Transition to Turbulence in Pipe Flow

Introduction

centre for

complexity

science

► Fluid flow in a pipe undergoes a transition from a laminar state to sustained turbulence as the Reynolds number Re increases.

Engineering and Physical Sciences

- ▶ Recently [1] there have been experimental results determining the critical point Re_c as the marker for the onset of sustained turbulence
- Currently critical exponents are inaccessible to experiments.
- \blacktriangleright We model pipe flow in 1+1 dimensions and investigate scaling properties at criticality with effort to measure critical exponents to compare with those of the Directed Percolation (DP) universality class

PDE Model

 \blacktriangleright We model the turbulence intensity q and mean velocity u in the pipe:

$$q_{t} + uq_{x} = q[u + r - 1 - (r + \delta)(q - 1)^{2}] + q_{xx}$$

$$u_{t} + uu_{x} = \epsilon_{1}(1 - u) - \epsilon_{2}uq - u_{x}$$

- ► The model includes minimum derivatives to allow for diffusion of turbulent regions and left-right symmetry breaking
- ightarrow r is a control parameter that plays the role of the Reynolds number
- Although this model captures the transition and basic behaviour of pipe flow, it is too simplistic to to show *puff decay* and *puff splitting*

Discrete Model

► A discrete model for pipe flow with transient chaos was introduced in [2] ► We consider a modified model with non-linear downstream advection:

$$\begin{aligned} q_{x+1}^{t+1} &= f^k [q_x^t + d(q_{x-1}^t - 2q_x^t + q_{x+1}^t) - c(1 + u_x^t - \zeta)(q_x^t - q_{x-1}^t)] \\ u_{x+1}^{t+1} &= u_x^t + \epsilon_1 (1 - u_x^t) - \epsilon_2 u_x^t q_x^t - c(1 + u_x^t)(u_x^t - u_{x-1}^t) \end{aligned}$$

► Here f is a tent map given in Figure 1 which introduces chaotic dynamics in the model as observed in real pipe flow.

Figure 1 : Chaotic tent map

- $\blacktriangleright \alpha(u, R)$ separates chaotic and monotonic dynamics of q
- ▶ The map is incorporated in the model by setting $\alpha = 2000(1 0.8u)R^{-1}$
- ► *R* is a control parameter analogous to the Reynolds number
- ▶ There is a critical point $R_c \approx 2329.8$ beyond which turbulence in the system is sustained
- ► This model reproduces the features of real pipe flow shown in Figure 2.

Janis Klaise, Dwight Barkley

Centre for Complexity Science, University of Warwick

Turbulent Patches

► Figure 2 shows different profiles of turbulence intensity and velocity $P > R_c$, turbulent puffs excite nearby regions and split into more puffs $P > R_c$, puffs expand into *slugs* - featureless turbulence

Snapshots of turbulence: equilibrium puff, puff spliting, slug formation Figure 2 :

Figure 3 shows turbulence intensity for $R > R_c$ in a comoving frame ► The system starts with a single puff that splits into several others. ► More puffs survive than die out, asymptotically the system tends to a constant fraction of turbulent points F_t

Figure 3 : Space-time plot of a splitting puff

Time Decay of the Order Parameter

Figure 4 : Turbulence fraction decay

► Figure 4 shows the timeseries of three regimes of the order parameter started from a fully turbulent state

- $P R < R_c$, system tends exponentially to a laminar state with $F_t = 0$ $P R > R_c$, system saturates at some stationary value of F_t
- $P = R_c$, we have $F_t \sim t^{-\delta}$ with $\delta = 0.15(2)$

Scaling of the Turbulence Fraction

Laminar Length Distribution

Conclusions and Further Research

- ► It remains to obtain more quantitatively accurate data to compare with experimental results and DP
- ► An even greater further challenge is to extend the approach to other shear flows such as plane Couette flow

References

- 84:016309, Jul 2011.

THE UNIVERSITY OF WARWICK

Figure 5 shows the scaling of the turbulence fraction F_t near criticality ▶ We observe $F_t \sim (R - R_c)^{\beta}$ with $\beta = 0.27(1)$

Figure 5 : Turbulence fraction scaling at criticality

► This is consistent with the value observed for Directed Percolation

Qualitatively the model exhibits features observed in real pipe flow \blacktriangleright Calculations of the critical exponents β and δ agree with those of the Directed Percolation universality class

[1] K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof. The onset of turbulence in pipe flow. *Science*, 333(6039):192–196, 2011. [2] D. Barkley. Simplifying the complexity of pipe flow. *Phys. Rev. E*,