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My love is as a fever, longing still 

For that which longer nurseth the disease, 

Feeding on that which doth preserve the ill, 

Th’uncertain sickly appetite to please. 

 

My reason, the physician to my love, 

Angry that his prescriptions are not kept, 

Hath left me, and I, desperate, now approve 

Desire is death, which physic did except. 

 

Past cure I am, now reason is past care, 

And frantic mad with evermore unrest; 

My thoughts and my discourse as madmen's are, 

At random from the truth vainly expressed: 

For I have sworn thee fair, and thought thee bright, 

Who art as black as hell, as dark as night. 

 

-- Sonnet 147, William Shakespeare 

 

 

 

It is impossible for people to live without disease (or love). 

May they not suffer too much. Live long and prosper. 

 

I want to thank my supervisor, Prof. Clancy, who has helped me throughout the entire project. 

I also thank my friends who spent time reviewing parts of my draft. 

mailto:sgylu3@liv.ac.uk
mailto:dclancy@liverpool.ac.uk


Yihe Lu, Statistics Project, MATH399 

-1- 
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Abstract 

The SIRS model with demography is established for endemic diseases. With the equivalent 

deterministic model as an auxiliary tool, the stochastic model is studied by computer simulations. 

Comparison between the two transmission terms shows the frequency-dependent transmission 

stochastic model requires smaller population than the density-dependent transmission stochastic model 

for their equivalent deterministic models to be good approximations. Nåsell’s approximations for 

quasi-stationary distribution are tested against simulation samples; the approximation for diseases like 

the common cold is fairly good, but the one for diseases like chickenpox is invalid. 

keywords: Endemic disease; SIRS stochastic model with demography; Computer simulation; 

Transmission term; Quasi-stationary distribution 

1. Introduction 

Infectious diseases have contributed significantly to evolution, of which their historical impacts on 

human beings are just examples, documented the most recently and studied the most thoroughly 

(Mollison, 1995). However, it has been at most three centuries since the mathematical approach 

emerges in epidemic research (Bernoulli, 1760, cited in Daley and Gani, 1999). 

Regardless of their various species, pathogens of infectious diseases are fairly small; they directly 

interact with cells, by which, however, they can affect the behavior of the physical systems of their 

host, and through the individual level, they could have noticeable influence on the population, locally 

or even globally (Mollison, 1995). The spread of pathogens at all these scales is a random process; 

whether some individual catches the disease, whether the immune system extinguishes the invading 

pathogens, and whether the disease spreads throughout the population or dies out, all occur at random. 

Nonetheless, the mathematical study of epidemics began with a deterministic model at the individual 

level (Bernoulli, 1760). Even though in The Selfish Gene (2006), a masterpiece explaining the essence 
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of all life forms by genes, Richard Dawkins, who firmly holds a gene-centred view, admits that it is 

more convenient to describe the behaviour of ‘survival machines’ at the individual level. For a similar 

but more practical reason, epidemiologists mainly work on modelling the spread of disease among 

individuals, because by understanding the epidemic process, people could learn how to control or 

prevent it, which may reduce the threat and risk of the disease, e.g. the first paper by Daniel Bernoulli 

(1760) was to help reduce the death rate of smallpox, in order to increase the population of France 

(Daley and Gani, 1999). 

 

 

Individuals are classified by a series of disease states since pathogens have consequent effects on them 

in different epochs, as illustrated in Figure 1 (Daley and Gani, 1999). However, there are fewer 

compartments employed in most epidemic models for practical reasons. An SI (Susceptible-Infective) 

model with its population consisting only of susceptible and infective hosts is conventionally called 

the simple epidemic. An individual is susceptible before    when infection occurs; after that, it 

becomes and remains infective, assumed to be infectious with no chance of recovery or removal. The 

simple epidemic is essentially the same as the logistic model (Verhulst, 1838), but of the growth of 

susceptible population (Daley and Gani, 1999). An SIR (Susceptible-Infective-Removal) model has 

one more compartment, namely removal, than the SI model. A removal is an individual removed from 

the epidemic for reasons based on different assumptions, e.g. disease-related death, immunity, 

isolation. Kermack and McKendrick (1927) firstly created this model for a homogeneous population, 

whose results have constituted a benchmark for many epidemic models. Two subsequent papers 

(Kermack and McKendrick, 1932, 1933) allow demographic variations, imperfect immunity, etc. and 

try to explain the mechanisms for endemic diseases. There are also other compartments, e.g. E for 

exposed groups (Liu, et al., 1987; Li and Muldowney, 1995), which corresponds to hosts in the latent 

period between    to    (cf. Bailey, 1957), C for carriers who are showing no symptoms but 

  : Infection occurs         : Latency to infectious transition 

  : Symptoms appear        : First transmission to another susceptible 

  : Individual no longer infectious to susceptibles (recovery or removal) 

Note:    should lie in interval        , so       (as shown) and       are both possible. 

Serial Interval 

Incubation period 

               

time 
Immune/Removed Infectious Latent Susceptible 

Epoch: 

Individual’s 

disease state: 

Figure 1 – Progress of a disease in an individual. 
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infectious, i.e. in the state between    to    (Daley and Gani, 1999), etc.; they are less frequently 

employed because they may work well for certain diseases, but relatively lack of generality. This paper 

is concentrated on the SIRS model, which, like the SIR model, consists of three groups but further 

assumes that hosts removed will become susceptible again. Certainly in this case, hosts of removal are 

hosts of recovery, not someone dying for the disease and reviving from death; in fact, the disease is 

assumed not to be lethal at all, that is, there is no disease-related death (cf. Figure 2). Explicit 

definitions and detailed explanations of the model are contained in Section 3. 

 

 

Though all the previous models are studying epidemics which are essentially random processes, most 

of the works aforementioned (Bernoulli, 1760; Verhulst, 1838; Kermack and McKendrick, 1927, 1932, 

1933; Liu, et al., 1987; Li and Muldowney, 1995) are concentrated on deterministic models. For 

models with a sufficiently large population, the mean numbers in the infection process would be 

characterised satisfactorily by the corresponding deterministic model. However, the deterministic 

model may approximate the process unfairly when the population size is small (Daley and Gani, 1999). 

Hence, although a deterministic model is simpler than its equivalent stochastic model, analysis of the 

stochastic model is to be preferred if possible (Andersson and Britton, 2000). Earliest stochastic 

models attribute to Mckendrick (1926) and Reed and Frost (1928); the later one was unpublished but 

more influential at that time (Daley and Gani, 1999; Andersson and Britton, 2000). Bartlett (1949) 

firstly introduced the lack-of-memory property, i.e. the Markovian property, to stochastic epidemic 

models, which effectively simplifies the mathematical analysis. The Markovian property is applied in 

this paper as well, because homogeneity is assumed and thus only numbers of hosts of different groups 

affect the epidemic process, but the process is independent of the history of any host or group, i.e. lack 

of memory (see Section 2). 

  : Individual no longer infectious    : First transmission to another susceptible 

  : Symptoms appear 

  : Infection occurs 

  : Loss of Immunity 

  : Latency to infectious transition 

Figure 2 – Progress of a disease in an individual who loses immunity and becomes susceptible again (cf. Figure 1). 
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This paper focuses on the SIRS stochastic model with demography. The model construction with the 

theory behind is to be explicitly demonstrated in Section 2 & 3 and the discussion in Section 4 is on 

the results of computer simulations. The comparison between the theoretical approximations and the 

simulation results of the stochastic model is to be the main purpose. Finally, conclusions are to be 

drawn in Section 5. 

2. Continuous-time Markov chains 

2.1 Initial Definition 

A continuous-time stochastic process            is defined as a continuous-time Markov chain if 

for all       and       1           , 

                                                       

If this probability is independent of  , then the continuous-time Markov chain is said to have 

homogeneous transition probabilities (Ross, 2010). 

2.2 Parallel Definition 

It can be proved that the continuous-time Markov chain with homogeneous transition probabilities is 

equivalent to a stochastic process that each time it enters state  , 

(i) the amount of time before any transition, denoted   , must satisfy           , and 

(ii) the probability of any transition from state   to state  , denoted    , must satisfy     

          for all  , 

where     
   

  
 and          with     denoting the transition rate from state   to state   

(Norris, 1997). 

2.3 Stationary Distribution 

In the study of Markov chains, stationary
2
 distributions are useful in explaining properties in long run. 

That is, 

      
   

         

is independent of  , if the limit exists. An equivalent condition for a distribution 

                                                             
1
    is the set of nonnegative integers. 

2
 The terms invariant and equilibrium mean the same. 
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                 3 to be stationary is 

     

where   is the Q-matrix of the continuous-time Markov chain, defined as                by 

setting         and         for    . 

Obviously, there is always a trivial solution,    . Other than the trivial solution,   has a stationary 

distribution   which is unique up to scalar multiples, if   is irreducible and recurrent (Norris, 1997). 

2.4 Computer Simulation 

Both definitions are applicable in computer simulation. To simulate the stochastic process with the 

initial definition, every iteration should be based on a small time period, in which the transition 

probabilities are calculated and whether the occurrence of the transition is decided at random, but the 

parallel definition allows each iteration to be based on a transition, where the holding time and the 

event are randomly decided. 

Hence, simulation with the parallel definition takes less running time as simulation with the initial 

definition spends much running time on iterations where no transition occurs. The parallel definition is 

thereby employed in all computer simulations. 

2.5 Error Analysis 

Essentially, for every different transition from state   to state  , it has its own exponential distribution 

with the corresponding parameter     and thus each time the stochastic process enters state  , 

      
 

      

where     denotes the amount of time before a transition to state  . 

A problem would raise when     
     

     for two distinct states    and   ; intuitively, we have 

no idea which state would the process enters. The proof of Norris (1997) and the parallel definition are 

valid, because the probability of this coincidence,   , is 0, due to the time continuum of the process in 

theory. 

In practice, however, a computer, thus the random generators, is essentially discrete, which means 

         
     

             

and the parallel definition might malfunction in this situation; as the definition ignores    and assigns 

it to other events unspecified by and unknown to us, an error may occur somewhere. 

Claim:    is very small as a computer is very accurate. 

                                                             
3
    is the set of positive integers. 
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Proof: Suppose     
         and     

        , that is, for    , 

    
    

     

    
         

Consider the smallest time step of computer algorithms, denoted by   , then 

         
     

            
                    

 

   

 

                     

 

   

 
       

             
 

Let              , substitute 

         
 

     
 

 

 
 

     
 

    

        
 

    

    
 

 
    

        
      

 

 
 

    

        
     

 
    

        
                      

        

where   
    

     
 and         ,      . 

Therefore,  

 
  

  
        

Since    is very small for any modern computer,      . 

 
  

  
    

  

The proof of the claim shows that the error decays as the computer accuracy rises. For modern 

computers, therefore, we could ignore the error. 

3. Epidemic modelling 

3.1 Assumptions 

3.1.1 Fundamental assumption of homogeneity 

Homogeneity applies to the whole population, except for the disease state of individual hosts. Hence, 

only the numbers of hosts in different disease states and the parameters affecting them are studied. 

3.1.2 Assumption of SIRS models with demography 
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In these models, we assume there are 3 disease states: susceptible, infective and recovered. There are 

new hosts entering the system and natural death causing removal of hosts from it. Infection may occur 

when susceptible and infective hosts contact each other. Infective hosts will recover and then have 

immunity against the disease. After a period of time, the immunity vanishes, which means a recovered 

host becomes susceptible again. 

3.1.3 Deterministic versus stochastic models 

Deterministic and stochastic models are two main approaches in characterising an epidemic process. 

Deterministic models are usually regarded as the mean of stochastic ones. They approximate 

stochastic models quite well when the population is sufficiently large, but they may not be satisfactory 

for small populations (Daley and Gani, 1999). In this paper, the main discussion focuses on the results 

of simulations of stochastic processes, but all the following notations are always used as specified, in 

either deterministic or stochastic cases: 

 : the number of susceptible hosts, 

 : the number of infective hosts, 

 : the number of recovered hosts with immunity (    for SI and SIS models), 

 : the total number of hosts (       ), and 

  : the size of the entire population containing the concerning community. 

      and   are variables dependent on time  , while    is assumed constant because the time 

period of the disease spread is usually much shorter than the average lifespan of its hosts, which means 

there are not noticeable changes of the entire population before the disease dies out. 

3.2 Parameters 

Conventionally, most of the involved parameters are called rate, but in order to avoid confusion with 

the concept of rates of the stochastic process, parameter is preferred here. They are all defined as 

follows. 

3.2.1   - the transmission parameter: 

Since all epidemic models are concerned with disease, how the interaction between susceptible and 

infective hosts leads to successful infection is one of the core issues and has raised debates over its 

essence and form. 

Begon et al. (2002) reviews the historical and modern terminologies and provides a clear 

generalisation of transmission terms, the number of new infective hosts, denoted   , is derived from 
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where   is conventionally called ‘Force of Infection’, which causes most of the debates,   is the 

probability that a contact between susceptible and infective hosts occurs and   is the rate that the 

contact does cause infection. In particular, we assume   a constant for any certain disease and   
 

 
 

by the individual homogeneity. 

The assumption for   has two alternatives. The transmission is called frequency-dependent 

transmission (FT) if we assume 

    

where   is an arbitrary constant predetermined by the disease, or density-dependent transmission (DT) 

if we assume 

       

where   is another arbitrary constant predetermined by the disease and   is the area where the 

community live, which is often assumed constant. 

By simple arithmetic, we obtain 

          

where       for FT and 

           

where           for DT. 

In the rest of this paper,   is used for both    and    for conventions and they are to be set at the 

same value for convenience. However, they should still be interpreted in two different ways; with their 

identical dimensions, the comparison between the FT and DT models is more meaningful (cf. Begon et 

al., 2002). 

3.2.2   - the immigration-death parameter: 

The community studied in this paper is not closed. We assume there are new susceptible hosts entering 

the community, i.e. immigration, and natural death of hosts. The assumption is useful as most diseases 

remain in the community for a period long enough to observe immigration and death. Notice the 

immigration and death rates are identically  , because    is constant and thus these two rates should 

be the same. Another simplifying assumption in this paper is that there is no disease-related death; that 

is, the death rate of infective hosts is the same as the death rate of susceptible and recovered hosts. 

3.2.3   - the recovery parameter: 
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An infective host remains ill and infectious for some time and then recovers.     is the average 

infectious period, and if    , the model becomes an SI model where once a host is infected, they 

remain infectious until their death. 

3.2.4   - the loss of immunity parameter: 

A recovered host will eventually lose immunity; the average immune period is    . If    , the 

model becomes an SIR model where each recovered host is immune against the disease, and if    , 

the model becomes an SIS model where a host actually cannot get immunity, that is, once they recover, 

they become susceptible immediately. 

3.2.5    – basic reproduction ratio 

In epidemiology,    can be generally explained as the number of hosts infected by one infective host 

throughout the entire infectious period in a purely susceptible population (Heffernan, et al., 2005). It 

immediately follows from the definition that when     , every infective hosts infects, on average, 

less than one susceptible host and thus the disease tend to die out, but when     , the disease tends 

to become endemic, spreading throughout the population.    is thus a basic measurement of 

endemicity. 

 

 

 

 

3.3 Deterministic Model 

3.3.1 Formulation of the model 

Figure 3 summarises the assumptions and definitions and an SIRS deterministic model can be 

formulated accordingly as a differential equation system: 

 
 
 

 
 

  

  
              

  

  
          

  

  
          

  

         

          

    

   

   

      

Figure 3 – The SIRS model with demography. 
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subject to the initial constraints specified by           and     . 

With the nonlinear term          or       , an analytic solution to the system is not accessible, but 

the study of its equilibrium may still help us characterise the epidemic process. 

3.3.2 Equilibrium of the model 

First of all, the equilibrium population of the community can be solved. By definition, 

  

  
 

  

  
 

  

  
 

  

  
                     

It is then straightforward to solve the equilibrium, by setting 

  

  
   

which immediately gives 

       

That is, the population will be settled at equilibrium, prefixed and independent of any variation of the 

community. Although the choice of FT or DT has no effect on the population, it may change the 

dynamics of the number of susceptible, infective and recovered hosts. To solve the equilibrium for 

these groups, set 

  

  
 

  

  
 

  

  
   

and solve for the DT model where          : 

 

                      
                   

                

  

In equation (ii), if    , then     by (iii) and thus      by (i), which is exactly the trivial 

situation that the disease dies out; if    , 

   
   

 
    

Insert into (i) and (iii) and they become a linear system which has the unique solution: 

   
   

     
   

   

 
     

   
 

     
   

   

 
     

Similarly, we can solve in the case of FT where         . Notice      at equilibrium, then 

the equation systems become exactly the same, that is, 
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Hence, the two models share the same equilibrium. 

3.4 Stochastic Model 

3.4.1 Formulation of the model 

The stochastic epidemic model is of more interest than the deterministic one. It can be formulated as a 

Markov process with all possible transitions and their rates (see Table 1). The assumption of 

Markovian property is justified because all the transition rates are solely dependent on the current 

values of     and  . 

 

Table 1 – the transition table of the SIRS model with demography 

Event Transition from state   to   Rate (   ) 

Immigration of susceptible                       

Death of susceptible                      

Death of infective                      

Death of recovered                      

Infection of susceptible                           or        

Recovery of infective                        

Loss of immunity                        

 

The parameter    can be calculated by summing up all the transition rates and the simulation of the 

epidemic process will then be obtain accordingly. 

3.4.2 Approach of the simulation 

In order to simulate the process, an exponentially distributed random generator: random(‘exp’, A) 

is used frequently and essentially in Matlab programming (see Appendix), where A is the expectation 

of the exponential distribution. 

With the claim in Section 2.5 proved, it is unnecessary to generate     for all   and then choose the 

smallest. We can confidently use the parallel definition, because it is robust for computer simulation. 
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For each iteration, i.e. at each state          , there are 3 steps: 

(1) to decide the holding time: use the exponentially distributed random generator with its parameter A, 

taking value     ; 

(2) to determine the thresholds: list     in correspondence to all possible states   in a fixed order and 

for each  , the threshold is obtained by adding up all rates of its preceding states and its own and 

dividing every sum through   ; and 

(3) to choose a particular state   to enter: use the uniformly distributed random generator: rand, 

which randomly produces value between 0 and 1, then compare the value to the thresholds, and 

choose to enter state   if the value is smaller than the corresponding threshold but larger than the 

lower one. 

Iterate all above steps and the simulation of the stochastic process is thus obtained and then plotted. 

3.4.3 Quasi-stationary distribution 

The stochastic process does not have any non-trivial stationary distribution, because clearly     is 

an absorbing state and all     are transient states, not recurrent, that is, every disease will 

eventually go extinct. However, the process might appear stable for a long time before the disease 

extinction. To describe this phenomenon, quasi-stationary distribution (QSD) is implicitly defined in 

Nåsell (2002), which approximates the model by a diffusion process and then estimates the mean 

values and standard deviations of the QSD by normal approximation. 

Following the reparameterisation    
 

   
    

   

 
 and     

   

 
, with     , we obtain the 

approximation with means 

   
 

  
    

   
        

    
    

   
    

  
    

and the corresponding variances 

  
  

  

    
     

  
  

    

  
     

  
  

  

    
    

in the case        , and another approximation with means 
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and the corresponding variances 

  
  

            
          

  
        

    

  
  

   
             

           
    

         
    

  
             

    

  
  

   
           

             
     

          

  
             

   

in the case        where        (cf. Nåsell, 2002). 

As the deterministic model suggests the same equilibrium for DT and FT, we might suppose that their 

QSDs have the same expectations and variances as well. However, it is not the interest of this paper to 

derive the results explicitly; this topic may leave for future research. 

4. Simulation results 

4.1 Frequency-Dependent versus Density-Dependent Transmission 

The deterministic model suggests that the FT and DT model would share the same equilibrium, but 

with the different transmission terms, they might approach different equilibria, or in different patterns. 

It would be interesting to study whether the stochastic process echoes the results. Since it is 

sophisticated to study the stochastic process analytically, computer simulations are employed to draw 

implicit conclusions. 

The two systems seems to set at different equilibria eventually after       in Figure 4, which 

contradicts the results from the deterministic model. However, if we solve the deterministic 

equilibrium with the solutions derived in Section 3.3.2, we will get 

 
  
 

  
    

   

 
       

   
   

     
   

   

 
          

   
 

     
   

   

 
         

  

which are respectively higher than           and      in Figure 4. 
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Figure 4 – Simulation result with                                    and      

                          for    ; the darker lines are of DT model and the brighter ones are of 

FT model. 

 

The phenomenon is caused by the small value of      , making the population not at its 

equilibrium yet. A longer running time      (see Figure 5), comparing with the numerical 

solutions to the deterministic model, may thus be helpful. 

The deterministic curves of the DT and FT models clearly illustrate different patterns, especially for 

    when the DT model goes against the direction of its equilibrium and then turns back around 

   . For the stochastic models, we can see the disease somehow dies out with DT, in spite of 

    , and the extinction time is about     when the corresponding deterministic curve reaches 

its minimum; the randomness may thus lead to the extinction. 

Though it becomes meaningless to compare and discuss the stochastic equilibria, we could conclude 

that the FT model seems to require a smaller sufficiently large population than the DT model does for 

the equivalent deterministic model to be its good approximation. 
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Figure 5 – Simulation result with                                    and      

                          for     ; the curves are for the equivalent deterministic models, 

denoting the same groups of hosts with the same colours. 

 

The two processes have distinct patterns at the beginning of the processes, because      

            , i.e. FT is larger than DT, which means the disease is more infectious in the FT 

model. However, if the disease does not die out, as     , the two transmission terms become 

indifferent, which allows the two processes then run seemingly in the same pattern (see Figure 6, 

where larger     , increasing    and thus preventing the disease from extinction). 
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Figure 6 – Simulation result with                                    and      

                          for     . 

 

Similarly, if the systems starts with                       , there would not be noticeable 

differences between their patterns. However, if                       , as in Figure 7, 

before     , we have                  , which means the disease is now more 

infectious in the DT model, so there are more infective hosts in the system with DT. 

 

Figure 7 – Simulation result with                                    and      

                           for    . 
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With a long-time simulation (see Figure 8), the populations are decreasing to the equilibrium, and the 

differences between the two models decay as expected. 

 

Figure 8 – Simulation result with                                    and      

                           for     . 

 

Therefore, only if   is very different from   , the two models yields two distinct patterns in the 

beginning of the processes, but if only the two processes have not ended in the short run,   would be 

driven to    and thus they appear to settle at the same equilibrium, as the deterministic equilibrium 

suggests. 

4.2 Theoretical Approximations I: Case Study 

4.2.1 Comparison with simulation sample 

The deterministic model estimates the mean values of the stochastic model better with a larger 

population, and further approximations of the expectations and the variances of the QSD are derived in 

Nåsell (2002). However, the theoretical results are not tested in a practical context. This section, 

therefore, is aimed at the justification of these theoretical approximations: the deterministic 

equilibrium and Nåsell’s QSD approximations. 
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Figure 9 – Simulation result with                            and              

                  for     , which yields                     . 

 

The simulation illustrated in Figure 9 is of the same case as in Figure 4 but for the FT model only 

with a longer time     , which seems to set about some equilibrium after     . Indeed, the 

deterministic equilibrium is                         , which seems to agree with Figure 9. 

Meanwhile, the QSD approximations are 

                  

                   

                

which is dramatically different, and 

                  

                    

                   

which is much closer to the deterministic equilibrium and what is shown in Figure 9. The simulations 

for sample collection are all started at                         , the round values of the 

deterministic equilibrium, because it is assumed close to the QSD and thus shortens the simulation 

time.  
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Figure 10 – Histograms for 100 simulations with                            and      

                           for    , which yields                     . 

 

The sample gives Figure 10, which seems to justify the normal assumption, and 

                                      

                                   

The deterministic equilibrium and the second QSD approximation are close to the sample means and 

standard deviations, and we may conclude they are fair approximations. 

4.2.2 Statistical tests for approximations 

As the first QSD approximation is obviously invalid, we may draw conclusion by intuition. However, 

when the results seem close, proper statistical tests should be conducted to avoid heuristic errors. 

For the deterministic equilibrium, the T-test is used to test the means with variances estimated by the 

sample: 

H0: the sample means are equal to the deterministic equilibrium; 

H1: the sample means are NOT equal to the deterministic equilibrium. 

e.g. to test H0:       against H1:       with        as    
     

      
     . 

For the QSD approximations, the Chi-squared test is used to test the variances and Z-test to test the 

means with variances estimated by the approximation: 

H0: the sample variances are equal to the QSD approximation; 

H1: the sample variances are NOT equal to the QSD approximation. 
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e.g. to test H0:   
    

  against H1:   
    

  as    
       

 

  
      

 . 

H0: the sample means are equal to the QSD approximation; 

H1: the sample means are NOT equal to the QSD approximation; 

e.g. to test H0:       against H1:       with    as    
     

     
       . 

The similar notations and meanings apply for   and  . 

In the case in Section 4.2.1, these statistics can be obtained following above steps: 

                            

                            

                           

while                   
                           . That is, there are statistical evidences 

to support these results. 

The first QSD approximation is invalid, because it should be under the condition             , 

while        is larger than      . However, it is reasonable to treat both    and    

sufficiently large, where         , which makes the second QSD approximation work in this 

case. 

4.3 Theoretical Approximations II: Nåsell’s QSD 

4.3.1 Reparameterisation 

In order to justify the accuracy and robustness of the Nåsell’s QSD approximations, it would be more 

convenient to assign values to       and    first and recover the values of initial parameters       

and   (cf. Section 3.4.3). 

Since              
 

   
      

   

 
      

   

 
  , one can choose any values for 

the reparameterisation in order to agree with the conditions, and then with the information of  , by 

straightforward arithmetic, 
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Figure 11 – Simulation result with                     , when    ,                 ; 

                               and     . 

 

In order to keep the same values for the reparameterisation, all other parameters are scaled by    . 

Even though the process in Figure 11 seems to share the same equilibrium with Figure 9, their 

patterns appear to be distinct. Apparently, with larger parameters, the process approaches to the 

equilibrium more quickly. Essentially, larger parameters lead to larger rates, more events tend to occur, 

and less holding time a new transition would wait. 

However, a 100-time sampling yields 

                                      

                                   

which are very close to the case when       and the histograms in Figure 12 are similar to those 

in Figure 10. 
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Figure 12 – Histograms for 100 simulations with                     , when    ,         

        ;                                 and    . 

 

Although Figure 11 appears to have more ‘randomness’ in the process, it actually has more events 

(which occurs at random, though) and is essentially equivalent to the previous process with a longer 

running time. The reasoning can be straightforward: by specifying       and   , the scaling of   

has the same effects on other parameters and the same effect on the total transition rate, which changes 

the holding time, but the chance for any particular event to happen stays indifferent if we know a 

transition is to occur. 

Though, intuitively, there are differences between Figure 9 and Figure 11, they are essentially the 

same up to time scaling. It can also be drawn from the fact that there are no terms containing   in the 

deterministic equilibrium or the QSD approximations; that is, any legal value of   would yield the 

same results. Therefore, it is more convenient and without any loss of generality to specify    , 

which gives 

        

        

        

Recall in either approximation in Nåsell (2002),     , which means that    is large. It has been 

shown in the previous case that              yields reasonable approximations under the 

condition        where       , which implies for     , it is unnecessary to take too large 
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a value. For consistence, the same values are assigned in cases under this condition. 

4.3.2 Common cold 

The common cold is a typical disease, from which a patient is easy to recover, but the immunity period 

is short, that is, it agrees with the condition             where       . Due to the practical 

difficulty of taking ‘infinity’ as value, large       and        are taken and thus       . 

For the mediocre        , the previous sections have proved the the QSD approximations are valid. 

 

Figure 13 – Simulation result with                   , when    ,                 ; 

                               and    . 

 

With      , the process seems to approach equilibrium when     in Figure 13. Apparently, the 

large    causes the disease spreading throughout the population. Indeed, the QSD approximation: 

                  

                    

                   

suggest there are more infective hosts. 
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Figure 14 – Histograms for 100 simulations with                   , when    ,         

        ;                                 and    . 

 

The larger value of   practically shortens the running time. A sample of 100 simulations is 

summarised in Figure 14. Though the histograms for     in seem skewed, the numerical results are 

close: 

                                      

                                   

Indeed, by proper statistical tests as in Section 4.2.2, 

                            

                           

which provides statistic evidences to accept the QSD approximation. 

Actually, any large value of    would yield similar pattern under this condition: the majority of the 

population are infected and the disease is endemic, and the QSD approximation works reasonably. 
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Figure 15 – Simulation result with                    , when    ,                ; 

                               and    . 

 

Since the QSD approximation only works for     , it might been expected to be worse with 

smaller   . Figure 15 is depicted with       ; meanwhile it also gives the QSD approximation: 

                    

                   

                  

A 100-simulation sample gives Figure 16 and 
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Figure 16 – Histogram for 100 simulations with                    , when    ,        

        ;                                 and    . 

 

The results seem valid, since the numerical results still appear to agree with each other and the 

histograms tend to justify the normal assumption. However, they are all worse than the previous case: 

                              

                           

Although the approximation for variances is still acceptable as    
              , it estimates   

bad as              . 
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Figure 17 – Simulation result with                    , when    ,                  ; 

                               and    . 

 

The approximation is expected to be worse when     , which means the disease are much less 

infectious, i.e. it is very likely to die out early (see Figure 17 where       ). The QSD 

approximation: 

                    

                   

                

are not likely to be valid because it is not likely to obtain any equilibrium in this case, except for the 

trivial solution where the disease dies out (see Figure 18). Thus, the QSD approximation is invalid in 

this case. 

Therefore, Nåsell’s QSD approximation works fairly well for diseases like the common cold. 
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Figure 18 – Histogram for 100 simulations with                    , when    ,          

        ;                                and    . 

 

4.3.3 Chickenpox 

Chickenpox is a typical disease, from which a patient is easy to recover, and the immunity period is 

lifelong, that is, it agrees with the condition             . As the loss of immunity takes long 

time, i.e.        in this case becomes small, fewer recovered hosts become susceptible again. 

Hence, it can be expected the processes are more likely to finish early than those under the previous 

conditions, that is, the disease dies out quickly. 
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Figure 19 – Simulation result with                 , when    ,               ; 

                               and    . 

 

The process, even with      , shows a distinct pattern in Figure 19 from that in Figure 13, that the 

majority of the population are recovered hosts with immunity as expected. The pattern is different 

from that in Figure 17 as most of the hosts are susceptible in that community and it appears, 

intuitively, that the process has a QSD from       to    . 

The QSD approximation: 

                  

                  

                

seems to overestimate the value of  . 
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Figure 20 – Histograms for 100 simulations with                 , when    ,         

      ;                                 and    . 

 

The sample in Figure 20 is still constructed by 100 simulations. The histograms are bimodal because 

there are more than 30 times the processes end earlier, which definitely makes the normal assumption 

unjustified and thus the QSD approximates the sample means and standard deviations, 

                                     

                                   

incorrectly and meaninglessly. 
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Figure 21 – Simulation result with                 , when    ,                ; 

                               and     . 

 

As         , the recovery parameter   is large under this condition, i.e. it takes relatively 

short time for an infective host to recover. In order to delay the extinction time of the disease without a 

small  ,    have to be increased. Larger values of                           , etc. have the 

tendency to make the disease more endemic with overwhelmingly many recovered hosts. All the 

processes look similar as in Figure 21, but occasionally, the disease dies out early (as there are very 

large      which correspond to        in Figure 22). 
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Figure 22 – Histograms for 100 simulations with                 , when    ,          

      ;                                and    . 

 

The QSD approximation: 

                 

                  

               

are quite compatible with Figure 21, though they disagree on the value of  . However, there are 2 

simulations with       , due to which the values of           are far away from the majority of 

the data, shifting the means away from the modes and increasing the standard deviations: 

                                     

                                    

The simulation results are obviously different from the approximations, but since the normal 

assumption is not satisfied, this comparison is meaningless. 

However, if the 2 simulations are treated as outliers, the approximation may provide reasonable results. 

The corrected means and standard deviations can be obtained: 

                                     

                                   

which is closer to the approximations. With proper statistical tests, I have 
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Hence, the QSD approximation is still terrible, as it dramatically underestimates the standard 

deviations. 

Nonetheless, it is interesting to notice the QSD approximation under the previous condition for the 

common cold: 

                 

                  

                  

is better, which gives 

                                

                          

Although the approximation estimates the value of   unfairly, the results are considerably better. This 

phenomenon should suggest that            is not compatible with the theoretical condition 

            , but for larger   , the disease will die out even more quickly. 

4.3.4 Endemic chickenpox 

 

Figure 23 – Simulation result with                  , when    ,                ; 

                               and     . 

 

In the case shown by Figure 23 where       , the disease frequently dies out before      . To 

delay the extinction, I increase    to 500, even 5000, but it makes slightly differences. Since 
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the approximated number of infective hosts is close to zero, the absorbing state, which makes the 

process very likely to terminates. Hence, in order to make the approximations work, a relative large    

or    is necessary; the only parameter left for variation is   . In other words, we expect to have fair 

approximations by enlarging   , which also agrees with the requirement for a sufficiently large 

population. 

Though the disease still dies quickly with    doubled or tripled for      , the extinction time 

tends to be later and for        , the disease appears to be endemic (see Figure 24). The QSD 

approximation in this case is: 

                  

                  

                    

which suggests the number of recovered hosts might have not approached the equilibrium. 

 

Figure 24 –Simulation result with                  , when    ,                ; 

                                   and    . 

 

A sample of 100 simulations gives 

                                       

                                    

with Figure 25. The normal approximation seems to be justified but the QSD seems to underestimate 
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the standard deviations again. Indeed, 

                                     

                                

suggests the QSD is not valid in this case. 

 

Figure 25 – Histograms for 100 simulations with                  , when    ,          

      ;                                   and    . 

 

Notice again, the QSD approximates for the common cold: 

                  

                  

                    

which gives 

                                

                           

Although the approximation for the mean and standard deviation for the number of recovered hosts are 

not good, it is considerably much better than the QSD approximation for chickenpox. 

Therefore, Nåsell’s QSD approximation for diseases like chickenpox works unfairly, but the QSD 

approximation for disease like common cold works functionally in both the cases. 
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5. Conclusion 

This paper has worked on the epidemic process with the SIRS stochastic model with demography. 

There are debates over the transmission term, density-dependent transmission (DT) or 

frequency-dependent transmission (FT), but it seems very difficult to compare them analytically. 

Hence, computer simulations are conducted and the results agree with heuristic reasoning, which 

further suggests that the DT model requires a larger population than the FT model for its equivalent 

deterministic model to be a fair approximation. 

As it is not realistic to derive any analytic solutions, the long-term analysis of equilibrium may help us 

understand the process. The deterministic equilibrium is trivial but the stochastic process has no 

explicit stationary distribution. Instead, the quasi-stationary distribution (QSD) is defined to be a 

reasonable alternative and Nåsell (2002) approximates it under two particular conditions. 

The results of the computer simulations are then compared with these approximations. The QSD 

approximation for disease like chickenpox is invalid, but that for diseases like the common cold is 

fairly good, which, surprisingly, also works well for the first case. Additionally, the approximations are 

better with larger reproductive ratios. 

In conclusion, Nåsell’s QSD approximation for the common cold is an effective, efficient and robust 

tool in studying the FT model. It will be interesting to find similar approximations for the DT model 

and, by comparing them, a more general understanding of the stochastic epidemic could be obtained, 

which might make us more advantageous in reacting to or even controlling the disease. 
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Appendix 

SIRS_parameter.m 

% values of parameters 

clear,clc,clf 

global mu beta gamma f N0 

T=5,N0=2000,S0=500,I0=300,R0=200,N=S0+I0+R0, 

%1:by specifying initial parameters 

%mu=1,beta=100,gamma=25,f=100, 

%R0=beta/(mu+gamma),alpha1=gamma/mu+1,alpha2=f/mu+1, 

%2:by specifying reparameterisation 

R0=50,alpha1=100,alpha2=2, 

mu=1,beta=R0*alpha1*mu,gamma=(alpha1-1)*mu,f=(alpha2-1)*mu, 

 

Remark: cf. Section 4.3.1; the values of the variables should change according to different cases. 

 

SIRS_equilibria.m 

% equilibria of process 

R02=R0^2;R03=R0^3; 

theta=alpha2/alpha1;theta2=theta^2;theta3=theta^3; 

%0:deterministic equilibrium 

SIRdetmean=N0*[1/R0,(mu+f)/(mu+f+gamma)*(1-1/R0),gamma/(mu+f+gamma)*(1-1/R0

)]' 

%1:QSD - nasell's 1st approximation 

muS1=N0/R0; 

muI1=N0*theta*(R0-1)/R0; 

muR1=muI1/theta; 

sigmaS1=N0*theta/R02; 

sigmaI1=N0*(R0-1)/R02; 

sigmaR1=sigmaS1; 

SIRqsd1musigma=[muS1,sqrt(sigmaS1);muI1,sqrt(sigmaI1);muR1,sqrt(sigmaR1)] 

%2:QSD - nasell's 2nd approximation 

muS2=N0/R0; 

muI2=N0*theta/(theta+1)*(R0-1)/R0; 

muR2=muI2/theta; 

sigmacommon=N0/R0^2/(theta+R0); 

sigmaS2=sigmacommon/theta*((R0+1)*theta2+(R02+2*R0)*theta+R0); 

sigmaI2=sigmacommon/(theta+1)^2*((R02-R0+1)*theta3+(R03+R0)*theta2+(R03+R02

-R0)*theta+R02-R0); 

sigmaR2=sigmacommon/(theta+1)^2*((R02-R0)*theta3+(R03-R0+1)*theta2+(R03-2*R

02+3*R0)*theta+R0); 

SIRqsd2musigma=[muS2,sqrt(sigmaS2);muI2,sqrt(sigmaI2);muR2,sqrt(sigmaR2)] 
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Remark: cf. Section 3.3.2 & 3.4.3; this m-file works after executing SIRS_parameter.m. successfully. 

 

SIRS_detcurve.m 

% curves of deterministic models 

hold on 

%DT 

[ts,sir]=ode45(@detdt,[0,T],[S0;I0;R0]); 

plot(ts,sir(:,1),'Color',[0 0 .4]) 

plot(ts,sir(:,2),'Color',[.6 0 0]) 

plot(ts,sir(:,3),'Color',[0 .5 0]) 

%FT 

[ts,sir]=ode45(@detft,[0,T],[S0;I0;R0]); 

plot(ts,sir(:,1),'Color',[0 0 1]) 

plot(ts,sir(:,2),'Color',[1 0 0]) 

plot(ts,sir(:,3),'Color',[0 1 0]) 

detdt.m 

function dE=detdt(t,E) 

global mu beta gamma f N0 

dE=zeros(3,1); 

dE(1)=mu*(N0-E(1))-beta*E(1)*E(2)/N0+f*E(3); 

dE(2)=beta*E(1)*E(2)/N0-(mu+gamma)*E(2); 

dE(3)=gamma*E(2)-(mu+f)*E(3); 

end 

detft.m 

function dE=detft(t,E) 

global mu beta gamma f N0 

dE=zeros(3,1); 

dE(1)=mu*(N0-E(1))-beta*E(1)*E(2)/(E(1)+E(2)+E(3))+f*E(3); 

dE(2)=beta*E(1)*E(2)/(E(1)+E(2)+E(3))-(mu+gamma)*E(2); 

dE(3)=gamma*E(2)-(mu+f)*E(3); 

end 

 

Remark: cf. Section 3.3.1 & 4.1; these m-files works after executing SIRS_parameter.m. successfully. 

 

SIRS_stochasticDT.m 

% simulation of stochastic DT model 

S=S0;I=I0;R=R0; 

Ts=zeros(1,500); 

Ss=Ts;Ss(1)=S; 

Is=Ts;Is(1)=I; 



Yihe Lu, Statistics Project, MATH399 

-40- 

Rs=Ts;Rs(1)=R; 

Ns=Ts;Ns(1)=N; 

t=0;i=1; 

while Ts(i)<=T 

    Nbthr=mu*N0; 

    Sdthr=mu*S; 

    Idthr=mu*I; 

    Rdthr=mu*R; 

    SItrr=beta*S*I/N0; 

    IRtrr=gamma*I; 

    RStrr=f*R; 

    total=Nbthr+Sdthr+Idthr+Rdthr+SItrr+IRtrr+RStrr; 

    t=random('exp',1/total); 

    Ts(i+1)=Ts(i)+t;     

    p1=Nbthr/total; 

    p2=Sdthr/total+p1; 

    p3=Idthr/total+p2; 

    p4=Rdthr/total+p3; 

    p5=SItrr/total+p4; 

    p6=IRtrr/total+p5; 

    pr=rand; 

    if pr<p1 

        S=S+1; 

    elseif pr<p2 

        S=S-1; 

    elseif pr<p3 

        I=I-1; 

    elseif pr<p4 

        R=R-1; 

    elseif pr<p5 

        S=S-1; 

        I=I+1; 

    elseif pr<p6 

        I=I-1; 

        R=R+1; 

    else 

        S=S+1; 

        R=R-1; 

    end 

    Ss(i+1)=S; 

    Is(i+1)=I; 

    Rs(i+1)=R; 

    N=S+I+R; 

    Ns(i+1)=N; 

    i=i+1; 

    if I==0 
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        break; 

    end      

end 

Ts=Ts(1:i); 

Ss=Ss(1:i); 

Is=Is(1:i); 

Rs=Rs(1:i); 

hold on 

axis([0 T 0 max(Ns)]) 

stairs(Ts,Ss,'Color',[0 0 .4]),stairs(Ts,Is,'Color',[.6 0 

0]),stairs(Ts,Rs,'Color',[0 .5 0]) 

SIRS_stochasticFT.m 

% simulation of stochastic FT model 

S=S0;I=I0;R=R0; 

Ts=zeros(1,500); 

Ss=Ts;Ss(1)=S; 

Is=Ts;Is(1)=I; 

Rs=Ts;Rs(1)=R; 

Ns=Ts;Ns(1)=N; 

t=0;i=1; 

while Ts(i)<=T 

    Nbthr=mu*N0; 

    Sdthr=mu*S; 

    Idthr=mu*I; 

    Rdthr=mu*R; 

    SItrr=beta*S*I/N; 

    IRtrr=gamma*I; 

    RStrr=f*R; 

    total=Nbthr+Sdthr+Idthr+Rdthr+SItrr+IRtrr+RStrr; 

    t=random('exp',1/total); 

    Ts(i+1)=Ts(i)+t;     

    p1=Nbthr/total; 

    p2=Sdthr/total+p1; 

    p3=Idthr/total+p2; 

    p4=Rdthr/total+p3; 

    p5=SItrr/total+p4; 

    p6=IRtrr/total+p5; 

    pr=rand; 

    if pr<p1 

        S=S+1; 

    elseif pr<p2 

        S=S-1; 

    elseif pr<p3 

        I=I-1; 

    elseif pr<p4 
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        R=R-1; 

    elseif pr<p5 

        S=S-1; 

        I=I+1; 

    elseif pr<p6 

        I=I-1; 

        R=R+1; 

    else 

        S=S+1; 

        R=R-1; 

    end 

    Ss(i+1)=S; 

    Is(i+1)=I; 

    Rs(i+1)=R; 

    N=S+I+R; 

    Ns(i+1)=N; 

    i=i+1; 

    if I==0 

        break; 

    end      

end 

Ts=Ts(1:i); 

Ss=Ss(1:i); 

Is=Is(1:i); 

Rs=Rs(1:i); 

hold on 

axis([0 T 0 max(Ns)]) 

stairs(Ts,Ss,'Color',[0 0 1]),stairs(Ts,Is,'Color',[1 0 

0]),stairs(Ts,Rs,'Color',[0 1 0]) 

legend('S','I','R') 

 

Remark: cf. Section 3.4.1, 3.4.2 & 4.1; these two m-files works after executing SIRS_parameter.m. 

successfully; the only difference between them is inside the while-loop: SItrr=beta*S*I/N and 

SItrr=beta*S*I/N0; hence, they are for the two different transmission terms, respectively. 

 

SIRS_histogram.m 

% 100 simulations 

S0=round(SIRdetmean(1));I0=round(SIRdetmean(2));R0=round(SIRdetmean(3)); 

J=100; 

for j=1:J 

S=S0;I=I0;R=R0;N=S+I+R; 

global mu beta gamma f N0 

T=2; 

Ts=0;i=1; 

while Ts<=T 



Yihe Lu, Statistics Project, MATH399 

-43- 

    Nbthr=mu*N0; 

    Sdthr=mu*S; 

    Idthr=mu*I; 

    Rdthr=mu*R; 

    SItrr=beta*S*I/N; 

    IRtrr=gamma*I; 

    RStrr=f*R; 

    total=Nbthr+Sdthr+Idthr+Rdthr+SItrr+IRtrr+RStrr; 

    t=random('exp',1/total); 

    Ts=Ts+t;     

    p1=Nbthr/total; 

    p2=Sdthr/total+p1; 

    p3=Idthr/total+p2; 

    p4=Rdthr/total+p3; 

    p5=SItrr/total+p4; 

    p6=IRtrr/total+p5; 

    pr=rand; 

    if pr<p1 

        S=S+1; 

    elseif pr<p2 

        S=S-1; 

    elseif pr<p3 

        I=I-1; 

    elseif pr<p4 

        R=R-1; 

    elseif pr<p5 

        S=S-1; 

        I=I+1; 

    elseif pr<p6 

        I=I-1; 

        R=R+1; 

    else 

        S=S+1; 

        R=R-1; 

    end 

    N=S+I+R; 

    i=i+1; 

end 

Sh(j)=S; 

Ih(j)=I; 

Rh(j)=R; 

end 

Inonzero=find(Ih~=0);n=length(Inonzero) 

Sh=Sh(Inonzero);Ih=Ih(Inonzero);Rh=Rh(Inonzero); 

SIR_mean_std=[mean(Sh),std(Sh);mean(Ih),std(Ih);mean(Rh),std(Rh)] 

subplot(1,3,1),hist(Sh),title('S') 
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subplot(1,3,2),hist(Ih),title('I') 

subplot(1,3,3),hist(Rh),title('R') 

 

Remark: cf. Section 4.2.1; this m-file works after executing SIRS_parameter.m & SIRS_equilibria.m 

successfully. 

 

SIRS_statistests.m 

% statistical tests for theoretical approximations 

histmeanSIR=SIR_mean_std(:,1); 

histstdvSIR=SIR_mean_std(:,2); 

TSIR=(histmeanSIR-SIRdetmean)./histstdvSIR*sqrt(n) 

%quasiSIR=SIRqsd1musigma; 

quasiSIR=SIRqsd2musigma; 

quasimeanSIR=quasiSIR(:,1); 

quasistdvSIR=quasiSIR(:,2); 

XSIR=(n-1)*(histstdvSIR./quasistdvSIR).^2 

ZSIR=(histmeanSIR-quasimeanSIR)./quasistdvSIR*sqrt(n) 

 

Remark: cf. Section 4.2.2; this m-file works after executing SIRS_parameter.m, SIRS_equilibria.m & 

SIRS_histogram successfully. 

 


