
Transition to Turbulence in Pipe Flow
Janis Klaise, Dwight Barkley

Centre for Complexity Science, University of Warwick

Introduction

I Fluid flow in a pipe undergoes a transition from a laminar state to
sustained turbulence as the Reynolds number Re increases.

I Recently [1] there have been experimental results determining the
critical point Rec as the marker for the onset of sustained turbulence

I Currently critical exponents are inaccessible to experiments.

I We model pipe flow in 1+1 dimensions and investigate scaling
properties at criticality with effort to measure critical exponents to
compare with those of the Directed Percolation (DP) universality class

PDE Model

I We model the turbulence intensity q and mean velocity u in the pipe:

qt + uqx = q[u + r − 1 − (r + δ) (q − 1)2] + qxx

ut + uux = ε1 (1 − u) − ε2uq − ux

I The model includes minimum derivatives to allow for diffusion of
turbulent regions and left-right symmetry breaking

I r is a control parameter that plays the role of the Reynolds number

I Although this model captures the transition and basic behaviour of pipe
flow, it is too simplistic to to show puff decay and puff splitting

Discrete Model

I A discrete model for pipe flow with transient chaos was introduced in [2]

I We consider a modified model with non-linear downstream advection:

qt+1
x+1 = f k[qt

x + d(qt
x−1 − 2qt

x + qt
x+1) − c(1 + ut

x − ζ)(qt
x − qt

x−1)]

ut+1
x+1 = ut

x + ε1(1 − ut
x) − ε2ut

xqt
x − c(1 + ut

x)(ut
x − ut

x−1)

I Here f is a tent map given in Figure 1 which introduces chaotic
dynamics in the model as observed in real pipe flow.
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Figure 1 : Chaotic tent map

I α(u,R) separates chaotic and monotonic dynamics of q

I The map is incorporated in the model by setting α = 2000(1− 0.8u)R−1

I R is a control parameter analogous to the Reynolds number

I There is a critical point Rc ≈ 2329.8 beyond which turbulence in the
system is sustained

I This model reproduces the features of real pipe flow shown in Figure 2.

Turbulent Patches

I Figure 2 shows different profiles of turbulence intensity and velocity
. R > Rc, turbulent puffs excite nearby regions and split into more puffs
. R >> Rc, puffs expand into slugs - featureless turbulence
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Figure 2 : Snapshots of turbulence: equilibrium puff, puff spliting, slug formation

I Figure 3 shows turbulence intensity for R > Rc in a comoving frame

I The system starts with a single puff that splits into several others.

I More puffs survive than die out, asymptotically the system tends to a
constant fraction of turbulent points Ft
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Figure 3 : Space-time plot of a splitting puff

Time Decay of the Order Parameter

I The order parameter of the system is the turbulence fraction Ft
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Figure 4 : Turbulence fraction decay

I Figure 4 shows the timeseries of three regimes of the order parameter
started from a fully turbulent state
. R < Rc, system tends exponentially to a laminar state with Ft = 0
. R > Rc, system saturates at some stationary value of Ft

. R = Rc, we have Ft ∼ t−δ with δ = 0.15(2)

Scaling of the Turbulence Fraction

I Figure 5 shows the scaling of the turbulence fraction Ft near criticality

I We observe Ft ∼ (R − Rc)β with β = 0.27(1)
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Figure 5 : Turbulence fraction scaling at criticality

I This is consistent with the value observed for Directed Percolation

Laminar Length Distribution

I Inspired by experimental measurements, we also look at the distribution
of laminar domains

I Figure 6 shows exponentia decay far from Rc

I At criticality the system undergoes power-law scaling
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Figure 6 : Histogram of laminar lengths: R > Rc and R = Rc

Conclusions and Further Research

I Qualitatively the model exhibits features observed in real pipe flow

I Calculations of the critical exponents β and δ agree with those of the
Directed Percolation universality class

I It remains to obtain more quantitatively accurate data to compare with
experimental results and DP

I An even greater further challenge is to extend the approach to other
shear flows such as plane Couette flow
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