− (∆W0 −∆F ) /kBT )〉 =

∫
dy dx p(y|x)p(x) dxτ Tλy (xτ |x0)

×
pReq,λy(τ)(x̄0)Tλ̄y (x̄τ |x̄0)

peq,λ0
(x)Tλy (xτ |x0)

=

∫
dy dx p(y|x)

p(x)

peq,λ0
(x)

× dxτ pReq,λy(τ)(x̄0)Tλ̄y (x̄τ |x̄0)

=

∫
dy dx̄τ p (y|x̄τ )

p(x̄τ )

peq,λ0
(x̄τ )

× dx̄0 p
R
eq,λy(τ)(x̄0)Tλ̄y (x̄τ |x̄0)

=

∫
dy dx̄τ p (y|x̄τ )

p(x̄τ )

peq,λ0(x̄τ )
pRλ̄y (x̄τ )

=

∫
dy dx̄τ p

R
λ̄y

(y, x̄τ )
p(x̄τ )

peq,λ0
(x̄τ )

(3.5)

where pR
λ̄y

(x̄τ ) is the distribution of the position at the end of the reverse protocol, and pR
λ̄y

(y, x̄τ ) is the

joint distribution of this position and its measurement.
If we write

γE =

∫
dy dx̄τ p

R
λ̄y

(y, x̄τ )
p(x̄τ )

peq,λ0
(x̄τ )

(3.6)

then we get the Jarzynski-Sagawa-Ueda equality [28]〈
e−(∆W0−∆F )/kBT

〉
= γE . (3.7)

γE is known as the efficacy parameter and is a constant that can differ from unity depending on the
distributions of the trajectory under measurement and feedback. It measures the effectiveness of the
feedback in using the information gained via measurement to get work out of the system. The greater
the effectiveness, the greater the value of γE . The Jarzynski-Sagawa-Ueda equality is the subject of
continued experimental verification and interest [29].

Note that there are more subtleties to the derivation of this result than are presented here. For
instance, measurement has no time-reversal, so reverse processes need to be defined in this case [30].
Also, the Jarzynski-Sagawa-Ueda equality can be presented in an alternate form which gives deeper
insight into its meaning. For further information on all this and for different derivations, the reader is
directed to [23], [31], and [32].

3.3 Modelling the Jarzynski-Sagawa-Ueda Equality

It is simple to apply measurement and feedback to the process considered in chapter 2. Again, we consider
a classical particle in one dimension obeying the overdamped langevin equation (2.39), undergoing N
cycles of the work process of a step up and step down in spring constant. A measurement is taken of
the position xu at the start of each cycle, returning a result y with error σ. Dependent on the result y,
the spring constant κ is changed as shown in figure 3.2. If y is within a range −ya ≤ y ≤ +ya centred
around the centre of the potential, then the spring constant is allowed to change to κ1 for that cycle.
However, if it is outside the chosen range, then the spring constant is kept at the initial value κ0 for the
cycle. Essentially, we choose to change the spring constant only for cycles where the initial position is
close enough to the centre of the potential such that the change in spring constant only involves putting
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Figure 3.2: The application of measurement and feedback to the system. The purple dashed line denotes
the potential. The solid red line denotes the change made in spring constant at the start of the cycle
dependent on the measurement outcome y.

a small amount of work into the system. Averaging over all N cycles, we then get more work out of the
system on average than we put in.

At the start of the cycle we assume the position xu to obey the equilibrium distribution p(xu) =

peq,κ0
(xu) = (κ0/2πkBT )

1/2
exp

(
−κ0x

2
u/2kBT

)
. We also assume that the position xd at time ∆t has

settled to an equilibrium distribution under κ1, p(xd) = peq,κ1
(xd) = (κ1/2πkBT )

1/2
exp

(
−κ1x

2
d/2kBT

)
.

From this, we see that in (3.6) p(x̄τ ) = peq,λ0(x̄τ ). For the reverse process, pR
λ̄y

(x̄τ ) = (κ0/2πkBT )
1/2 ×

exp
(
−κ0x̄

2
τ/2kBT

)
for the case of no change in spring constant and pR

λ̄y
(x̄τ ) = (κ1/2πkBT )

1/2
exp

(
−κ1x̄

2
τ/2kBT

)
for the case of a change in spring constant. Lastly, we take the distribution of the measurement condi-

tional on an initial position for the reverse process to be p(y|x̄τ ) =
(
2πσ2

)−1/2
exp

(
− (y − x̄τ )

2
/2σ2

)
.

Therefore, (3.6) becomes

γE =

∫
dy dx̄τ

1√
2πσ

e−(y−x̄τ )2/2σ2

(
κ(y)

2πkBT

)1/2

e−κ(y)x̄2
τ/2kBT . (3.8)

As the system evolves at κ1 when y is within ±ya, and evolves at κ0 when y is outside of ±ya, this can
be broken up into multiple terms

γE = 2

∫ ya

0

dy

∫ +∞

−∞
dx̄τ

1√
2πσ

e−(y−x̄τ )1/2/2σ2

(
κ1

2πkBT

)1/2

e−κ1x̄
2
τ/2kBT

+ 2

∫ +∞

ya

dy

∫ +∞

−∞
dx̄τ

1√
2πσ

e−(y−x̄τ )1/2/2σ2

(
κ0

2πkBT

)1/2

e−κ0x̄
2
τ/2kBT

= 2

∫ ya

0

dy G1(y) + 2

∫ ∞
ya

dy G0(y) (3.9)

where the gaussian functions are

Gi(y) =

(
κi

2πkBT ((κiσ2/kBT ) + 1)

)1/2

exp

(
− κiy

2

2kBT ((κiσ2/kBT ) + 1)

)
. (3.10)
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This can then be rearranged as

γE = 2

∫ ya

0

dy G1(y) + 2

∫ ∞
ya

dy G0(y)

=

∫ +ya

−ya
dy G1(y) +

∫ +∞

−∞
dy G0(y)−

∫ +ya

−ya
dy G1(y)

=

∫ +ya

−ya
(G1(y)−G0(y)) dy + 1 (3.11)

which can also be written in terms of error functions

γE = erf

(
ya√

2 (σ2 + kBT/κ1)

)
− erf

(
ya√

2 (σ2 + kBT/κ0)

)
+ 1. (3.12)

For now we will consider the case with no error in measurement, such that σ = 0, y = xu, and ya = xa
is a range in the actual position xu. Here

γE = erf

(√
κ1

2kBT
xa

)
− erf

(√
κ0

2kBT
xa

)
+ 1

= erf

(√
α1

2α0
x′a

)
− erf

(
1√
2
x′a

)
+ 1 (3.13)

rendered dimensionless using the substitution x′a = (κ0/kBT )
1/2

xa like before.
This situation can be modelled numerically using the same method used in chapter 2. However, as

mentioned before, for each cycle the spring constant is increased if the starting position is within the
range ±x′a and is kept the same if it is outside the range ±x′a. Figure 3.3 shows the results for numerical
modelling of the efficacy parameter for changes to various α1 values with 20 repeats each of 1000 cycle
processes, each cycle containing 800000 time steps of value dt′ = 10−5. Each process starts at x′0 = 0
and then rests to equilibrium before the cycles begin. α0 = 1 and x′a = 0.5 for all processes, and for
cycles where the step up step down action is applied, they are kept at α1 for ∆t′ = 4. The theoretical
result shows a gradually decreasing increase in the efficacy parameter for an increase in the jump in
the spring constant. The numerical results follow this prediction well, and can be taken as indicative
that the result is correct. The numerical results deviate more from the prediction as the jump in spring
constant increases, and the error in the results also increases along the same lines.

Figure 3.4 shows the same results but focusses on the smaller changes in spring constant, showing
how closely the numerical results do indeed follow (3.13).

Results can also be gained for the variance of the quantity e−∆W ′ , as was done in chapter 2. For the
same processes as figures 3.3 and 3.4, the results for the variance are given in figure 3.5. As before, for
higher changes in spring constant the errors in the results become so large as to make them unreliable.

Figure 3.6 focusses on the results for the smaller changes in spring constant. The variance is observed
to start very low, and to show an increase with an increasingly positive gradient over increasing changes
in spring constant.

To maximise the value of γE in this case, an optimal value of ya can be chosen. From expression (3.11),
we can see that γE is given by the integral of the difference between the gaussians G1(y) and G0(y).
γE can therefore be maximised by maximising the area under these gaussians that is included in the
integral. This can be done by choosing ya (dimensionless x′a in the case of zero error) where G1(y) and
G0(y) intersect

G0(ya) = G1(ya)

⇒
(

κ0

2πkBT ((κ0σ2/kBT ) + 1)

)1/2

× exp

(
− κ0y

2
a

2kBT ((κ0σ2/kBT ) + 1)

)
=(

κ1

2πkBT ((κ1σ2/kBT ) + 1)

)1/2

× exp

(
− κ1y

2
a

2kBT ((κ1σ2/kBT ) + 1)

)
⇒ 1

2
ln

(
1

2π (σ2 + kBT/κ0)

)
− y2

a

2 (σ2 + kBT/κ0)
=

1

2
ln

(
1

2π (σ2 + kBT/κ1)

)
− y2

a

2 (σ2 + kBT/κ1)
(3.14)
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Figure 3.3: Results for numerically modelling the efficacy parameter, given by the blue data points,
shown against the theoretical prediction, given by the red curve, for changes to various α1 values from
α0 = 1 for arbitrarily chosen range x′a = 0.5.

which gives

y2
a =

(
σ2 + kBT/κ1

) (
σ2 + kBT/κ0

)
kBT

(
κ−1

0 − κ
−1
1

) ln

(
σ2 + kBT/κ0

σ2 + kBT/κ1

)
. (3.15)

In the limit of zero error this gives

x2
a =

kBT

κ1 − κ0
ln
κ1

κ0
(3.16)

which can be rendered dimensionless as

x′2a =
1

α1 − α0
ln

(
α1

α0

)
. (3.17)

Numerical results for processes with the same value parameters as in figure 3.3 except using the optimal
value for x′a, and with ∆t′ = 1 and only 10 repeats per result, are given in figure 3.7. The results show a
definite increase in γE above the case for arbitrarily chosen range, as expected, and the numerical results
follow the theoretical prediction very closely, with increasing error as the change in spring constant
increases, as before.

As before, figure 3.8 shows the same results focussing on the smaller changes in spring constant. It
shows even clearer the increase in γE for the use of the optimal range, and how closely the numerical
results follow the theoretical prediction.

Like before, variances can be found from the numerical data and are given in figure 3.9. The figure
focusses on the smaller changes in spring constant, as it was shown before that the errors for the higher
changes are so large as to render them unreliable.

3.4 Time Dependent Efficacy Parameter, Measurements with
Error

It is worthwhile to explore further features of the efficacy parameter. First, we can consider cases where
∆t′ is so short that the system does not have enough time to equilibrate and settle to κ1. Here, we can
model the system for different values of ∆t′, and with the same values for all other parameters as we
have used before. Then we can compare the numerical results to expression (3.13) with κ1 replaced by
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Figure 3.4: Results for numerically modelling the efficacy parameter, given by the blue data points,
shown against the theoretical prediction, given by the red curve, for changes to various α1 values from
α0 = 1 for arbitrarily chosen range x′a = 0.5, focussing on the lower changes in spring constant.

a time dependent value between κ1 and κ0, κ̃(∆t), given by

κ̃(∆t) =
κ0κ1

κ0 + e−2κ1∆t/mγ (κ1 − κ0)
(3.18)

which is rendered dimensionless as

α̃(∆t′) =
α0α1

α0 + e−2α1∆t′ (α1 − α0)
. (3.19)

With these considerations and using the optimal range given in (3.17), the efficacy parameter in (3.13)
becomes

γE(∆t′) = erf

[√
α1

2α0α1 − 2α2
0 − 2e−2α1∆t′ (α1 − α0)

ln

(
α1

α0 + e−2α1∆t′ (α1 − α0)

)]

−erf

[√
α0 + e−2α1∆t′ (α1 − α0)

2α0α1 − 2α2
0 − 2e−2α1∆t′ (α1 − α0)

ln

(
α1

α0 + e−2α1∆t′ (α1 − α0)

)]
+1. (3.20)

Figure 3.10 shows the results for modelling this for α0 = 1 and α1 = 1.2. The efficacy parameter increases
over time, but at a decreasing rate, which implies that it will tend to a maximum value. The numerical
results are very close to the theoretical prediction, indicating the result to be correct. Figure 3.11 shows
the results for modelling the variance over time, and it too increases but at a very slow rate.

Another area to explore is the affect of errors in measurement on the efficacy parameter. As γE
increases as the feedback becomes more effective, it would be expected to decrease as errors in measure-
ment decrease. The efficacy parameter is given by (3.12), and can be rendered dimensionless by making

the usual replacements σ′ = (κ0/kBT )
1/2

σ and y′a = (κ0/kBT )
1/2

ya, giving

γE = erf

[
y′a√

2 (σ′2 + α0/α1)

]
− erf

[
y′a√

2 (σ′2 + 1)

]
+ 1. (3.21)

The optimal range ya here is given by

ya =

(
σ2 + kBT/κ1

) (
σ2 + kBT/κ0

)
kBT

(
κ−1

0 − κ
−1
1

) ln

(
σ2 + kBT/κ0

σ2 + kBT/κ1

)
(3.22)
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Figure 3.5: Results for numerically modelling the variance of exp(−∆W ′) for changes to various α1

values from α0 = 1 for arbitrarily chosen range x′a = 0.5.

which is rendered dimensionless as

y′2a =

(
σ′2 + α0/α1

) (
σ′2 + 1

)
(1− α0/α1)

ln

(
σ′2 + 1

σ′2 + α0/α1

)
. (3.23)

The results for numerical modelling of the process for the usual parameters (for each different result
we have x′0 = 0, ∆t′ = 1, and dt′ = 10−5 for 10 repeats of processes of 1000 cycles of 800000 time steps)
with changes from α0 = 1 to α1 = 1.2 at various error values are given in figure 3.12. The results show
a gradual decrease from a maximum value at σ′ = 0 to a minimum value of 1 beyond the range of the
figure. The numerical results follow the same curve, with results for smaller error deviating away from
the theoretical prediction a little more than results for larger error.

Numerical results for the intrinsic variance are given in figure 3.13. They appear to follow a gradual
increase with increase in σ′, though the change is incredibly slow and fluctuative. It does imply a slight
increase in the spread of work fluctuations as the error in measurement is increased. The feedback loses
its effectiveness, and the work values start to fluctuate more as the mean tends back to 1.

Lastly, we can compare the evolution of the efficacy parameter with respect to the change in spring
constant for measurement with error to that which is for measurement with no error. Figure 3.14 gives
the results for numerically modelling this with the same parameters as before but with fixed error σ′ = 0.5
and changes to various α1 values. The expected decrease compared to a process with no error is evident,
and the numerical data too shows this decrease, but with some deviation from the theoretical prediction
for larger changes in spring constant. Figure 3.15 focusses on the smaller changes in spring constant,
and shows the definite difference between the two different cases, as well as the numerical data following
the prediction well.

As before, the variance can also be examined. Figure 3.16 shows the expected steady increase in
variance from extremely small values for small changes in spring constant up to higher values for bigger
changes, as seen in the other cases examined.

3.5 Optimal Change in Spring Constant

It is evidently desirous to maximise the value of the efficacy parameter so as to ensure that the feedback
is as effective as possible in using information to gain work from the system. It has already been shown
by others that the optimal protocol to achieve this is an instantaneous change in the Hamiltonian of
the system after measurement [33]. For the system we have considered so far, we already feature an
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Figure 3.6: Results for numerically modelling the variance of exp(−∆W ′) for changes to various α1 values
from α0 = 1 for arbitrarily chosen range x′a = 0.5, focussing on the lower changes in spring constant.

immediate change in the value of the spring constant. However, it is beneficial to consider what value of
the spring constant it is optimal to change to in order to maximise the efficacy parameter.

It can be shown (but will not be here, it has been shown in currently unpublished work by the
supervisor Ian J. Ford) that the optimal value of κ to change to is

κ(y) ∝ 1

y2
. (3.24)

However, there is an obvious problem with this value. It is divergent if the measurement result y returns
the value at the centre of the potential. This effectively renders a situation where the measurement
device is omniscient. Therefore, we will consider modelling the characteristics of this value. Figure 3.17
shows the form of the optimal spring constant. As before, when y is close to the centre of the potential
the spring constant value is increased. However, when y is much further out, we see that the spring
constant value tends to zero. This indicates that we should take a step down in this case instead of just
remaining at the same value.

Therefore, we shall model the case shown in figure 3.18 whereby at the start of the cycle we increase
the spring constant from κ0 to κu if −ya ≤ y ≤ +ya, decrease it to κl if y ≤ −yb or y ≥ +yb, or keep it
at κ0 otherwise.

In this case (3.6) can be broken up like before

γE = 2

∫ ya

0

dy Gu(y) + 2

∫ yb

ya

dy G0(y) + 2

∫ ∞
yb

dy Gl(y)

=

∫ +ya

−ya
dy Gu(y) +

∫ +yb

−yb
dy G0(y)−

∫ +ya

−ya
dy G0(y) +

∫ +∞

−∞
dy Gl(y)

−
∫ +yb

−yb
dy Gl(y)

=

∫ +ya

−ya
(Gu(y)−G0(y)) dy +

∫ +yb

−yb
(G0(y)−Gl(y)) dy + 1 (3.25)
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Figure 3.7: Results for numerically modelling the efficacy parameter, given by the blue data points, shown
against the theoretical prediction for the optimal range, given by the red curve, also shown against the
theoretical prediction for arbitrarily chosen range x′a = 0.5, given by the purple dashed curve, for changes
to various α1 values from α0 = 1.

which can be written in terms of error functions

γE = erf

[
ya

(2 (σ2 + (kBT/κu)))
1/2

]
− erf

[
ya

(2 (σ2 + (kBT/κ0)))
1/2

]

+ erf

[
yb

(2 (σ2 + (kBT/κ0)))
1/2

]
− erf

[
yb

(2 (σ2 + (kBT/κl)))
1/2

]
+ 1 (3.26)

which for σ = 0, so ya = xa and yb = xb, with dimensionless variables is

γE = erf

(√
αu
2α0

x′a

)
− erf

(
1√
2
x′a

)
+ erf

(
1√
2
x′b

)
− erf

(√
αl

2α0
x′b

)
+ 1. (3.27)

We can also fnd the optimal ranges, given by the points where the gaussians in the integrals intersect

y2
a =

(
σ2 + (kBT/κu)

) (
σ2 + (kBT/κ0)

)
kBT

(
κ−1

0 − κ
−1
u

) ln

[
σ2 + (kBT/κ0)

σ2 + (kBT/κu)

]
(3.28)

y2
b =

(
σ2 + (kBT/κ0)

) (
σ2 + (kBT/κl)

)
kBT

(
κ−1
l − κ

−1
0

) ln

[
σ2 + (kBT/κl)

σ2 + (kBT/κ0)

]
(3.29)

which for zero error and in dimensionless variables reduce to

x′2a =
1

αu − α0
ln

(
αu
α0

)
(3.30)

x′2b =
1

α0 − αl
ln

(
α0

αl

)
. (3.31)

This can be modelled by simply using the same methods as described in the preceding sections, but
with the use of this new measurement-conditional protocol. Numerical results for processes with the
same parameters as before (i.e. changes from α0 = 1 to various αu values and with αl = 0.8 for all
processes, where for each different αu process results are found for 10 repeats of processes that start at
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Figure 3.8: Results for numerically modelling the efficacy parameter, given by the blue data points, shown
against the theoretical prediction for the optimal range, given by the red curve, also shown against the
theoretical prediction for arbitrarily chosen range x′a = 0.5, given by the purple dashed curve, for changes
to various α1 values from α0 = 1, focussing on lower changes in spring constant.

x0 = 0 and are allowed to settle to equilibrium before starting on 1000 cycles of 800000 timesteps of size
dt′ = 10−5, where the system is kept at αu for ∆t′ = 1 for each cycle) are found in figure 3.19. The
theoretical prediction shows a definite increase over the non-optimal protocol. Focussing in on the lower
changes in spring constant in figure 3.20 shows a definite increase where the numerical results are close
to the theoretical optimal γE value. However, 3.19 shows that the errors get large enough for the larger
changes to not necessarily show the increase from the non-optimal value for those results.

Finally, we can examine numerical results for the variance in this case as well. Figure 3.21 shows
the expected results now of a very small variance value for small changes in spring constant, gradually
increasing with the increase in change in spring constant, but with larger errors settling in at much lower
changes in spring constant than seen previously.
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Figure 3.9: Results for numerically modelling the variance of exp(−∆W ′) for changes to various α1

values from α0 = 1 for optimal range.

Figure 3.10: Results for numerically modelling γE dependent on the time the system spends at α1, given
by the blue data points, shown against the theoretical prediction, given by the red curve, for α0 = 1 and
α1 = 1.2.
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Figure 3.11: Results for numerically modelling the variance dependent on the time the system spends at
α1, given by the blue data points, for α0 = 1 and α1 = 1.2.

Figure 3.12: Results for numerically modelling the efficacy parameter dependent on the error in mea-
surement, given by the blue data points, shown against the theoretical prediction, given by the red curve,
for α0 = 1 and α1 = 1.2.
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Figure 3.13: Results for numerically modelling the variance dependent on the error in measurement,
given by the blue data points, for α0 = 1 and α1 = 1.2.

Figure 3.14: Results for numerically modelling the efficacy parameter for processes with error in mea-
surement σ′ = 0.5, given by the blue data points, compared to the theoretical prediction, given by the
red curve, and also compared to the theoretical prediction for no error in measurement, given by the
purple dashed curve, for changes from α0 = 1 to various α1 values.
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Figure 3.15: Results for numerically modelling the efficacy parameter for processes with error in mea-
surement σ′ = 0.5, given by the blue data points, compared to the theoretical prediction, given by the
red curve, and also compared to the theoretical prediction for no error in measurement, given by the
purple dashed curve, for changes from α0 = 1 to various α1 values, focussing on the lower changes in
spring constant.

Figure 3.16: Results for numerically modelling the efficacy parameter for processes with error in mea-
surement σ′ = 0.5, given by the blue data points, for changes from α0 = 1 to various α1 values.
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Figure 3.17: Optimal change in spring constant, given by the red curve, shown against the potential,
given by the purple dashed line.

Figure 3.18: Change in spring constant to be modelled, given by the red curve, shown against the
potential, given by the purple dashed line.
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Figure 3.19: Results for numerically modelling the efficacy parameter under the optimal protocol, given
by the blue data points, shown against the theoretical prediction for the optimal protocol, given by the
red curve, also shown against the theoretical prediction for the usual protocol, given by the purple dashed
curve, for changes to various αu values from α0 = 1 and with αl = 0.8.

Figure 3.20: Results for numerically modelling the efficacy parameter under the optimal protocol, given
by the blue data points, shown against the theoretical prediction for the optimal protocol, given by the
red curve, also shown against the theoretical prediction for the usual protocol, given by the purple dashed
curve, for changes to various αu values from α0 = 1 and with αl = 0.8, focussing on lower changes in
spring constant.
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Figure 3.21: Results for numerically modelling the variance under the optimal protocol, given by the
blue data points, for changes to various αu values from α0 = 1 and with αl = 0.8.
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Chapter 4

The Jarzynski-Tsallis Equality

4.1 Non-Isothermal Systems

A new generalisation of the Jarzynski equality can be found for non-isothermal systems, which have not
been considered so far to the extent that feedback control systems have. Note that for this chapter we
revert back to the process we considered in chapter 2, with the same protocol always being supplied for
every cycle and no measurement taking place.

Instead of having a constant environment temperature, we consider a system with a position depen-
dent temperature T (x) such that the overdamped langevin equation (2.39) takes on the form

ẋ = − 1

mγ

∂φ(x, t)

∂x
+

(
2kBT (x)

mγ

)1/2

ξ(t) (4.1)

which can be written in terms of differentials as

dx = − 1

mγ

∂φ(x, t)

∂x
dt+

(
2kBT (x)

mγ

)1/2

dW (t) (4.2)

where dW (t) = ξ(t) dt is the differential Wiener process.
We define a new stochastic function dependent on x, Θ = Θ(x), which obeys the isothermal equation

of motion

Θ̇ = − 1

mγ

∂Φ(Θ, t)

∂Θ
+

(
2kBT0

mγ

)1/2

ξ(t) (4.3)

where Φ(Θ, t) is the effective potential of Θ, and T0 is a constant temperature parameter. This too can
be expressed in terms of differentials as

dΘ = − 1

mγ

∂Φ(Θ, t)

∂Θ
dt+

(
2kBT0

mγ

)1/2

dW (t). (4.4)

According to Ito’s lemma [13] [14] the chain rule for a stochastic function Θ(x) is

dΘ =

(
a(x, t)

∂Θ

∂x
+

1

2
b(x, t)2 ∂

2Θ

∂x2

)
dt+ b(x, t)

∂Θ

∂x
dW (t) (4.5)

where a(x, t) and b(x, t) are given by (4.2) as

a(x, t) = − 1

mγ

∂φ(x, t)

∂x
(4.6)

b(x, t) =

(
2kBT (x)

mγ

)1/2

(4.7)

giving

dΘ =

(
− 1

mγ

∂φ(x, t)

∂x

∂Θ

∂x
+
kBT (x)

mγ

∂2Θ

∂x2

)
dt+

(
2kBT (x)

mγ

)1/2
∂Θ

∂x
dW (t). (4.8)
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Comparing the coefficient of the dW (t) term in (4.8) to that in (4.4) gives(
2kBT (x)

mγ

)1/2
∂Θ

∂x
=

(
2kBT0

mγ

)1/2

⇒ ∂Θ

∂x
=

T
1/2
0

T (x)1/2
. (4.9)

We consider a system where the temperature has a quadratic dependence on the position, similar to that
of the potential

φ(x, t) =
1

2
κ(t)x2 (4.10)

such that

T (x) = T0

(
1 +

κTx
2

2kBT0

)
(4.11)

where κT ≥ 0 is a parameter determining how far the system is from being isothermal. Inserting this
into our expression and integrating

Θ =

∫
1(

1 + κT x2

2kBT0

)1/2
dx

=

√
2kBT0

κT

∫
1

(1 + u2)
1/2

du (4.12)

making the substitution u =
√
κT /2kBT0x. Making the further substitution sinh θ = u

Θ =

√
2kBT0

κT

∫
cosh θ(

1 + sinh2 θ
)1/2 dθ

=

√
2kBT0

κT

∫
cosh θ(

cosh2 θ
)1/2 dθ

=

√
2kBT0

κT

∫
dθ

=

√
2kBT0

κT
θ + constant

=

√
2kBT0

κT
arcsinhu+ constant

⇒ Θ(x) =

√
2kBT0

κT
arcsinh

(√
κT

2kBT0
x

)
+ constant. (4.13)

From this

∂Θ

∂x
=

1(
1 + κT x2

2kBT0

)1/2
(4.14)

∂2Θ

∂x2
= − κTx

2kBT0

1(
1 + κT x2

2kBT0

)3/2
. (4.15)
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Comparing the dt terms in (4.4) and (4.8) gives

− 1

mγ

∂Φ(Θ, t)

∂Θ
= − 1

mγ

∂φ

∂x

∂Θ

∂x
+
kBT (x)

mγ

∂2Θ

∂x2

⇒ ∂Φ(Θ, t)

∂Θ
= κ(t)x

∂Θ

∂x
− kBT0

(
1 +

κTx
2

2kBT0

)
∂2Θ

∂x2

=
κ(t)x(

1 + κT x2

2kBT0

)1/2
+
kBT0κTx

2kBT0

(
1 + κT x

2

2kBT0

)
(

1 + κT x2

2kBT0

)3/2

=

(
κ(t) + 1

2κT
)
x(

1 + κT x2

2kBT0

)1/2

=

(
κ(t) +

1

2
κT

)√
2kBT0

κT

sinh
(√

κt
2kBT0

Θ
)

(
1 + sinh2

(√
κT

2kBT0
Θ
))1/2

=

(
κ(t) +

1

2
κT

)√
2kBT0

κT

sinh
(√

κT
2kBT0

Θ
)

cosh
(√

κT
2kBT0

Θ
)

⇒ Φ(Θ, t) =

(
κ(t) +

1

2
κT

)√
2kBT0

κT

∫ sinh
(√

κT
2kBT0

Θ
)

cosh
(√

κT
2kBT0

Θ
) dΘ

=

(
κ(t) +

1

2
κT

)(
2kBT0

κT

)∫
sinh ν

cosh ν
dν (4.16)

where we have made the substitution ν =
√
κT /2kBT0Θ, which gives

Φ(Θ, t) =

(
κ(t) +

1

2
κT

)(
2kBT0

κT

)∫
eν − e−ν

eν + e−ν
dν

=

(
κ(t) +

1

2
κT

)(
2kBT0

κT

)∫
1

ω
dω (4.17)

making the substitution ω = 1
2 (eν + e−ν), so

Φ(Θ, t) =

(
κ(t) +

1

2
κT

)(
2kBT0

κT

)
lnω

=

(
κ(t) +

1

2
κT

)(
2kBT0

κT

)
ln

(
1

2
eν +

1

2
e−ν

)
=

(
κ(t) +

1

2
κT

)(
2kBT0

κT

)
ln (coshu)

=

(
κ(t) +

1

2
κT

)(
2kBT0

κT

)
ln

[
cosh

(√
κT

2kBT0
Θ

)]
=

(
κ(t) +

1

2
κT

)(
2kBT0

κT

)
1

2
ln

[
cosh2

(√
κT

2kBT0
Θ

)]
=

(
κ(t) +

1

2
κT

)(
2kBT0

κT

)
1

2
ln

[
1 + sinh2

(√
κT

2kBT0
Θ

)]
=

(
κ(t) +

1

2
κT

)(
2kBT0

κT

)
1

2
ln

[
1 +

κtx
2

2kBT0

]
. (4.18)

For the step up step down process we considered in chapter one, the effective work ∆Ω0 for Θ is given
by

∆Ω0 = Φ(Θu, κ1)− Φ(Θu, κ0) + Φ(Θd, κ0)− Φ(Θd, κ1)

= Φ(xu, κ1)− Φ(xu, κ0) + Φ(xd, κ0)− Φ(xd, κ1) (4.19)
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where Θu and xu are the values of Θ and x at the step up, Θd and xd are the values at the step down,
κ0 is the spring constant at the start of the process, and κ1 is the spring constant that we step up to.
We see here that

−Φ(xu, κ1)− Φ(xu, κ0)

kBT0
= −

κ1 + 1
2κT

kBT0

2kBT0

κT

1

2
ln

[
1 +

κTx
2
u

2kBT0

]
+
κ0 + 1

2κT

kBT0

2kBT0

κT

1

2
ln

[
1 +

κTx
2
u

2kBT0

]
= ln

[
1 +

κTx
2
u

2kBT0

](
κ0 + 1

2κT − κ1 − 1
2κT

κT

)

= ln

(1 +
κTx

2
u

2kBT0

)κ0−κ1
κT

 (4.20)

and similarly

−Φ(xd, κ0)− Φ(xd, κ1)

kBT0
= ln

(1 +
κTx

2
d

2kBT0

)κ1−κ0
κT

 . (4.21)

Therefore

e−∆Ω0/kBT0 =

(
1 +

κTx
2
u

2kBT0

)κ0−κ1
κT

×
(

1 +
κTx

2
d

2kBT0

)κ1−κ0
κT

=

(
1 +

(
1−

(
1 +

κT
κ1 − κ0

)) (− 1
2 (κ1 − κ0)x2

u

)
2kBT0

) 1

1−(1+
κT

κ1−κ0
)

×

(
1 +

(
1−

(
1− κT

κ1 − κ0

)) (− 1
2 (κ0 − κ1)x2

d

)
2kBT0

) 1

1−(1− κT
κ1−κ0

)
. (4.22)

Recall that ∆W0→1 = 1
2 (κ1 − κ0)x2

u and ∆W1→0 = 1
2 (κ0 − κ1)x2

d, and define

q± = 1± κT
κ1 − κ0

(4.23)

so this gives us

e−∆Ω0/kBT0 = (1 + (1− q+) (−∆W0→1/kBT ))
1

1−q+ × (1 + (1− q−) (−∆W1→0/kBT ))
1

1−q− . (4.24)

Here we introduce the Tsallis q-exponential [34], which is defined as

expq(z) = (1 + (1− q) z)
1

1−q (4.25)

where q is a constant parameter characteristic of the system, and exp1(z) = exp(z). The inverse of this
is the Tsallis q-logarithm

lnq(z) =
z1−q − 1

1− q
(4.26)

where ln1(z) = ln(z).
Therefore, we see that

e−∆Ω0/kBT0 = expq+ (−∆W0→1/kBT0) expq− (−∆W1→0/kBT0) . (4.27)

As Θ obeys the isothermal Langevin equation, as in chapter 2 it must obey the Jarzynski equality, which
for the cyclic process is 〈

e−∆Ω0/kBT0

〉
= 1. (4.28)

For the averaging 〈. . .〉 we note that dΘu dΘd p(Θu,Θd) = dxu dxd p(xu, xd), so we can therefore write
out the Jarzynski equality of Θ in terms of x. The Jarzynski equality for non-isothermal systems for the
step process we are considering can then be written as〈

expq+ (−∆W0→1/kBT0) expq− (−∆w1→0/kBT0)
〉

= 1 (4.29)

which is a new equality we shall call here the Jarzynski-Tsallis equality for the simple step up step down
process.

Note that, due to the nature of the derivation in considering an effective work split into steps, it is
possible to then generalise this equality to processes formed from many steps.
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4.2 Modelling the Jarzynski-Tsallis Equality

To model the Jarzynski-Tsallis equality we must first re-write (4.1) as a finite difference update equation.
Firstly, the equation is

ẋ = −κ(t)

mγ
x+

[
2kBT0

mγ

(
1 +

κT
2kBT0

x2

)]1/2

ξ(t). (4.30)

Using (2.62), (2.63), and (2.64), this equation can then be rendered in terms of dimensionless variables

ẋ′ = −α(t)x′ +
(
2α0 + αTx

′2)1/2 ξ′(t) (4.31)

which can be expressed in finite difference form as

x′(t′ + dt′)− x′(t′)
dt′

= −α(t)x′(t′) +
(
2α0 + αTx

′2(t′)
)1/2

N t′+dt′

t′ (0, 1) (4.32)

where αi = κi/mγ
2 as before, and writing x′n+1 = x′(t′ + dt′) and x′n = x′(t′) this can be rearranged

into an update equation for the position

x′n+1 = (1− α(t) dt′)x′n +
[(

2α0 + αTx
′2
n

)
dt′
]1/2

N t′+dt′

t′ (0, 1). (4.33)

Like in chapter 2, this update can then be run for N cycles of the step up step down process. The
dimensionless work values ∆W ′0→1 = ∆W0→1/kBT0 and ∆W ′1→0 = ∆W1→0/kBT0 are measured for each
cycle, and the numerical average of the Tsallis q-exponentials can be calculated using

〈
expq+ (−∆W ′0→1) expq− (−∆W ′1→0)

〉
=

1

N

N∑
i=1

expq+
(
−∆W ′0→1,i

)
expq−

(
−∆W ′1→0,i

)
(4.34)

where the q values can be given in terms of dimensionless spring constants q± = 1±αt/ (α1 − α0). This
can then be compared against the prediction〈

expq+ (−∆W ′0→1) expq− (−∆W ′1→0)
〉

= 1. (4.35)

The variance can also be modelled using the same method in chapter 2

Var
(

expq+ (−∆W ′0→1) expq− (−∆W ′1→0)
)

=
1

N

N∑
i=1

(
expq+

(
−∆W ′0→1,i

)
expq−

(
−∆W ′1→0,i

))2

+

(
1

N

N∑
i=1

expq+
(
−∆W ′0→1,i

)
expq−

(
−∆W ′1→0,i

))2

.

(4.36)

Numerical results are shown in figure 4.1. For each result for changes from α0 = 1 to each various
α1 value, results are found as before from 20 repeats of a process starting at x0 = 0 and resting to
equilibrium before embarking on 1000 cycles of the protocol. Each cycle is 800000 timesteps long, each
timestep has size dt′ = 10−5, and within each cycle the system spends ∆t′ = 4 at α1. The results show
a very close fit to the theoretical prediction, and are indicative of the new relation being correct. As for
each process a different αT value was used, the results are also displayed in table 4.1. Again, this shows
the close correlation of the results. As throughout the report, all error values are given by one statistical
standard deviation of the repeated results.

Figure 4.2 shows the results for the variance. These results are also stored in table 4.1. As is
predictable from previous results and the knowledge that this equality too is only meant for small
systems, these results show an increase in the variance for larger changes in spring constant value. The
higher results are not shown in the figure, as, like before, the statistical errors are so large for them as
to render them unreliable.
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Figure 4.1: Numerical results for averages of Tsallis q-exponentiated work values, given by blue data
points, plotted against the theoretical prediction, given by a red line, for increasing changes in α from
an initial value α0 = 1 for a non-isothermal system, with various chosen αT values.

4.3 The Crooks-Tsallis Work Relation

One last final point of interest is in examining the statistics of the non-isothermal system, and in exam-
ining the generalisation of the Crooks work relation (2.58) as well.

Firstly, we examine the initial distribution of the position. We assume that the effective function Θ
starts in equilibrium, such that

peq(Θ) ∝ exp (−Φ(Θ)/kBT0) (4.37)

α1 αT Average Variance
1.01 1.005 1.0000± 0.0001 0.000056± 0.00000257
1.05 1.025 1.000± 0.0011 0.0014± 0.000124
1.10 1.050 1.000± 0.0017 0.0053± 0.000519
1.20 1.100 0.9996± 0.0021 0.0195± 0.0021
1.40 1.200 1.0008± 0.0072 0.0699± 0.0121
1.75 1.375 0.9963± 0.0122 0.2353± 0.1066
2.00 1.000 1.0016± 0.0245 0.6745± 0.6714
4.00 2.500 1.0019± 0.0852 5.7448± 15.1328
6.00 3.500 1.0157± 0.1150 14.8405± 29.9929

Table 4.1: Results for numerical test of the Jarzynski-Tsallis equality, with α0 = 1.0, ∆t = 10−5, and
N = 103.
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Figure 4.2: Numerical results for variances of the q-exponentiated work values, given by blue data points,
for increasing changes in α from an initial value α0 = 1 for a non-isothermal system, with various chosen
αT values.

so that the initial distribution of the position p0(x) is

p0(x) ∝ dΘ

dx
exp (−Φ(Θ)/kBT0)

=
1(

1 + κT x2

2kBT0

)1/2
exp

[
−
(
κ0 +

1

2
κT

)(
2kBT0
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)
1

2
ln

(
1 +
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2
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)
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]

=
1(

1 + κT x2

2kBT0

)1/2

[(
1 +

κTx
2

2kBT0
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]− 2(κ0+ 1

2
κT )
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=

[(
1 +

κTx
2

2kBT0

)1/2
]−2κ0/κT−1−1

=

(
1 +

κTx
2

2kBT0
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(4.38)

which normalises to

p0(x) =

√
κT

2πkBT0

Γ
(
κ0+κT
κT

)
Γ
(

1
2 + κ0

κT

) (1 +
κTx

2

2kBT0

)−κ0/κT−1

(4.39)

where Γ(. . .) is the Euler gamma function. This can also be written as

p0(x) =

√
κT

2πkBT0

Γ
(
κ0+κT
κT

)
Γ
(

1
2 + κ0

κT

) expq0

(
(κ0 + κT )x2

2kBT0

)
(4.40)

where q0 = (κ0 + 2κT ) / (κ0 + κT ).
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The distribution in (4.39) can be written in terms of dimensionless position

p0(x′) =

√
αT

2πα0

Γ
(
α0+αT
αT

)
Γ
(

1
2 + α0

αT

) (1 +
αTx

′2

2α0

)−α0/αT−1

. (4.41)

The update in (4.33) can be repeated from the same initial value a number of times to get a sample of
positions for the same α0 and αT values. Numerical results for precisely this, with 1000 repeats of the
non-isothermal process evolving at α0 = 1 and αT = 1.1 for 800000 time steps of dt′ = 10−5 starting at
position x0 = 0, are given in figure 4.3. The results fit very closely to the predicted distribution.

Figure 4.3: Numerical results for positions evolving at α0 = 1 and αT = 1.1 shown as a histogram against
the theoretical Tsallis distribution.

We now wish to examine the distributions of the work values. Let us consider a simpler process of a
single step at equilibrium from an initial spring constant value κ0 to a higher value κ1 at a time ∆t in a
process of total time τ , as shown in figure 4.4. The reverse process is then a step down from κ1 to κ0 at
time τ −∆t, as shown in figure 4.5.

For the forward process, the position at the step up xu is in distribution

p0(xu) =

√
κT

2πkBT0

Γ
(
κ0+κT
κT

)
Γ
(

1
2 + κ0
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) (1 +
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2
u

2kBT0

)−κ0/κT−1

(4.42)

and the work done ∆W has value

∆W =
1

2
(κ1 − κ0)x2

u (4.43)

so that the forward distribution of the work done is

pF (∆W ) ∝ p0(xu)
dxu
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=

√
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H(∆W ) (4.44)

where H(∆W ) is the Heaviside step function. Normalising this gives
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Figure 4.4: Forward step work process.

and this can be written as

pF (∆W ) =
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1
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]
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where q0 = (κ0 + 2κT ) / (κ0 + κT ). This can then be written in terms of dimensionless work ∆W ′ =
∆W/kBT0 using the same methods used in chapter 2
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For the reverse process, the position at the step up xd is in distribution

p1(xd) =
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and the work done ∆W has value

∆W =
1

2
(κ0 − κ1)x2

d (4.49)

so that the reverse distribution of the work done is
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where H(∆W ) is the Heaviside step function. Normalising this gives
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This then gives us
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Figure 4.5: Reverse step work process.

which can be written as

pR(−∆W ) =
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where q1 = (κ1 + 2κT ) / (κ1 + κT ). In terms of dimensionless work we then have
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Figures 4.6 and 4.7 show numerical results for the forward and reverse work distributions respectively
compared to both the Tsallis distributions just derived and the gaussian distributions of the isothermal
process. 10000 numerical results were used, for the non-isothermal step process with α0 = 1, α1 = 1.2,
and αT = 5. The Tsallis distributions show a clear fit to the numerical results, whilst the gaussian
distribution diverges away from the results at the tail of the distribution as expected.

Finally, we can take the ratio of (4.45) and (4.52) to give the Crooks-Tsallis work relation for the
simple step process
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which as before can be written as
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where q− = 1− κT / (κ1 − κ0). Writing this new relation in terms of dimensionless work
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Taking the gamma factors over to the left hand side and then taking the q-logarithm of each side
then gives
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 = ∆W ′. (4.58)
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Figure 4.6: Numerical results of work values from the forward step process shown as a histogram against
both the predicted Tsallis distribution, the green curve, and the traditional gaussian distribution, the
purple curve. Results were found for α0 = 1, α1 = 1.2, and αT = 5.

By modelling the forward and reverse processes, numerical distributions of the work for both can be
found. Taking the ratio of these distributions, multiplying them by the gamma factors, and then taking
the q-logarithm gives a numerical result that can then be compared to the theoretical prediction.

Figure 4.8 gives the results of this modelling for 3 repeats of 20000 work results for processes starting
at x′0 = 0 and evolving to equilibrium for 800000 time steps of size dt′ = 10−5 before applying the
protocol. These values were found for values α0 = 1, α1 = 1.2, and αT = 1.1. The results do seem to
show correlation to the theoretical prediction for the very low work values, as shown by figure 4.9 focussing
in on those results. However, for larger work values large noise fuctuations set in, often pushing the data
points and errors beyond the scope of the figure. Further work is definitely warranted in exploring this
result.
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Figure 4.7: Numerical results of work values from the reverse step process shown as a histogram against
both the predicted Tsallis distribution, the green curve, and the traditional gaussian distribution, the
purple curve. Results were found for α0 = 1, α1 = 1.2, and αT = 5.

Figure 4.8: Numerical results for the Crooks Tsallis work relation for the simple step process, given by
the blue data points, shown against the theoretical prediction, given by the red line, for α0 = 1, α1 = 1.2,
and αT = 1.1.
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Figure 4.9: Numerical results for the Crooks Tsallis work relation for the simple step process, given by
the blue data points, shown against the theoretical prediction, given by the red line, for α0 = 1, α1 = 1.2,
and αT = 1.1, focussing on the lower work values.
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Chapter 5

Literature Review

Before bringing this report to a conclusion, it is informative to very briefly review the work completed in
this area by others. This will allow us to see the context of this report, how it fits in with work already
done, and what advancements it brings.

Chapter 2 was meant as primarily a theoretical basis for the rest of the report. The Jarzynski equality,
as well as the other fluctuation theorems, are well established and the numerical modelling done in that
chapter served more to confirm that the method for the modelling works rather than to actually confirm
the equality itself. As mentioned before, further information on the Jarzynski equality, in the context
of the fluctuation theorems, as well as the many other fluctuation theorems that have been derived for
various systems, can be found in [9] and [6]. The fluctuation theorems are immensely useful relations,
hence the importance of any work involving them such as the work done within this investigation. An
excellent example of this, mentioned in chapter 2, is given in [15], whereby they prove the Clausius
inequality not by assuming the second law, but rather by assuming the laws of mechanics, a T-mixing
property, an ergodic consistency condition, and the axiom of causality, and by using the relaxation and
dissipation theorems and, of course, the fluctuation theorems: specifically, the Evans-Searles and the
Crooks fluctuation theorems.

Though the Jarzynski equality is the main focus of this report, the Crooks work relation is also of
great interest. Work focussing on this relation is cited in chapter 2. Another example can be found
in [35], which considers the form of the relation for a special case of symmetry of the work distribution
for non-cyclic work processes on an isolated harmonic oscillator.

Throughout the report we have focussed on the use of stochastic thermodynamics. Further informa-
tion on this area and how it can apply to the first law of thermodynamics, as well as the second, is given
in [12]. Further work on how the consideration of a Brownian particle can be used to derive fluctuation
theorems can also be found in [11].

We also noted in chapter 2 that, though the original derivation is given in [16], and we too gave
a derivation taken from [9], they are by no means the only derivations. For instance, [18] derives the
equality via a master equation approach, and [19] uses a Hamiltonian model more general than that used
in the original derivation. Also, we noted that the Jarzynski equality has been experimentally verified,
as in [20] where the equality was used to calculate accurately the free energy changes for non-quasistatic
stretching of a single RNA molecule. With all this in consideration, we can see that the new work
committed by this investigation begins in chapter 3.

We can first note that the Jarzynski-Sagawa-Ueda equality in chapter 3 is not constricted to the
kind of system we considered. First off, we only considered a classical particle. It is perfectly achievable
to find a form for this equality and other related equalities for feedback control systems in terms of a
quantum particle. Considerations on quantum feedback control and its application to the second law and
to the Jarzynski equality are given in [36], [37], and [38]. Also, whilst we considered position-dependent
feedback control via our use of the overdamped langevin equation, it is entirely possible to consider the
modification of the Jarzynski equality under velocity-dependent feedback control without going to the
overdamped limit, as shown in [39].

Like with the Jarzynski equality, there are different ways to derive the Jarzynski-Sagawa-Ueda equal-
ity. Examples are given by the citations in chapter 3, as well as by [31] which uses a Hamiltonian
approach. Also, the Jarzynski equality is not the only fluctuation theorem which alters for feedback
control systems, as discussed in [40]. For example, alteration of the detailed fluctuation theorem is given
in both [41] and [42].
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As with the Jarzynski equality itself, the Jarzynski-Sagawa-Ueda equality has been experimentally
verified, such as in [29] where a particle is forced up a “spiral staircase-like” potential via the use of
measurement and feedback, and the free energy change is shown to have been increased over the work
by the use of the information gained via measurement.

The main focus of chapter 3 then is in the maximisation of the efficacy parameter. Maximising the
work gotten out of the system is a subject of great interest, such as in [43]. We considered maximising the
efficacy parameter by the effect of the length of time the system has been left at κ1, the amount of error
allowed in the measurement, and the choice of an optimal value of κ1. Though work has not been done
in these considerations so precisely, work has been done in the general areas. Error in measurement has
been considered for various different purposes, such as in [44]. The optimal protocol was also considered
in [33], which showed it to be a step change, the type of protocol which we have considered throughout
this investigation. We can see here, then, that the importance of the work within this report is in the
consideration of how these changes to our system maximise the efficacy parameter. These considerations
will be valuable to experimental work.

Lastly, the work in chapter 4 done on non-isothermal systems has very little literature to draw on in
comparison to feedback control systems. Therefore, this can be considered fresher ground with a more
theoretical interest. We do note, however, the existence of [45], which derives its own Jarzynski-Tsallis
equality via the consideration of a system obeying Tsallis statistics. It may be of interest to compare
our two equalities to see if they may be related in any way.
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Chapter 6

Summary and Conclusions

This report has been concerned with examining the Jarzynski equality and its generalisations to systems
with feedback control and to non-isothermal systems. The Jarzynski equality is a statistical statement of
the second law for small systems undergoing work processes due to conservative potentials which holds
arbitrarily far from equilibrium. It proves valuable as a theoretical relation in its use in examining the
nature of entropy production in these systems, and as a practical tool in its ability to relate the value
of the change in free energy over a process to the average of measurements of the work done over that
process.

In chapter 2 we showed how the Jarzynski equality can be modelled numerically by consideration of a
Brownian particle trapped in a harmonic potential and in thermal contact with an overdamped langevin
heat bath. The results of this modelling agreed with the equality, as expected. As the equality is already
a well-verified relation, it is wiser to take these results as verification of the method. We also calculated
the variance associated with the equality, and found it to have an asymptotic limit in terms of what size
change in spring constant it applies to. Throughout the investigation, modelling of the variance for all
results proved ineffective for the higher changes in spring constant as massively large statistical errors
set in. We do see from numerical results, though, that the variance of the Jarzynski equality increases
over increase in the change in spring constant. This is to be expected, as greater fluctuations in work
are allowed leading to a greater spread in the values.

Systems with feedback control are systems that come coupled with some form of measurement device.
The device takes measurements of the system, and based on the results of these measurements applies
feedback in order to reduce the entropy within the system. By doing this, it is essentially using infor-
mation to change one type of energy within the system to another. In this case, the Jarzynski equality
takes on a generalised form known as the Jarzynski-Sagawa-Ueda equality involving a constant called
the efficacy parameter which measures the effectiveness of the application of the feedback. This equality
can be modelled numerically using the same methods as in chapter 2. The variance of this equality was
also modelled, with the familiar result of a greater spread in work values for a greater change in the
spring constant.

This equality is currently of great experimental interest. Indeed, work is currently being performed
within the Physics and Astronomy department at University College London in trapping a particle with
the aim of applying measurement and feedback to it. In chapter 3, we considered the maximisation
of the efficacy parameter in the hope of providing a strong theoretical and numerical basis for this
experimental work. Firstly, as in chapter 2, numerical results verified the equality itself for the most
standard considerations we can have for our system. The more interesting work is in the considerations
given in sections 3.4 and 3.5.

We considered how the time spent at κ1 can affect the efficacy parameter. It was found, and numerical
results agree with this, that the efficacy parameter is found to increase as the system is allowed to spend
longer at κ1. Therefore, the longer the system is given to settle, the more effective the feedback is. This
implies a trade off between effectiveness of the feedback and efficiency in how much time the feedback
takes. The variance in exponentiated work is also shown to increase as this time parameter is increased.
As the system is allowed to evolve at κ1 for longer, a greater spread of work values is achieved.

We also considered how errors in measurement effect the value of the efficacy parameter. Firstly, in
comparing the value of the efficacy parameter for one select change in spring constant over various values
for the error in measurement. It was shown that as the error increases, the efficacy parameter decreases
from a maximum zero error value to a minimum value of 1, as expected. As the error increases, the
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feedback gets less effective. The variance of the exponentiated work is actually shown to decrease slowly
over an increase in error. Secondly, we considered the form of the efficacy parameter over an increasing
change in spring constant for a set error value. It is shown to follow the same form as in an errorless
feedback process, but with a decrease in the value for all changes in spring constant. The variance shows
the same increase as before.

Finally for the efficacy parameter, and most interestingly, we considered an optimal value of the
spring constant to change to. It can be shown that we should increase the spring constant when we are
close to the centre of the potential, decrease it when we are very far out from the centre, and keep it
the same otherwise. This then follows the characteristics of the optimal value, but ignores the issues it
entails. Results from modelling this case did show an increase over the efficacy parameter of the standard
protocol case. As before, the variance showed the same style of increase.

It is hoped that these results and conclusions prove useful for the experimental work. Here, we can
conclude that the optimal protocol of allowing both steps up and steps down in spring constant dependent
on position will result in much more effective feedback. This will prove useful in the experimental work,
which at the same time can act as experimental verification of these findings. We have also seen that,
within the experimental work, both error and cycle time need to be considered. Obviously, a smaller
cycle time makes the whole process more efficient, but it also makes the feedback less effective. As said
before, a trade off must be made. Also, as is obvious from any considerations, we have shown that the
error in measurement must be minimised in order to make the feedback as effective as possible.

In chapter 4, we showed that for our step process in a non-isothermal system the Jarzynski equality
can be generalised to the new Jarzynski-Tsallis equality. Modelling of this system provided results that
agreed with the new equality. However, obviously further numerical and experimental confirmation of the
equality is needed. We also examined and modelled the statistics of the system, showing confirmation
that the system follows Tsallis distributions instead of the standard gaussian distributions. We also
derived a generalisation of the Crooks work relation for a simple non-cyclic single step process. Numerical
modelling of this relation did seem to show a correlation, but further modelling is certainly needed.

This work opens the possibility of further generalisations of the Jarzynski equality for various non-
isothermal processes. It also considers the interest in examining the unusual statistics that arise in this
case. It is hoped that much further work in this area can be done, leading to applications of the Jarzynski
equality in experimentation on non-isothermal systems.
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Appendix A

Tables of Numerical Results

α1 Average Variance Theoretical Variance
1.05 1.0000± 0.0014 0.0024± 0.0002 0.0024
1.20 1.0000± 0.0047 0.0340± 0.0042 0.0351
1.75 0.9972± 0.0204 0.4780± 0.2610 0.6730
2.00 1.0179± 0.0504 1.6800± 2.1379 2979.96
4.00 0.9636± 0.0801 8.0100± 9.4852 n/a

Table A.1: Numerical results for figures 2.5 and 2.6.

α1 γE Average Variance
1.01 1.0018 1.0017± 0.0001 0.000023± 0.000004
1.05 1.0086 1.0086± 0.0008 0.000618± 0.000132
1.10 1.0171 1.0169± 0.0015 0.002503± 0.000602
1.20 1.0332 1.0336± 0.0036 0.044323± 0.016268
1.40 1.0630 1.0614± 0.0077 0.044323± 0.016268
1.75 1.1087 1.1096± 0.0160 0.222719± 0.132004
2.00 1.1376 1.1410± 0.0270 0.620550± 0.736162
4.00 1.2998 1.2639± 0.0878 8.152245± 14.769130
6.00 1.3964 1.2937± 0.0871 8.940321± 17.219530

Table A.2: Numerical results for figures 3.3, 3.4, 3.5, and 3.6.

α1 γE Average Variance
1.01 1.0024 1.0022± 0.0002 0.000031± 0.000006
1.05 1.0118 1.0109± 0.0010 0.000877± 0.000206
1.10 1.0231 1.0198± 0.0013 0.003080± 0.000360
1.20 1.0441 1.0398± 0.0038 0.014460± 0.003024
1.40 1.0812 1.0745± 0.0077 0.067962± 0.022749
1.75 1.1345 1.1254± 0.0188 0.255385± 0.114132
2.00 1.1661 1.1517± 0.018879 0.400041± 0.133355
4.00 1.3227 1.3446± 0.1905 41.623230± 110.150557
6.00 1.4069 1.3156± 0.0902 13.580896± 16.938726

Table A.3: Numerical results for figures 3.7, 3.8, and 3.9.

58



∆t′ γE Average Variance
0.1 1.0088 1.0086± 0.0015 0.0017± 0.0002
0.2 1.0159 1.0157± 0.0011 0.0037± 0.0006
0.3 1.0216 1.0218± 0.0022 0.0054± 0.0006
0.4 1.0263 1.0259± 0.0026 0.0070± 0.0014
0.5 1.0300 1.0308± 0.0035 0.0097± 0.0015
0.6 1.0329 1.0335± 0.0031 0.0101± 0.0021
0.7 1.0353 1.0363± 0.0032 0.0118± 0.0020
0.8 1.0371 1.0374± 0.0052 0.0137± 0.0051
0.9 1.0386 1.0397± 0.0036 0.0130± 0.0022
1.0 1.0397 1.0403± 0.0034 0.0142± 0.0028

Table A.4: Numerical results for figures 3.10 and 3.11.

σ′ γE Average Variance
0.00 1.0441 1.0364± 0.0032 0.0119± 0.0018
0.25 1.0413 1.0370± 0.0031 0.0145± 0.0038
0.50 1.0346 1.0321± 0.0043 0.0162± 0.0045
0.75 1.0273 1.0254± 0.0048 0.0158± 0.0030
1.00 1.0211 1.0213± 0.0041 0.0193± 0.0043
1.25 1.0163 1.0142± 0.0032 0.0177± 0.0035
1.50 1.0127 1.0126± 0.0047 0.0188± 0.0027
1.75 1.0101 1.0087± 0.0032 0.0182± 0.0025
2.00 1.0082 1.0055± 0.0061 0.0193± 0.0061
2.25 1.0068 1.0047± 0.0034 0.0180± 0.0022

Table A.5: Numerical results for figures 3.12 and 3.13.

α1 γE Average Variance
1.01 1.0019 1.0016± 0.0002 0.000032± 0.000005
1.05 1.0094 1.0080± 0.0009 0.000879± 0.000134
1.10 1.0183 1.0151± 0.0016 0.003183± 0.000494
1.20 1.0346 1.0310± 0.0022 0.014799± 0.002006
1.40 1.0627 1.0537± 0.0055 0.065590± 0.012462
1.75 1.1012 1.0960± 0.0138 0.242638± 0.091226
2.00 1.1229 1.1140± 0.0204 0.370506± 0.119840
4.00 1.2179 1.1911± 0.1072 15.351286± 34.661415
6.00 1.2594 1.1595± 0.1046 15.798225± 36.245776

Table A.6: Numerical results for figures 3.14, 3.15, and 3.16.

αu γE Average Variance
1.01 1.0564 1.0462± 0.0037 0.0255± 0.0053
1.05 1.0657 1.0557± 0.0071 0.0280± 0.0056
1.10 1.0770 1.0610± 0.0041 0.0242± 0.0027
1.20 1.0980 1.0844± 0.0060 0.0388± 0.0079
1.40 1.1352 1.1241± 0.0088 0.0925± 0.0170
1.75 1.1885 1.1798± 0.0266 0.7748± 1.0306
2.00 1.2200 1.1921± 0.0322 0.4695± 0.4164
4.00 1.3766 1.4240± 0.3804 125.3943± 384.2412
6.00 1.4608 1.3647± 0.0998 15.3772± 14.8081

Table A.7: Numerical results for figures 3.19, 3.20, and 3.21.
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Appendix B

Important Code Used

All numerical results in this report were found from code written and compiled in Java version 7 update
17, through the Eclipse integrated development environment. All plots of the data were created using
Wolfram Mathematica version 7.

The code used to model the langevin equation in section 2.4:

public class LangevinEquation {

/**alpha is a variable proportional to the variable spring constant.

*/

double alpha;

/**alpha0 is the constant proportional to the constant spring constant.

*/

double alpha0;

/**dt is the discrete time increment.

*/

double dt;

/**x0 is the boundary value for x at t = 0.

*/

double x0;

/**max is the number of time increments to model.

*/

int max;

/**Contructor

*/

public LangevinEquation(){};

/**Constructor

* @param a is the value of variable alpha.

* @param a is the value of constant alpha.

* @param t is the discrete time increment.

* @param O is the boundary value for x.

* @param m is the number of time increments to model.

*/

public LangevinEquation(double a, double a0, double t, double O, int m)

{alpha = a;

alpha0 = a0;

dt = t;

x0 = O;

max =m;

}

/**Numerically models the Langevin equation. Starting from a set

* boundary value, updates the position over discrete time increments

* according to the Langevin equation.

* @return A HashMap of x values with keys determining the time increment multiple

* they correspond to.

* @throws Exception

*/
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public HashMap<Integer,Double> numericalLangevin() throws Exception

{int i = 0;

double x = this.x0;

RandomVariable rand = new RandomVariable(0,Math.sqrt(2*this.alpha0));

HashMap<Integer,Double> sol = new HashMap<Integer,Double>();

sol.put(i, x);

while(i < this.max){

x = (1 - this.alpha * this.dt)*x +

(rand.genRandVar() * Math.sqrt(this.dt));

sol.put((1+i), x);

i++;

}

return sol;

}

}

public class RandomVariable {

/**Member variable: mean is the chosen

* mean of the normal distribution.

*/

double mean;

/**Member variable: stDev is the chosen standard deviation of the

* normal distribution.

*/

double stDev;

/**Constructor

*/

public RandomVariable() {}

/**Constructor

* @param m is the desired mean of the distribution

* @param sd is the desired standard deviation of the

* distribution.

*/

public RandomVariable(double m,double sd)

{mean = m; stDev = sd;}

/**Generates a random double subject to the Gaussian distribution

* defined by the mean and stDev of the RandomVariable object.

* @return A random double subject to the Gaussian distribution.

* @throws Exception if stDev is less than or equal to 0.

*/

public double genRandVar() throws Exception

{if (this.stDev <= 0){

throw new Exception("Standard deviation of RandomVariable" +

"object must be greater than 0.");

}

double rand;

Random randNo = new Random();

rand = this.stDev * randNo.nextGaussian() + this.mean;

return rand;

}

}

The code used to model the Jarzynski equality in section 2.4:

/**Runs the Langevin update manually with the simple action of periodically changing the

spring constant.

* Calculates the average of the exponentiated difference in work done by the system and work

done on the system

* through the action over all cycles in the process, as well as the variance.

* Does this manually in an effort to make the process more efficient and quicker.
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* @param alpha0 The lower value for the spring constant.

* @param alpha1 The upper value for the spring constant.

* @param dt The time increment value.

* @param x0 The boundary value of x at t = 0.

* @param actionNo The number of times the action is applied.

* @param deltat The number of time increments each cycle is run for.

* @return The average exponentiated value for the difference in work done over all cycles in a

process, and the variance of these values.

* @throws Exception All arguments except x0 must be greater than 0.

*/

public static double[] averageAlwaysActionWithVarianceMk2(double alpha0, double alpha1, double

dt, double x0,int actionNo,int deltat)

throws Exception{

if((alpha0<=0)&&(alpha1<=0)&&(dt<=0)&&(actionNo<=0)&&(deltat<=0)){

throw new Exception("All arguments except x0 must be greater than 0.");

}

double x = x0;

int i1 = 0;

while(i1 < deltat){

Random rand = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand.nextGaussian()) * Math.sqrt(dt));

i1++;

}

int i2 = 0;

double eSum = 0;

double evSum = 0;

while(i2<actionNo){

double w1 = ((alpha1 - alpha0)*Math.pow(x, 2))/(2*alpha0);

int i3 = 0;

while(i3 < Math.floor(deltat/2)){

Random rand1 = new Random();

x = (1 - alpha1 * dt)*x + (((Math.sqrt(2*alpha0)) * rand1.nextGaussian()) * Math.sqrt(dt));

i3++;

}

double w2 = ((alpha0 - alpha1)*Math.pow(x, 2))/(2*alpha0);

double w = w1 + w2;

double ew = Math.exp(- w);

double e2w = Math.exp(- 2*w);

eSum += ew;

evSum += e2w;

int i4 = (int) Math.floor(deltat/2);

while(i4 < deltat){

Random rand2 = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand2.nextGaussian()) * Math.sqrt(dt));

i4++;

}

i2++;

}

double averageWork = eSum / actionNo;

double varianceWork = (evSum / actionNo) - Math.pow(averageWork, 2);

double[] averageWithVariance = new double[2];

averageWithVariance[0] = averageWork;

averageWithVariance[1] = varianceWork;

return averageWithVariance;

}

The code used to model the Jarzynski-Sagawa-Ueda equality with range x′a = 0.5 in section 3.3:

/**Runs the Langevin update manually with the simple action of periodically checking to see if

the position

* is within a given range of the boundary value, then changing the spring constant if it is,

and doing

* nothing if it isn’t.
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* Calculates the average of the exponentiated difference in work done by the system and work

done on the system

* through the action over all cycles in the process, as well as the variance.

* @param alpha0 The lower value for the spring constant.

* @param alpha1 The upper value for the spring constant.

* @param dt The time increment value.

* @param x0 The boundary value of x at t = 0.

* @param xRange The value for which the action is applied if (x0 - xRange) < x < (x0 + xRange).

* @param actionNo The number of times the action is applied.

* @param deltat The number of time increments each cycle is run for.

* @return The average exponentiated value for the difference in work done over all cycles in a

process, and the variance of these values.

* @throws Exception All arguments except x0 must be greater than 0.

*/

public static double[] averageSimpleActionWithVariance(double alpha0, double alpha1, double

dt, double x0,double xRange,int actionNo,int deltat)

throws Exception{

if((alpha0<=0)&&(alpha1<=0)&&(dt<=0)&&(actionNo<=0)&&(deltat<=0)){

throw new Exception("All arguments except x0 must be greater than 0.");

}

double x = x0;

int i1 = 0;

while(i1 < deltat){

Random rand = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand.nextGaussian()) * Math.sqrt(dt));

i1++;

}

int i2 = 0;

double eSum = 0;

double evSum = 0;

while(i2<actionNo){

if((x < (x0 + xRange))&&(x > (x0 - xRange))){

double w1 = ((alpha1 - alpha0)*Math.pow(x, 2))/(2*alpha0);

int i3 = 0;

while(i3 < Math.floor(deltat/2)){

Random rand1 = new Random();

x = (1 - alpha1 * dt)*x + (((Math.sqrt(2*alpha0)) * rand1.nextGaussian()) * Math.sqrt(dt));

i3++;

}

double w2 = ((alpha0 - alpha1)*Math.pow(x, 2))/(2*alpha0);

double w = w1 + w2;

double ew = Math.exp(- w);

double e2w = Math.exp(- 2*w);

eSum += ew;

evSum += e2w;

int i4 = (int) Math.floor(deltat/2);

while(i4 < deltat){

Random rand2 = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand2.nextGaussian()) * Math.sqrt(dt));

i4++;

}

}

else{

int i5 = 0;

while(i5 < deltat){

Random rand3 = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand3.nextGaussian()) * Math.sqrt(dt));

i5++;

}

eSum++;

evSum++;

}

i2++;
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}

double averageWork = eSum / actionNo;

double varianceWork = (evSum / actionNo) - Math.pow(averageWork, 2);

double[] averageWithVariance = new double[2];

averageWithVariance[0] = averageWork;

averageWithVariance[1] = varianceWork;

return averageWithVariance;

}

The code used to model the Jarzynski-Sagawa-Ueda equality with optimal range in section 3.3 and
to model the time dependent case in section 3.4:

/**Runs the Langevin update manually with the simple action of periodically checking to see if

the position

* is within a given range of the boundary value, then changing the spring constant if it is,

and doing

* nothing if it isn’t. Does this with the optimal range calculated

* Calculates the average of the exponentiated difference in work done by the system and work

done on the system

* through the action over all cycles in the process, as well as the variance.

* @param alpha0 The lower value for the spring constant.

* @param alpha1 The upper value for the spring constant.

* @param dt The time increment value.

* @param x0 The boundary value of x at t = 0.

* @param cycleFraction The fraction which, when multiplied by deltat, gives the number of

timesteps to go before returning the spring constant to its first value.

* @param actionNo The number of times the action is applied.

* @param deltat The number of time increments each cycle is run for.

* @return The average exponentiated value for the difference in work done over all cycles in a

process, and the variance of these values.

* @throws Exception All arguments except x0 must be greater than 0.

*/

public static double[] averageOptimalRangeActionWithVariance(double alpha0, double alpha1,

double dt, double x0,double cycleFraction,int actionNo,int deltat)

throws Exception{

if((alpha0<=0)&&(alpha1<=0)&&(dt<=0)&&(cycleFraction<=0)&&(actionNo<=0)&&(deltat<=0)){

throw new Exception("All arguments except x0 must be greater than 0.");

}

double xRange = Math.sqrt(Math.log(alpha1 / alpha0) / (alpha1 - alpha0));

double x = x0;

int i1 = 0;

while(i1 < deltat){

Random rand = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand.nextGaussian()) * Math.sqrt(dt));

i1++;

}

int i2 = 0;

double eSum = 0;

double evSum = 0;

while(i2<actionNo){

if((x < (x0 + xRange))&&(x > (x0 - xRange))){

double w1 = ((alpha1 - alpha0)*Math.pow(x, 2))/(2*alpha0);

int i3 = 0;

while(i3 < Math.floor(deltat * cycleFraction)){

Random rand1 = new Random();

x = (1 - alpha1 * dt)*x + (((Math.sqrt(2*alpha0)) * rand1.nextGaussian()) * Math.sqrt(dt));

i3++;

}

double w2 = ((alpha0 - alpha1)*Math.pow(x, 2))/(2*alpha0);

double w = w1 + w2;

double ew = Math.exp(- w);

double e2w = Math.exp(- 2*w);

eSum += ew;
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evSum += e2w;

int i4 = (int) Math.floor(deltat * cycleFraction);

while(i4 < deltat){

Random rand2 = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand2.nextGaussian()) * Math.sqrt(dt));

i4++;

}

}

else{

int i5 = 0;

while(i5 < deltat){

Random rand3 = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand3.nextGaussian()) * Math.sqrt(dt));

i5++;

}

eSum++;

evSum++;

}

i2++;

}

double averageWork = eSum / actionNo;

double varianceWork = (evSum / actionNo) - Math.pow(averageWork, 2);

double[] averageWithVariance = new double[2];

averageWithVariance[0] = averageWork;

averageWithVariance[1] = varianceWork;

return averageWithVariance;

}

The code used to model the Jarzynski-Sagawa-Ueda equality with error in measurement in section
3.4:

/**Runs the Langevin update manually with the simple action of periodically checking to see if

the position

* is within a given range of the boundary value, then changing the spring constant if it is,

and doing

* nothing if it isn’t. Does this with an error in the measurement. Does this with the optimal

range calculated

* Calculates the average of the exponentiated difference in work done by the system and work

done on the system

* through the action over all cycles in the process, as well as the variance.

* @param alpha0 The lower value for the spring constant.

* @param alpha1 The upper value for the spring constant.

* @param error The error associated with the measurement of the position at the start of each

cycle.

* @param dt The time increment value.

* @param x0 The boundary value of x at t = 0.

* @param cycleFraction The fraction which, when multiplied by deltat, gives the number of

timesteps to go before returning the spring constant to its first value.

* @param actionNo The number of times the action is applied.

* @param deltat The number of time increments each cycle is run for.

* @return The average exponentiated value for the difference in work done over all cycles in a

process, and the variance of these values.

* @throws Exception All arguments except x0 must be greater than 0.

*/

public static double[] averageErrorActionWithVariance(double alpha0, double alpha1, double

error, double dt, double x0,double cycleFraction,int actionNo,int deltat)

throws Exception{

if((alpha0<=0)&&(alpha1<=0)&&(error<0)&&(dt<=0)&&(cycleFraction<=0)&&(actionNo<=0)&&(deltat<=0)){

throw new Exception("All arguments except x0 must be greater than 0.");

}

double xRange = Math.sqrt((Math.log((Math.pow(error,2) + 1) / (Math.pow(error,2) + (alpha0 /

alpha1)))*(Math.pow(error,2) + 1)*(Math.pow(error,2) + (alpha0 / alpha1))) / (1 - (alpha0

/ alpha1)));
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double x = x0;

int i1 = 0;

while(i1 < deltat){

Random rand = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand.nextGaussian()) * Math.sqrt(dt));

i1++;

}

int i2 = 0;

double eSum = 0;

double evSum = 0;

while(i2<actionNo){

Random masterrand = new Random();

double y = error * masterrand.nextGaussian() + x;

if((y < (x0 + xRange))&&(y > (x0 - xRange))){

double w1 = ((alpha1 - alpha0)*Math.pow(x, 2))/(2*alpha0);

int i3 = 0;

while(i3 < Math.floor(deltat * cycleFraction)){

Random rand1 = new Random();

x = (1 - alpha1 * dt)*x + (((Math.sqrt(2*alpha0)) * rand1.nextGaussian()) * Math.sqrt(dt));

i3++;

}

double w2 = ((alpha0 - alpha1)*Math.pow(x, 2))/(2*alpha0);

double w = w1 + w2;

double ew = Math.exp(- w);

double e2w = Math.exp(- 2*w);

eSum += ew;

evSum += e2w;

int i4 = (int) Math.floor(deltat * cycleFraction);

while(i4 < deltat){

Random rand2 = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand2.nextGaussian()) * Math.sqrt(dt));

i4++;

}

}

else{

int i5 = 0;

while(i5 < deltat){

Random rand3 = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand3.nextGaussian()) * Math.sqrt(dt));

i5++;

}

eSum++;

evSum++;

}

i2++;

}

double averageWork = eSum / actionNo;

double varianceWork = (evSum / actionNo) - Math.pow(averageWork, 2);

double[] averageWithVariance = new double[2];

averageWithVariance[0] = averageWork;

averageWithVariance[1] = varianceWork;

return averageWithVariance;

}

The code used to model the Jarzynski-Sagawa-Ueda equality with the optimal change in spring
constant in section 3.5:

/**Runs the Langevin update manually with the optimal action of periodically checking to see

if the position

* is within a given range of the boundary value, then increasing the spring constant if it is,

or to if the

* position is outside another given range of the boundary value, then decreasing the spring

constant, and doing
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* nothing if neither of those are true. Does this with the optimal ranges calculated.

* Calculates the average of the exponentiated difference in work done by the system and work

done on the system

* through the action over all cycles in the process, as well as the variance.

* @param alpha0 The starting value for the spring constant.

* @param alphaU The upper value for the spring constant.

* @param alphaL The lower value for the spring constant.

* @param dt The time increment value.

* @param x0 The boundary value of x at t = 0.

* @param cycleFraction The fraction which, when multiplied by deltat, gives the number of

timesteps to go before returning the spring constant to its first value.

* @param actionNo The number of times the action is applied.

* @param deltat The number of time increments each cycle is run for.

* @return The average exponentiated value for the difference in work done over all cycles in a

process, and the variance of these values.

* @throws Exception All arguments except x0 must be greater than 0.

*/

public static double[] optimalActionWithVariance(double alpha0, double alphaL, double alphaU,

double dt, double x0,double cycleFraction,int actionNo,int deltat)

throws Exception{

if((alpha0<=0)&&(alphaL<=0)&&(alphaU<=0)&&(dt<=0)&&(cycleFraction<=0)&&(actionNo<=0)&&(deltat<=0)){

throw new Exception("All arguments except x0 must be greater than 0.");

}

double xRangeI = Math.sqrt(Math.log(alphaU / alpha0) / (alphaU - alpha0));

double xRangeO = Math.sqrt(Math.log(alpha0 / alphaL) / (alpha0 - alphaL));

double x = x0;

int i1 = 0;

while(i1 < deltat){

Random rand = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand.nextGaussian()) * Math.sqrt(dt));

i1++;

}

int i2 = 0;

double eSum = 0;

double evSum = 0;

while(i2<actionNo){

if((x < (x0 + xRangeI))&&(x > (x0 - xRangeI))){

double w1 = ((alphaU - alpha0)*Math.pow(x, 2))/(2*alpha0);

int i3 = 0;

while(i3 < Math.floor(deltat * cycleFraction)){

Random rand1 = new Random();

x = (1 - alphaU * dt)*x + (((Math.sqrt(2*alpha0)) * rand1.nextGaussian()) * Math.sqrt(dt));

i3++;

}

double w2 = ((alpha0 - alphaU)*Math.pow(x, 2))/(2*alpha0);

double w = w1 + w2;

double ew = Math.exp(- w);

double e2w = Math.exp(- 2*w);

eSum += ew;

evSum += e2w;

int i4 = (int) Math.floor(deltat * cycleFraction);

while(i4 < deltat){

Random rand2 = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand2.nextGaussian()) * Math.sqrt(dt));

i4++;

}

}

else if((x > (x0 + xRangeO))||(x < (x0 - xRangeO))){

double w1 = ((alphaL - alpha0)*Math.pow(x, 2))/(2*alpha0);

int i5 = 0;

while(i5 < Math.floor(deltat * cycleFraction)){

Random rand3 = new Random();

x = (1 - alphaL * dt)*x + (((Math.sqrt(2*alpha0)) * rand3.nextGaussian()) * Math.sqrt(dt));
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i5++;

}

double w2 = ((alpha0 - alphaL)*Math.pow(x, 2))/(2*alpha0);

double w = w1 + w2;

double ew = Math.exp(- w);

double e2w = Math.exp(- 2*w);

eSum += ew;

evSum += e2w;

int i6 = (int) Math.floor(deltat * cycleFraction);

while(i6 < deltat){

Random rand4 = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand4.nextGaussian()) * Math.sqrt(dt));

i6++;

}

}

else {

int i7 = 0;

while(i7 < deltat){

Random rand5 = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0)) * rand5.nextGaussian()) * Math.sqrt(dt));

i7++;

}

eSum++;

evSum++;

}

i2++;

}

double averageWork = eSum / actionNo;

double varianceWork = (evSum / actionNo) - Math.pow(averageWork, 2);

double[] averageWithVariance = new double[2];

averageWithVariance[0] = averageWork;

averageWithVariance[1] = varianceWork;

return averageWithVariance;

}

The code used to model the Jarzynski-Tsallis equality in section 4.2:

/**Runs the non-isothermal Langevin update manually with the simple action of periodically

changing the spring constant.

* Calculates the average of the Tsallis q-exponentiated difference in work done by the system

and work done on the system

* through the action over all cycles in the process, as well as the variance.

* Does this manually in an effort to make the process more efficient and quicker.

* @param alpha0 The lower value for the spring constant.

* @param alpha1 The upper value for the spring constant.

* @param alphaT The constant spring constant parameter for the Tsallis q-exponential.

* @param dt The time increment value.

* @param x0 The boundary value of x at t = 0.

* @param actionNo The number of times the action is applied.

* @param deltat The number of time increments each cycle is run for.

* @return The average exponentiated value for the difference in work done over all cycles in a

process, and the variance of these values.

* @throws Exception All arguments except x0 must be greater than 0.

*/

public static double[] averageAlwaysTsallisActionWithVariance(double alpha0, double alpha1,

double alphaT, double dt, double x0,int actionNo,int deltat)

throws Exception{

if((alpha0<=0)&&(alpha1<=0)&&(alphaT<=0)&&(dt<=0)&&(actionNo<=0)&&(deltat<=0)){

throw new Exception("All arguments except x0 must be greater than 0.");

}

double x = x0;

int i1 = 0;

double q1 = 1 + (alphaT / (alpha1 - alpha0));
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double q2 = 1 - (alphaT / (alpha1 - alpha0));

while(i1 < deltat){

Random rand = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0 + alphaT*Math.pow(x,2))) *

rand.nextGaussian()) * Math.sqrt(dt));

i1++;

}

int i2 = 0;

double eSum = 0;

double evSum = 0;

while(i2<actionNo){

double w1 = ((alpha1 - alpha0)*Math.pow(x, 2))/(2*alpha0);

double expq1 = Math.pow((1 + (1 - q1)*(- w1)),(1 / (1 - q1)));

int i3 = 0;

while(i3 < Math.floor(deltat/2)){

Random rand1 = new Random();

x = (1 - alpha1 * dt)*x + (((Math.sqrt(2*alpha0 + alphaT*Math.pow(x,2))) *

rand1.nextGaussian()) * Math.sqrt(dt));

i3++;

}

double w2 = ((alpha0 - alpha1)*Math.pow(x, 2))/(2*alpha0);

double expq2 = Math.pow((1 + (1 - q2)*(- w2)),(1 / (1 - q2)));

double ew = expq1 * expq2;

double e2w = Math.pow(ew, 2);

eSum += ew;

evSum += e2w;

int i4 = (int) Math.floor(deltat/2);

while(i4 < deltat){

Random rand2 = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0 + alphaT*Math.pow(x,2))) *

rand2.nextGaussian()) * Math.sqrt(dt));

i4++;

}

i2++;

}

double averageWork = eSum / actionNo;

double varianceWork = (evSum / actionNo) - Math.pow(averageWork, 2);

double[] averageWithVariance = new double[2];

averageWithVariance[0] = averageWork;

averageWithVariance[1] = varianceWork;

return averageWithVariance;

}

The code used to model the position distribution in section 4.3:

/** A class to perform the non-isothermal langevin update for a set number of repeats,

* and then store the final position values in an ArrayList.

* @param alpha The spring constant value for the update.

* @param alphaT The parameter for the Tsallis statistics.

* @param dt The timestep value.

* @param x0 The initial position value.

* @param deltat The number of timesteps for the process.

* @param sample The number of repeats for the process.

* @return An ArrayList of final position values.

* @throws Exception All arguments except x0 must be greater than 0.

*/

public static ArrayList<Double> tsallisStatisticsTest(double alpha, double alphaT, double dt,

double x0, int deltat, int sample)

throws Exception{

if((alpha<=0)&&(alphaT<=0)&&(dt<=0)&&(deltat<=0)&&(sample<=0)){

throw new Exception("All arguments except x0 must be greater than 0.");

}

ArrayList<Double> list = new ArrayList<Double>();
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int i1 = 0;

while(i1 < sample){

double x = x0;

int i2 = 0;

while(i2 < deltat){

Random rand = new Random();

x = (1 - alpha * dt)*x + (((Math.sqrt(2*alpha + alphaT*Math.pow(x,2))) * rand.nextGaussian())

* Math.sqrt(dt));

i2++;

}

list.add(x);

i1++;

}

return list;

}

The code used to model the work distributions in section 4.3:

/**Performs the non-isothermal langevin update at the lower spring constant value, and repeats

this for a specified sample.

* Calculates the work values for a step up at the end of each sample and stores them in an

ArrayList.

* @param alpha0 The lower spring constant value.

* @param alpha1 The higher spring constant value.

* @param alphaT The parameter for the Tsallis statistics.

* @param dt The timestep value.

* @param x0 The initial position value.

* @param deltat The number of timesteps in a cycle.

* @param actionNo The number of cycles in a process.

* @return An ArrayList of the work values from sample of updates.

* @throws Exception All arguments except x0 must be greater than 0.

*/

public static ArrayList<Double> stepUpWorkList(double alpha0, double alpha1, double alphaT,

double dt, double x0, int deltat, int sample)

throws Exception{

if((alpha0<=0)&&(alpha1<=0)&&(alphaT<=0)&&(dt<=0)&&(deltat<=0)&&(sample<=0)){

throw new Exception("All arguments except x0 must be greater than 0.");

}

ArrayList<Double> list = new ArrayList<Double>();

int i1 = 0;

while(i1 < sample){

double x = x0;

int i2 = 0;

while(i2 < deltat){

Random rand = new Random();

x = (1 - alpha0 * dt)*x + (((Math.sqrt(2*alpha0 + alphaT*Math.pow(x,2))) *

rand.nextGaussian()) * Math.sqrt(dt));

i2++;

}

double w = ((alpha1 - alpha0)*Math.pow(x, 2))/(2*alpha0);

list.add(w);

i1++;

}

return list;

}

/**Performs the non-isothermal langevin update at the higher spring constant, and repeats this

for a specified sample.

* Calculates the work values for a step down at the end of each sample and stores them in an

ArrayList.

* @param alpha0 The lower spring constant value.

* @param alpha1 The higher spring constant value.
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* @param alphaT The parameter for the Tsallis statistics.

* @param dt The timestep value.

* @param x0 The initial position value.

* @param deltat The number of timesteps in a cycle.

* @param actionNo The number of cycles in a process.

* @return An ArrayList of the work values from sample of updates.

* @throws Exception All arguments except x0 must be greater than 0.

*/

public static ArrayList<Double> stepDownWorkList(double alpha0, double alpha1, double alphaT,

double dt, double x0, int deltat, int sample)

throws Exception{

if((alpha0<=0)&&(alpha1<=0)&&(alphaT<=0)&&(dt<=0)&&(deltat<=0)&&(sample<=0)){

throw new Exception("All arguments except x0 must be greater than 0.");

}

ArrayList<Double> list = new ArrayList<Double>();

int i1 = 0;

while(i1 < sample){

double x = x0;

int i2 = 0;

while(i2 < deltat){

Random rand = new Random();

x = (1 - alpha1 * dt)*x + (((Math.sqrt(2*alpha0 + alphaT*Math.pow(x,2))) *

rand.nextGaussian()) * Math.sqrt(dt));

i2++;

}

double w = ((alpha0 - alpha1)*Math.pow(x, 2))/(2*alpha0);

list.add(w);

i1++;

}

return list;

}
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