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Abstract

This dissertation attempts to understand how a neural network could store and extract memo-

ries. Two typical artificial networks are to be mainly investigated. With an extremely simplified

model of individual neurons, it is clear that memories are essentially stored in the synapses

for both the networks. Hence, the most significant task is to built an appropriate connection

matrix.

In the first one network, called the Hopfield model, the connection strengths are constructed

according to the Hebb rule. Initial stability could be calculated by simple analysis but in order

to study further the properties, the energy and the temperature are established, inspired by

the networks similarity with the Ising model in statistical mechanics, and the memory capacity

could thus be computed explicitly. However, the realistic application is not so satisfying as the

theory suggest. It should be caused by the strong correlation in memories.

The second model is the layered feed-forward network, known as the perceptron. Due to its

asymmetric connections, the techniques for the Hopfield model cannot be adapted. Nonethe-

less, it is possible to establish an error function as a global measure for the network to minimise

while updating its connections. This procedure is performed by the back-propagation algorithm,

which is widely used in supervised learning. Various alternatives for the algorithm are discussed

and compared in the simulations. The results of the network learning are remarkable.
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1 Introduction

Memory is vital to intelligence, in either artificial or natural cases. Although a database is

unable to draw conclusion by itself, a super computer able to defeat a human chess champion

must be equipped with huge number of chess manuals. Given specific definitions or measures,

one may argue that they are totally independent. Patients treated with bilateral hippocampal

resection suffer grave loss of recent memory, but their intelligence is not affected, in the sense

that they could pass some intelligence tests [1]. Nonetheless, it is an unfortunate fact that those

patients are difficult to make real intellect contributions. The importance of memory is obvious.

It is quite common that digital computers and human brains are considered as analogies to

each other, but they do have various differences. Computers only outperform brains in tasks

essentially based on simple arithmetic, while brains are flexible, able to tolerate errors and learn

from failures, and very compact, able to compute in a highly parallel way but consume little

energy [2]. However, it is still interesting to study artificial neural systems; at least it would

be useful for computer science, and inspiration for neuroscience could be acquired through the

artificial models.

Research on human brain offers different methods to classify and study memory. One may di-

vide it into long-term and short-term, explicit and implicit [3], or retrospective and prospective

[4]. These approaches are trying to understand memory in a descriptive way and thus mainly

explain how the mechanism of memory works, but hardly what it essentially is. Therefore, the

study of artificial memory systems is helpful, as it is constructed by hand and thus at least one

of the variables in use must primarily be memory.

Two main similar features make an artificial model a reasonable analogy to the natural one: the

model consists of units that are equipped with same computational function and the units have

connections to others and in together form a network. It has actually become a convention in

computer science to call the model a neural network as in neuroscience, and terms like neurons,

synapses are directly adopted. This dissertation is devoted to artificial neural networks and uses

such terms. Ideas directly linked to real neural networks will be pointed out in preventing any

confusion.

5



1.1 Neuron as a Binary Threshold Unit

Real neurons are outstanding from other cells in many aspects. One of the most noticeable

is their activity: they send out spikes (or action potentials), that is called firing. Spikes are

typically non-linear phenomena as a neuron fires only if it receives stimulus large enough to

make its membrane voltage go beyond its threshold. In 1943, inspired by this ’all-or-none’

property, McCulloch and Pitts firstly applied propositional logic in the study of neural networks

[5]. With little modification, the model can be summarised in one equation:

ni(t+ 1) := Θ

(∑
j

wijnj(t)− µi
)

(1)

See Figure 1 for the schematic of a neuron in the model. Here Θ is the Heaviside step function

Figure 1: Schematic of a McCulloch-Pitts neuron: neuron i summarises information from weighted

connections of other neurons and fires (ni = 1) if the input goes beyond the threshold.

and i, j = 1, 2, ..., N , assuming the network consists of N neurons. Here ni is a binary variable

of value either 1 or 0, wij is the connection strength onto neuron i from neuron j, and µi is the

firing threshold of neuron i. Note the sign := is used to emphasise the updating process through

time.

The binary values 1 and 0 of ni represents the dual states of a neuron, firing and not firing,

respectively. The connection strength wij could somehow be considered as the synaptic strength

between neurons. The equation is actually an updating rule: neuron i summaries all information

from neurons connected in the network and decides to fire or not according to its threshold.

Note all details of biophysics are extremely simplified into only two states and the remarkable

morphology of neurons is represented by simple network topology. It could be a reasonable

approach because neural networks usually have enormous sizes (the human brain has about 1011

neurons) and detailed, local and subcellular activities might not contribute too much to general,

global and network functions. With these simplifications, a neuron becomes a binary threshold

unit, which now makes the neural networks more comparable with computers.
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A simple generalisation of Equation (1) is

ni := g

(∑
j

wijnj − µi
)

(2)

where g, any sigmoid function varying between 0 and 1, replaces the Heaviside step function. ni

then could take any values in the interval if g is a continuous function. It is still possible in this

case to consider a neuron as a binary unit but now ni is the average activation. Certainly real

neurons could also function continuously in some sense, but the core idea of the generalisation

is to make it easier for analysis or computation; it might be dangerous to link the continuous

property directly to real situations.

The generalised McCulloch-Pitts equation (2) is the basis of this entire dissertation. All the

particular networks to be studied are made up of such binary threshold neurons.

In addition, for analytical and computational convenience, the binary values (or the lower and

upper bounds of the interval in the continuous case) are taken −1 for not firing (very low activity)

and 1 for firing (very high activity) in this dissertation, which is easily achieved by introducing

a linear transformation; the forms of the above equations (and all those will follow) remain the

same.

1.2 Network as a Uni-Directional Graph

Another unique characteristic of neural systems is its structure. A neuron has thousands of

interconnections with other neurons, which allows signals to propagate through the network

vastly. Within the brain cortex, there are three main classes of interconnections [6]:

1. feedforward connections: propagate input signals from one region to the given one, so they

process information at an earlier stage;

2. recurrent synapses: interconnect neurons within a certain region, so along the processing

pathway, the computational work is performed at this same stage;

3. top-down connections: send feedbacks from neurons at the later stage to those at the earlier

one.

Although the McCulloch-Pitts model has ignored the spatial structure of the neurons, the con-

nections are preserved as wij and thus the topology of the network is traceable. Note again

wij means the connection from neuron j to neuron i. If it equals 0, it means neuron j cannot

directly send information to neuron i. It is not necessary wij and wji are zero or non-zero at the

same time, so the signal propagation is assumed uni-directional. The anatomy of real neurons
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is similar to this model: dendrites receive information and axons send out signals. It is thus

perfectly able to represent those three interconnection types. For a feed-forward network, if

the indices of neurons runs against the flow of the information, that is, neurons process signals

earlier are tagged with larger indices, wij shall be a lower triangle matrix; on the contrary, a

top-down network shall have an upper triangle connection matrix. For a recurrent network,

considering the large number of neurons each neuron contacts, the matrix shall be non-sparse

(or dense).

1.3 Synapses as a Connection Strength Matrix

Synapses are the structures enabling neurons to pass on electronic or chemical signals to other

cells; in the network of neurons only, they communicate with synapses. Several axon branches

from one neuron may have contact with the same other one, a number of synapses may lie on

the ends and each of them may behave differently in response to the same signal. Apparently,

the model does not present all these biophysical details; instead, all synaptic contacts from one

neuron to the other with their strengths and even temporal or spatial factors along the signal

propagation are summarised all into wij . Hence, not only the network topology does wij as a

matrix determines, but also the connection strengths between neurons.

In other words, the model is a weighted directional graph. If wij > 0, the firing of neuron j en-

courages that of neuron j, i.e. the effect is excitatory, similar for wij < 0 but with an inhibitory

effect. The larger the absolute value wij is, the greater this effect is. Although it might be

too rash to believe the properties of connection strengths are comparable with, or even derived

from, those of synaptic strengths, the Hebb rule [7], which originated to explain adaptation of

real neurons, is widely applied in artificial neural networks, often in a generalised version.

Adaptation occurs at all levels in the nervous system, from ion channels on synapses to indi-

vidual neurons and entire structures of networks [8]. Among various forms it can take, activity-

dependent synaptic plasticity is widely believed to be one of the most basic [6], which is well

explained by the Hebb rule: if one neuron often contributes input to the firing of the other, then

the synapses between them shall grow stronger. This would become a constructive prescription,

or at least an inspiring suggestion, in deciding or designing the algorithm for the artificial net-

works to learn, i.e. to acquire, the appropriate values of wij . Actually, when the network is

to be built able to learn from data by itself in Section 3, the only thing being renewed is the
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connection strength matrix; the threshold terms can be absorbed, and there will be no attempt

in any network to vary its size during the learning process. This hence implies the memory is

essentially the values of wij , if the networks to be studied indeed appear to have memory.

As for learning, there are three types [9]: supervised learning, reinforcement learning and un-

supervised learning. Supervised learning is training by a ’teacher’; a set of predetermined

input-output pairs is imposed, the network adjusts its connection strengths until the desired

computation emerges. Instead of a ’teacher’ giving the correct relationships between inputs and

outputs, reinforcement learning provides the network with feedbacks on its performance and it

shall acquire the expected computation by optimising its utility or cost function, or something

similar to evaluate the feedbacks. In unsupervised (or self-supervised) learning, there is no given

right answers at all; the network is presented with data only and it shall learn solely by itself to

function in a reasonable way, which is vague or too complex that the network designer is unable

to define beforehand.

In summary, the general model to be studied here is an artificial network with neurons sim-

plified as binary threshold units and all synaptic effects aggregated into a connection strength

matrix. The size and the basic structure of the neural network, the activation function and the

values taken by the neurons are determined before any analysis and computation. The only

thing needs to be thoroughly studied is the connection strengths. Two specific networks of re-

current and feed-forward structures will be studied. The top-down network is merged into the

feed-forward one as they share the symmetric structure. In aim of an appropriate connection

strength matrix, different approaches are taken in the two networks. In the recurrent network,

the matrix is constructed by hand, while the feed-forward network is designed able to acquire

it by supervised learning. The general theories of these models are studied from Hertz et al.

(1991) [2], and the genuine simulations and analysis performed follows mainly in the Simulation

and Discussion sections for the two networks (see Section 2.3 and 3.3).

2 The Hopfield Model

Hopfield firstly introduced this model to neuroscience as an associative memory [10], which

means the network is able to remember things in a fuzzy manner as a human brain does. To be

specific, the network is able to respond to a presented pattern with the most similar memory
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stored in it.

The model is a typical recurrent neural network with all N neurons connected to each other. As

a complete graph, the connection strength wij should be almost non-zero. Any configuration ξµi

is a possible pattern for the model to memorise, where µ = 1, ..., p.

2.1 The Basic Model

The neuron in this model takes binary values ±1, denoted by Si instead. Hence, the Heaviside

step function is replaced by the sign function sgn(x), that is,

sgn(x) =


1 if x ≥ 0;

−1 if x < 0.

Now the McColloch-Pitts Equation (1) becomes

Si := sgn(

(∑
j

wijSj − θi
)

and θi = 2µi −
∑

j wij as Si = 2ni − 1. These threshold terms are all set as 0, because they are

of no use with the random patterns to be considered. Thus the actual updating rule applied in

this model is

Si := sgn(hi) (3)

where hi =
∑

j wijSj is the net input onto neuron i.

If the network functions as desired, reading an input pattern and adjusting states with this

rule, the neural network shall finally present its memory that the most resembles the input. To

achieve this aim, the memories themselves should firstly be stable and then if the network is

also able to correct deviation from the memories, the model is then acceptable as a content-

addressable memory system.

2.1.1 Connection Strength Construction

The connection strength matrix in this network is directly built using the condition of memory

stability. For one memory ξi to be stable under the dynamic rule (3), the condition is, for all i,

sgn

(∑
j

wijξj

)
= ξi (4)
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This is true if

wij ∝ ξiξj

as ξ2j = 1. Apparently there can be other prescriptions, such as taking both ξi and ξj cubed,

but the direct product of them is easier for analysis and computation. For later convenience, it

is set that

wij =
1

N
ξiξj (5)

Note this directly makes the connection strength matrix symmetric.

So far, the connection strength is constructed in a straightforward manner. A satisfying conse-

quence is that it naturally enables the network to self-correct errors. Given a different starting

state Si, The condition (4) holds as long as Si 6= ξi for some i fewer than half.

In other words, ξi is a natural attractor in the dynamics in the pattern space. States starting

with more than half differences ends up in an other attractor at −ξi, which is called the reversed

state. This phenomena occurs in all networks with binary nodes since the dual states are per-

fectly symmetric to each other. It shall not be problematic because one certain neuron could be

chosen as indicator of the sign of all neurons; switching all neurons gives the expected result if

the network does converge to the reversed state.

With the inspiration of storing one memory in the network, the simplest method to store mul-

tiple memories is just to make wij a linear combination of solutions (5) for every individual

memorie µ, that is,

wij =
1

N

p∑
µ=1

ξµi ξ
µ
j (6)

Note this is the Hebb rule but generalised. The original rule suggests the connection strength is

changed in proportion to the correlation between the firing of the pre-synaptic neuron and that

of the post-synaptic one, but Equation (6) goes further as the connection is also strengthened

when neither of the neuron is firing.

Certainly there are models avoiding this generalisation [11], but it makes the model more com-

plicated. In addition, a more general prescription [10] is

∆wij = f(Vi(t), Vj(t)) (7)

which involves learning (∆wij is the change for every learning step) as wij is being renewed

according to the temporal states of neurons i and j, in terms of Vi and Vj at time t, and the

learning rule f is an arbitrary but appropriate calculation over the history of both neurons.
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For instance, it is considered with the original Hopfield model that

∆wij = A
∑
s

V s+1
i V s

j (8)

where A is some constant and the superscripts denote time. Thus, this rule specifies the change of

the connection strength between two neurons to be proportional to the superposition of products

of their states with the post-synaptic one having a time delay, in order to reflect the causality

along the firing sequence. This model makes wij nonsymmetric and may cause a memory to be

only metastable in the sense that it will be replaced in time [10].

Various alternatives are possible and they could yield better results in solving particular prob-

lems, but they are beyond the scope of this dissertation.

2.1.2 Crosstalk Term Analysis

Back to the basic multiple memory prescription (6), exactly the same things are to be checked

as for the one memory case. The stability condition now becomes, for all i,

sgn(hνi ) = ξνi (9)

Note here the subscripts again denote the pattern indices. The input is

hνi =
∑
j

wijξ
ν
j =

1

N

∑
j

∑
µ

ξµi ξ
µ
j ξ

ν
j

which can be separated into the special term of µ = ν and all the rest:

hνi = ξvi +
1

N

∑
j

∑
µ6=ν

ξµi ξ
µ
j ξ

ν
j (10)

The second term is called the crosstalk term. It is the interference from other memories with

the memory ν and thus generates noise. If its magnitude is less than 1, the sign of hνi is not

changed and therefore the memories are stable. Let

Cνi = −ξνi
1

N

∑
j

∑
µ6=ν

ξµi ξ
µ
j ξ

ν
j (11)

and then the net input and the multiple memory stability condition (9) can be written in a more

compact form:

hνi = ξνi (1− Cνi ) (12)

and if Cνi > 1, the change of the sign of hνi makes neuron i unstable in recalling memory ν.

In one memory case, there is no crosstalk term and thus the memory stored is always stable. Since
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the pattern space has finite cardinality (2N ), the network can never store too many memories.

Thus there must exist a maximum of stable memories, which apparently depends on ξµj .

If random memories are assumed, to be specific, ξµj = ±1 with either probability 1/2 and totally

independence among all j and µ, then the probability Perror = Pr(Cνi > 1) could be calculated.

It is binomial distributed with mean 0 and variance σ2 = p/N . Since Np is large, it is more

convenient to approximate it with a Gaussian distribution of the same mean and variance:

Perror =
1√
2πσ

∫ ∞
1

e−x
2/2σ2

dx

=
1

2

[
1− erf(

√
N/2p)

] (13)

where the error function erf(x) is defined by

erf(x) =
2√
π

∫ x

0
exp(−u2)du

It is now for the network designer to decide an acceptable performance, e.g., Perror < 0.01, and

then the storage capacity pmax could be found accordingly.

However, there are three different explanations on being acceptable [2]:

1. 1 − Perror > 0.99: requires individual neurons to recall almost correctly. Thus, Perr < 0.01,

which gives pmax = 0.15N .

2. (1−Perror)
N > 0.99: demands each memory of a whole pattern to be recalled with few errors,

thus the power of N . Since N/p is large, the asymptotic expansion of the error function, that

is,

1− erf(x)→ e−x
2
/
√
πx as x→∞

could be used to approximate the probability, which gives

log(Perror) ≈ − log 2−N/2p− 1

2
log π − 1

2
log(N/2p)

< log 0.01− logN = log(0.01/N)

Again since N is large, terms other than the leading ones could be omitted. The inequality thus

becomes N/2p > logN which yields pmax = N/2 logN .

3. (1−Perr)pN > 0.99: insists all patterns to be memorised should be generally stable. Applying

exactly the same trick in the case 2, the condition appears to be N/2p > log(Np), which gives

pmax = N/4 logN , because in the leading order log(Np) ∼ logN2 = 2 logN .

Nonetheless, the capacity pmax only presents the stability condition at the first step of recalling.

A small number of unstable initial neurons, which even is measured as acceptable by the above

criteria, may lead more neurons to become unstable in consequence. The memory as a whole
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might not be stable in such cases and therefore the current conditions obtained are necessary

but insufficient; in other words, a smaller capacity should be expected. In aim of this, more

powerful techniques will be applied.

2.1.3 Energy Function Approach

It is useful to define an Energy function (or a Hamilton) for the model [10]:

H = −1

2

∑
ij

wijSiSj (14)

The core property of the Hamilton is that it decreases monotonically as the dynamic evolves, that

is, it reaches local minima of the energy surface when the network converges to some pattern.

To ensure the existence of the Hamilton, the connection strengths must be symmetric [2]. In

this case, Equation (14) can be written as

H = H0 −
∑
i<j

wijSiSj

where H0 =
∑

iwii as S2
i = 1 for all i.

It is now straightforward to check the recalling algorithm (3) can only reduce the energy. Let

S′i be the updated value of Si in accordance to the dynamics, that is

S′i = sgn

(∑
j

wijSj

)
(15)

Since the neuron takes only the binary values, either S′i = Si, then the energy remains unchanged;

or S′i = −Si, in which case,

H ′ −H = −
∑
j>i

wijS
′
iSj +

∑
j>i

wijSiSj

= 2Si
∑
j>i

wijSj

= 2Si
∑
j

wijSj − 2wii

where the first terms is negative due to Equation (15) and S′i = −Si and the second is also

negative since wii = p/N > 0 given by the Hebb rule (6).

Actually it is set in the model that wii = 0. Though the value of these self-coupling terms does

not affect on the stability as N is large, it is better to omit them because they do have impacts

on the dynamics, producing additional stable spurious states [12].
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It shall be constructed so that all memories locate exactly at the local minima. The starting

point is again the one memory case, trying to build such a Hamilton that it is minimised when

the input pattern Si = ξi. A convenient choice with hindsight would be

H = − 1

2N

(∑
i

Siξi

)2

Similarly for many memories to store, let H be the composition over all patterns:

H = − 1

2N

p∑
µ=1

(∑
i

Siξ
µ
i

)2

(16)

which naturally makes all ξµ the local minima. Multiplying out the terms squared gives

H = − 1

2N

p∑
µ=1

(∑
i

Siξ
µ
i

)(∑
j

Sjξ
µ
j

)
= −1

2

∑
ij

(
1

N

p∑
µ=1

ξµi ξ
µ
j

)
SiSj

which reproduces wij as directly constructed by the Hebb rule (6).

Now that it is confirmed that the energy function approach is essentially identical to the basic

one, study of the Hamilton will directly offer understanding of the original dynamical system.

Before going further, it must be pointed out that ξµ are not the only attractors:

1. −ξµ, the reversed states, are also local minima but not problematic as aforementioned;

2. ξmix, mixture states, are stable, different with any ±ξµ, but emerge as linear combinations of

an odd number of memories [13];

3. for large p there are attractors that are not correlated with any stored pattern, called spin

glass states sometimes [14].

In general, attractors of type 2 and 3 are the spurious minima. It would be ideal that they

do not appear in the system, which is nearly impossible, but relatively small basins for these

spurious minima are achievable.

2.2 The Ising Model

The construction of the energy function has implied that there is a noticeable analogy in physics

for the Hopfield model. Actually the network is indeed isomorphic with an Ising model, which

studies magnetic materials in statistical mechanics. The analogy becomes powerful when the

neurons in the network is considered stochastic, which then brings in the idea of temperature

that makes thorough analysis of the network dynamics more workable [2].

The simplest Ising model describes the magnetic material as a set of atomic magnets, called
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spins, arranged on a lattice of crystal structure. Each spin is considered to point in two opposite

directions, e.g. up or down, right or left, which are always denoted Si = 1 or Si = −1. Every

spin i is affected by the magnetic field hi at its own site,

hi =
∑
j

wijSj + hext

which is made up of an external field hext and an internal field contributed by all the spins.

Here wij is called exchange interaction strengths; they are symmetric in nature and the values

depend on the particular magnet under study. The system also has an energy measure as

H = −1

2

∑
ij

wijSiSj − hext
∑
i

Si (17)

Now it is obvious that the Ising model is equivalent to the Hopfield model. The exchange in-

teraction strengths of the magnet are the connection strengths in the network, the internal field

over a spin is the net input onto a neuron and the external field works like the threshold.

2.2.1 Dynamics at Finite Temperature

At low temperature, a spin is mainly affected by the local magnetic field and points in its

direction, that is Si = sgn(hi), coinciding with the updating rule (3) in the neural network.

However, when the temperature is not low, thermal fluctuations should be taken into account,

which tend to flip the spin. Glauber dynamics [15] is commonly used to model this phenomenon.

The deterministic updating algorithm is substituted by a stochastic rule:

Si :=


+1 with probability g(hi);

−1 with probability 1− g(hi).

where g(h) is a temperature-dependent function. The usual choice of the sigmoid function is

g(h) = fβ(h) =
1

1 + exp(−2βh)
(18)

where β = 1
kBT

and kB is Boltzmann’s constant. Note that

1− fβ(h) = fβ(−h) (19)

so the algorithm can be rewritten as

Pr(Si = ±1) = fβ(±hi) =
1

1 + exp(∓2βhi)
(20)
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Note that for low temperature cases (in the large β limit), fβ(h) reduces to a step function and

thus the deterministic dynamics is recovered; in the opposite limit, the decision of Si becomes

purely random.

Now the idea of temperature is imposed onto the Hopfield model by applying the exactly model

[16], applying Equation (18) or (20), but take β = 1/T , which is more convenient and has no

effects because the temperature in the network is not a real physical measure.

2.2.2 Equilibria in Stochastic Networks

For a single spin to be in equilibrium, the average magnetisation of S, denoted by 〈S〉, can be

calculated trivially:

〈S〉 = Pr(+1) · (+1) + Pr(−1) · (−1) = tanhβh (21)

where tanh(x) is the hyperbolic tangent function defined by

tanh(x) =
ex − ex

ex + ex

However, there is generally no analytic solution for many spin cases because the internal field

is dependent on other random spins. A quite good approximation is available, known as mean

field theory [2]:

〈hi〉 =
∑
j

wij〈Sj〉+ hext

which replaces the true values by their averages. Then calculation similar to the one spin case

yields

〈Si〉 = tanh(β〈hi〉) = tanh

(
β
∑
j

wij〈Sj〉+ βhext
)

The approximation becomes exact as the interaction range gets infinite [2].

For p� N , the neural network could directly adopt the equilibrium approximation as

〈Si〉 = tanh

(
β

N

∑
j,µ

ξµi ξ
µ
j 〈Sj〉

)
(22)

whose solution is not obvious, but applying a trial solution that is proportional to one of the

memories, the mean field equation becomes

〈Si〉 = mξνi = tanh

(
β

N

∑
j,µ

ξµi ξ
µ
jmξ

ν
j

)
(23)
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The terms in the summation could be separated into a term of ξνi and a crosstalk term as in

Equation (10). Given the large N limit, the crosstalk term could be ignored, so the equation

becomes

mξνi = tanh(βmξνi )

Since tanh(−x) = − tanh(x), it could be further simplified into

m = tanh(βm) (24)

which can be easily solved graphically (see Figure 2). Solutions are intersections between the

Figure 2: Solving Equation (24) by graph: the intersections of the blue curve m = tanh(x) and the red

lines m = x/β are the solutions.

sigmoid curve in blue m = tanh(x) and a family of red lines given by m = x/β. When β ≤ 1,

there is only one trivial solution at the origin, whereas β > 1 there are two more symmetric

solutions.

The situation of only one trivial solution corresponds to the high temperature case, as β is small,

which implies 〈Si〉 = 0 and thus neurons readjust their values in a completely random way. Note

that the straight line is tangent to the sigmoid curve at the origin is a critical case, in which

the temperature is called critical and denoted by Tc. In the stochastic network where β = 1/T ,

Tc = 1. In addition, T approaching 0 gives the large β limit, which makes the positive solution

converges to 1 and the negative to −1; the deterministic model is recovered.

For the magnet analogy, it has Boltzmann’s constant to scale the value, but this is of no more

concern, because the Hopfield model has presented itself to be well-adapted with the stochastic

model and the pseudo-temperature concept.
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m is a local measure on a single neuron but a useful number to estimate the network behaviour

by the relationship

m = 〈Si〉/ξνi = Pr(i correct)− Pr(i incorrect)

and thus the average number of correct neurons in a pattern is calculable:

〈Ncorrect〉 =
1

2
N(1 +m) (25)

Since the solution to Equation (24) is available, it is now straightforward to obtain the solution

of 〈Ncorrect〉 (in accordance to the positive solution of m), which is presented in Figure 3. The

Figure 3: 〈Ncorrect〉 from Equation (25) as a function of the pseudo-temperature T

solution above Tc is N/2, which means the neurons are behaving in a purely stochastic way.

Although the randomness increases dramatically when the temperature is increasing towards

closely the critical value, the change is quite slow at low temperature.

At this range of relatively small T , the network behaviour is almost strictly correct as with the

deterministic neurons. However, the stochastic dynamics is actually better, especially because

the spurious minima are of high energy and thus network was stuck in such unexpected attrac-

tors is now easily kicked out by the randomness.
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2.2.3 Capacity of Basic Hopfield

The above analysis has proved the stochastic model useful, but it is based on p � N and thus

of no help in finding the value of pmax. However, it will be shown that the introduction of

temperature is powerful and worth complicating the network with the randomness.

Now p has the same order as N , so the crosstalk term cannot be ignored as in Equation (23).

Define the crosstalk entry of pattern ν as

mν =
1

N

∑
i

ξνi Si (26)

which enables to rewrite the Hamilton (16) in a compact form as

H = −N
2

p∑
µ=1

m2
µ = −N

2
‖m‖22 (27)

where ‖m‖2 is the l2-norm of the crosstalk vector m = (mµ)µ=1,...,p. Hence, the terminology is

consistent with the crosstalk term defined in Equation (10).

Suppose the first pattern is under study, then m1 is of order 1, while all other mν is small, of

order 1/
√
N , but the mean square overlap,

r =
1

α

∑
ν 6=1

m2
ν (28)

where α = p/N is the load parameter, is of order 1, hence the crosstalk term is not negligible

as expected.

Substitute 〈Si〉 in Equation (22) into (26), with Si replaced by 〈Si〉, using the mean field theory

again:

mν =
1

N

∑
i

ξνi tanh

(
β
∑
µ

ξµi mµ

)
(29)

With this starting point, firstly study the case when ν 6= 1. Separating the terms with µ = 1

and µ = ν gives

mν =
1

N

∑
i

ξνi ξ
1
i tanh

[
β

(
m1 + ξνi ξ

1
imν +

∑
µ6=1,ν

ξµi ξ
1
imµ

)]
In the argument of the hyperbolic tangent function, the first term is large by assumption, the

third is large because there are about p terms, but the second is small of order 1/
√
N , so it can

be expanded using d
dx tanh(x) = 1− tanh2(x) and explicitly it has become

mν =
1

N

∑
i

ξνi ξ
1
i tanh

[
β

(
m1 +

∑
µ 6=1,ν

ξµi ξ
1
imµ

)]

+
β

N

∑
i

{
1− tanh2

[
β

(
m1 +

∑
µ6=1,ν

ξµi ξ
1
imµ

)]}
mν

(30)
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In order to continue the calculation, it has to be assumed now that the small overlaps mµ

for µ 6= 1 are independent random variables; Equation (28) suggests their means to be 0 and

variance αr/p. At the same time, ξµi ξ
1
i in the second line is a random variable independent of

mµ, so by the central limit theorem the equation could be simplified as

mν =
1

N

∑
i

ξνi ξ
1
i tanh

[
β

(
m1 +

∑
µ6=1,ν

ξµi ξ
1
imµ

)]
+ βmν − βqmν

=
N−1

∑
i ξ
ν
i ξ

1
i tanh

[
β
(
m1 +

∑
µ6=1,ν ξ

µ
i ξ

1
imµ

)]
1− β(1− q)

where

q =

∫
dz√
2π
e−z

2/2 tanh2
[
β
(
m1 +

√
αrz

)]
(31)

To compute r, square mν . As only terms outside the tanh involves pattern ν, they could be

averaged separately and only the self-coupling term survives, while the averaging over the tanh

just yields a factor of q as in simplifying Equation (30). Comparing with Equation (28) gives

r =
q

[1− β(1− q)]2
(32)

Note the result is independent of ν.

Now use the exactly the same approach to study the case when ν = 1, starting from Equation

(29) again, an equation for m1 is easily obtained:

m1 =

∫
dz√
2π
e−z

2/2 tanh
[
β
(
m1 +

√
αrz

)]
(33)

Now there are three equations (31), (32) and (33) in terms of m1, q and r, and they can be

solved simultaneously.

Certainly the solutions could only be obtained numerically in general, but here it is possible to

check the zero temperature limit (i.e. β → ∞), which recovers the basic Hopfield model. It is

clear that q → 1 in this limit but C ≡ β(1 − q) remains finite. The integrals in Equation (31)

and (33) is evaluated by the following two identities:∫
dz√
2π
e−z

2/2
(
1− tanh2 β[az + b]

)
' 1√

2π
e−z

2/2|tanh2 β[az+b]=0

∫
dz
(
1− tanh2 β[az + b]

)
=

1√
2π
e−b

2/2a2 1

aβ

∫
dz

∂

∂z
tanhβ[az + b]

=

√
2

π

1

aβ
e−b/2a

2
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and ∫
dz√
2π
e−z

2/2 tanh2 β[az + b]

T→0−−−→
∫

dz

2π
e−z

2/2 sgn[az + b]

= 2

∫ ∞
−b/a

dz

2π
e−z

2/2 − 1

= erf

(
b√
2a

)
The three equations can now be rewritten as

C ≡ β(1− q) =

√
2

παr
exp

(
− m2

2αr

)
r =

1

(1− C)2

m1 = erf

(
m1√
2αr

)
In aim of the capacity α only, a trick is to set y = m1/

√
2αr and get

y(
√

2α+
2√
π
e−y

2
) = erf(y) (34)

which could be solved graphically as shown in Figure 4. The red curve is the error function

Figure 4: Solving Equation (34) by graph: the intersections of the red curve z = erf(y) and the blue

ones z = y(
√

2α+ 2√
π
e−y

2

) are the solutions.

on the right hand side of the equation and the blues ones stands for the left hand side. Their

intersections are the solutions and there is apparently a maximal value for α. This critical value

for the existence of the solution can be computed numerically: αc ≈ 0.138. The jump at αc is
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very dramatic, from m1 ≈ 0.97 to zero. From Equation (25), it is clear that the network could

recall memories quite well for α < αc but becomes directly useless if α grows beyond the critical

value.

The analysis of the deterministic dynamics only allows to conclude the initial capacity, but now

with stochastic neurons, it becomes possible to study the property of the attractors directly, and

the deterministic case is always easily recovered by taking zero temperature.

Amit et al. firstly calculated the complete solution and analysed the stable states further [14, 17].

The results can be presented in a phase diagram (see Figure 5). Networks in area A and B are

Figure 5: Phase diagram of the Hopfield model [14, 17]: networks of type A and B are useful memory

systems, but spin glass states are more stable than stored memories in B; all attractors in C are spin glass

states and only the trivial minimum zero occurs in D, and thus networks of type C and D are useless.

useful, because the stored patterns are indeed attractors, although in area B, spin glass states

are more stable than memories. Systems of type B and C are of no use. All minima in C are

spin glass states and zero is the only solution in D.
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2.3 Simulation and Discussion

All the above theories are based on the assumption of random patterns, but realistic patterns

cannot in general fulfil this condition. Simple but genuine simulations are performed to test

whether or not the neural network yields an acceptable results as expected.

2.3.1 Algorithm Summary

The simulation applies the basic Hopfield model. The neural network is firstly presented with

patterns to be memorised. The connection strength matrix is computed accordingly and then

the network is ready.

A test pattern is now presented to the prepared network. It begins to recall the memory most

similar to the test pattern by the updating rule (3). This process could be performed syn-

chronously, but a central clock is then needed, and thus it becomes sensitive to time errors

[2]. Therefore, an asynchronous approach is applied more commonly, which is more natural,

accurate and convenient to use in practice.

There are two possible proceeding approaches to realise this recalling process. Each neuron could

readjust its state at a random time but with a mean attempt rate, or a randomly chosen neuron

updates its state at each time step. They are apparently equivalent to each other (with many

neurons and long time, which is easily fulfilled in neural networks) because the probabilities of

a neuron not readjusting in two cases are geometric and exponential decays respectively; the

two distributions converge to each other. It is advantageous for hardware design to apply the

first strategy, performing parallel computation as real nervous systems, but for simulations, the

second idea is more practical.

The network is to stop after predetermined time epochs, long enough for the system to converge

into some attractor, not necessary the desired memory, though.

2.3.2 Programming Details

The programming is done by MATLAB R2011b without any additional toolbox on a win32

system. Due to the memory limit, a picture with 100 × 100 is already out of the calculation

capacity.

Patterns used here are 2-D pictures with pixels blacks and white only. The file format is chosen
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or is standardised to be BMP. Thereby, a bit, or a pixel, is treated as a neuron in the Hopfield

model. When a neuron is firing, the pixel is black with value 255; when a neuron is not firing,

the pixel is white with value 0.

Since the Hopfield model has no growth or deterioration of neurons in the network, the size of

pictures should be consistent for the same learning and recalling process. Pictures with 30× 30

pixels and 80× 80 are used.

The patterns chosen are digital numbers, English letters and Chinese characters.

2.3.3 Simulation Results

Simulation 1: Digits and Letters

10 digits and 26 pairs of English letters in their upper and lower cases are presented in the font

of Times New Roman and their sizes are 20 (see Figure 6). Then the 62 pictures in total are

Figure 6: Images of the digits and letters used in the simulations

standardised to BMP’s with 30× 30 pixels, black and white only.

These images are then read and stored in a 3-D matrix by Code H1, the connection strengths

are calculated by Code H2 and the recalling is performed by Code H3 (see Appendix B.1 for

details).

The results is disappointing. Whatever the input is, the pattern fades away; the network always

converges to the trivial attractor where all neurons share the same state.

Simulation 2: Digits only

In order not to enlarge the network size but to have a relatively clearer memory, trying to store

less patterns is a computationally economic way. With easy modifications on Code H1, the same
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procedure as in Simulation 1 can be operated.

Some results are shown in Figure 7. The first column corresponds to the original test input and

Figure 7: Results of the simulations with desired memory of digits only: the first column presents the

test inputs and from the second to the last are readjustments after 100, 1000, 2000, 3000, 4000, 5000 and

10000 times; all test inputs evolves into the same attractor.

then the columns from the second to the last are outcomes after updates after 100, 1000, 2000,

3000, 4000, 5000 and 10000 epochs.

It seems whatever the input is, the network ends up at the same attractor eventually. Note the

first three rows are the cases in which the original inputs are exactly the same as the stored

memory. Therefore the memory is not stable at all, that is, the network is not a good memory

system.

One may argue the attractor looks like the digit 3 and it might have some special contribution

to the network. However, the simulation without ’3’ as the given memory yields the similar

results (see Figure 8). The 3-like pattern is more likely to be the combination of all the digits,

that is, the crosstalk term is too large.

Hence, the network as a memory system is useless, although it is improved a little better with

less memories to store.
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Figure 8: Results of the simulations with desired memory of digits without 3: the attractor is similar to

that in Figure 7.

According to the theory of the Hopfield model, the network (with 900 neurons) should be at

most able to store about 135(= 900×0.15) patterns. The realistic network cannot even store 10

memories. Two possible factors are considered to cause this failure. First, the random memory

assumption is not justified, which makes the crosstalk term much larger than expected. Second,

too much margin of the pictures allows too few neurons to store the effective information, which

reduces the network capacity.

Simulation 3: Chinese Characters

It might be helpful to use Chinese charaters as the memories. As a type of logograms, there are

a consider number of symbols and only ten common characters are taken (see Figure 9), which

Figure 9: Images of the Chinese characters used in the simulations

should reduce the correlation among patterns; note no characters share the similar symbolic

part except the ones of water and ice. Additionally, as symbols most fit in a square, they span

more pixels inside an image, which seems to be an advantage comparing to the digits. At last,

the patterns are still realistic and meaningful to people.

All the patterns are still 30 × 30. The font applied is SimSun and the size is 20. Code H1, H2

and H3 can be easily adapted.

However, the network behaves unacceptably in a similar way as Simulation 2 (see Figure 10):

the memories themselves are unstable and all test patterns are captured by the same attractor.
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Figure 10: Results of the simulation with the Chinese characters: the first column presents the test

inputs and from the second to the last are readjustments after 100, 1000, 2000, 3000, 4000, 5000 and

10000 times; all test inputs evolves into the same attractor.

Simulation 4: Large Chinese Charaters

It seems the random memory assumption is hard to justify. Although using Chinese characters

may have reduced correlation between patterns, all pictures are clear to have locally correlated

features. A larger network might improve the performance.

Same characters are chosen but now the size is enlarged (of size 72) and the font applied is

STXinwei as shown in Figure 11. Similarly, Code H1, H2 and H3 could be easily adapted.

Figure 11: Images of the large Chinese characters used in the simulations

Unfortunately, the network is still of no use (see results in Figure 21 in Appendix A) even with

a memory load of 10/6400(= 0.0015625). It is now hard to argue that there are too less effective
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neurons so that the large N assumption is not justified. The failure of the random memory

assumption must take the main responsibility of the disappointing performance.

2.3.4 Crosstalk Revisit

To understand the unexpected results from the simulations, the crosstalk term has to be studied

in more details. The compact form of Hamilton (27) is easier to work with.

Without loss of generality, consider how to ensure ξ1 being a local minimum. For any S with

Si = ξ1i for i 6= j and Si = −ξ1i for i = j, H(ξ1) is a local minimum if H(ξ1) ≤ H(S) for all

j = 1, ..., N .

H(S)−H(ξ1) = −N
2

( p∑
µ=1

(mµ(S))2 −
p∑

µ=1

(mµ(ξ1))2
)

= −N
2

p∑
µ=1

(
mµ(S) +mµ(ξ1)

)(
mµ(S)−mµ(ξ1)

)
Applying mµ(S) −mµ(ξ1) = − 2

N ξ
1
j ξ
µ
j and mµ(S) + mµ(ξ1) = 2(mµ(ξ1) − 1

N ξ
1
j ξ
µ
j ), to simplify

the equation gives

H(S)−H(ξ1) =
2

N

p∑
µ=1

(
Nξ1j ξ

µ
jmµ(ξ1)− 1

)
Hence, to make ξ1 stable, the condition is

N

p∑
µ=1

ξ1j ξ
µ
jmµ(ξ1) ≥ p (35)

When p = 1, the inequality holds trivially, since ξ1j ξ
1
j = m1(ξ

1) = 1.

When p = 2, the inequality becomes

N ≥ 2−Nξ1j ξ2jm2(ξ
1)

It would be invalid, only if ξ1j ξ
2
jm2(ξ

1) < 0 and |Nm2(ξ
1)| = |

∑
i ξ

1
i ξ

2
i | > N − 2. It is nearly

impossible to violate the second condition because it means the two patterns only have one unit

different (or only one unit the same).

When p ≥ 3, the inequality (35) become

N ≥ p−Nξ1j ξ2jm2(ξ
1)−Nξ1j ξ3jm3(ξ

1)− ...−Nξ1j ξ
p
jmp(ξ

1)

In the cases of only one or two memories, the simulations indeed yield perfect performance. How-

ever, for three memories, the network immediately becomes useless. In this case, the condition
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is

N ≥ 3−Nξ1j ξ2jm2(ξ
1)−Nξ1j ξ3jm3(ξ

1)

while the three patterns of digits ’1’, ’2’ and ’3’ share 747 exactly the same pixels. The right

hand side could be greater than N if ξ1j ξ
2
j = ξ1j ξ

3
j = −1, whose probability is not negligible

(1/4 if assume independence between patterns). Apparently this probability would grow with p

increasing.

2.4 Extension and Conclusion

As aforementioned, there are many alternative constructions and extension for the details in the

Hopfield model, mostly varying wij in correspondence to ξµi of certain informative structure.

Two studies might be particularly of interest concerning the simulations with digits and char-

acters have been done. The first one is of sparse patterns. The minor fraction of black pixels on

the white screen is a typical example of this case. The connection strengths shall be

wij =
1

N

∑
µ

(ξµi − a)(ξµj − a)

where a� 1 is the proportion of firing neurons in the memory and an optimal threshold (same

for all neurons) should be chosen [18]. Due to the sparsity, the network can store a relatively

larger number of memories with

αc ≈
1

2a| log a|

Note ξµi is still assumed independent for all i and µ but the probability for firing or not is biased.

Nonetheless, simulation results are not improved by this technique, which re-emphasises the sig-

nificance of the random memory assumption.

The second extension is the analysis on correlated patterns. Lowe [19] considered two types of

correlation, semantic and spatial. The semantic correlation means (ξµi )µ=1,...,p is a homogeneous

Markov chain but independence is still assumed within one pattern, while the spatial correlation

represents (ξµi )i=1,...,N being so but patterns are uncorrelated. It is proved that, the memories,

in both cases, are almost surely stable.

Although this result cannot help enhance the capacity of the neural network, it implies that

the patterns presented to the network have a more complicated structure in the crosstalk term,

which neither the assumption of complete randomness nor the construction of Markov chain

could explain. The crosstalk term is thus of more interest and importance in the study of the
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Hopfield model, but it should be more concerned with the particular problem one wants to solve,

which will go beyond the scope of this dissertation.

To conclude, the Hopfield model is a recurrent neural network, which works well if the crosstalk

is under control. However, the simulations have shown that realistic patterns, at least images,

frequently have crosstalk structures out of a general control. It seems not a good idea to di-

rectly apply the model in pattern recognition; informative insights and other techniques should

be combined. Since recurrent synapses in real nervous systems generally locate at later stages

along a information processing pathway, patterns such networks deal with may contain less cor-

relation as in a picture; the Hopfield model might thus be an appropriate generalisation as the

theories suggests.

3 Layered Feed-Forward Networks

Layered feed-forward networks, also known as perceptrons, is initially invented by Rosenblatt

in 1957 [20], which produced one of the very first artificial neural networks in the world. The

model is designed to be highly structured, consisting of several hierarchical layers, and informa-

tion can only flow from one layer to the next one (an example is shown in Figure 12). Note the

Figure 12: An example of a two-layer perceptron: the solid circles represents the input terminals, which

are not counted as a layer; the circle at the top layer represents the output neurons and those in the

middle form the hidden layer; the arrows show the information follow of the connections.
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architecture of real neural networks is generally layered as well and one of the most common

is the feed-forward network [2]. However, it is not likely to be strictly layered as the artificial

networks, but may include loops, which makes the network partially recurrent.

Perceptrons are designed to consist of neurons that could be grouped into subsets. The first

one directly receives signals from input patterns and send them to the rest part of the network;

these neurons are thus called input terminals (solid circles in Figure 12). The second part is

made up of several hidden (or intermediate) layers. The last layer is called the output layer

as its neurons shows the final result of the network computation. Only the hidden and output

layers are counted as the layers of perceptrons, as the input terminals are not equipped with

the same computational ability as the other neurons; there is the other convention which does

count it, though. Note there could be no hidden layers; in such simplest cases, there is only one

layer and these networks are known as simple perceptrons.

The desired computation is similar as for the recurrent networks. Given an input patterns

ξ, the network is expected to yield the correct match ζ. Hence, the task is also to establish

an appropriate a connection matrix wij . However, due to the hierarchical structure and the

unidirectional signal propagation, feed-forward networks have asymmetric wij with all entries

above the diagonal being zero, which makes it unable to apply the energy function and all other

methods and analysis based on it.

To find the appropriate connection strengths, the technique of supervised learning is applied in

this content. Pairs of (ξµ, ζµ) are presented to the network. After training, it is expected to

recall the memory ζµ given the input ξµ; furthermore, for patterns different to ξµ but similar, it

would be satisfying if the network could still present ζµ. By achieving this aim, the feed-forward

network, though artificial, mimics the learning behaviour of the natural neural networks.

Note wij will be re-structured into non-square matrix in general from now on, in order to save

notational and computational cost. wij still denotes the connection strength from neuron j to

i, but since the network is strictly unidirectional, neuron i always locates on the next layer of

neuron j; i and j will then never represent the same neuron even if i = j, as they run through

different indices depending on the size of the layers.
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3.1 One-layer Networks

By definition, a simple perceptron has only one layer, the output layer, and no hidden ones.

Since the sizes of input and output patterns are given, the structure of the network is determined

accordingly. The computation is again based on the generalised McCulloch-Pitts equation (2):

Oi = g(hi) = g

( N∑
k=1

wijξk − θi
)

(36)

where the input terminals directly adopt the notation for patterns as ξk and Oi denotes the

output. The threshold θi could be absorbed by setting ξ0 = −1 and wi0 = θi, which gives

Oi = g(hi) = g

( N∑
k=0

wikξk

)
(37)

Similarly, it is the connection strength matrix essentially defines the network computation, so

the aim is the same: to obtain wij that enables the network to match the actual output pattern

with the desired, that is,

Oµi = ζµi (38)

for each i and µ.

3.1.1 Threshold Neurons

The simplest case would be a perceptron with deterministic binary threshold neurons. To be

specific, Oµi , ξ
µ
i , ζ

µ
i ∈ {1,−1} and g(h) = sgn(h).

In order to fulfil the condition (38), the net input hµi should have the same sign as that of ζµi

for each i and µ, that is, for every µ

sgn(w · ξµ) = ζµ (39)

Note the subscript i is dropped because it is convenient to consider only one neuron at a time,

and that the connection strength and the input pattern are in the vector form. This means

that the plane w · ξ = 0 divides the space of the pattern vectors into two types of positive and

negative outputs.

By defining xµ = ζµξµ, Equation (39) becomes

w · xµ > 0 (40)

This means that the vectors x must all lie on the same side of the plane w · xµ = 0.

This property is called the linear separability. However, this plane does not always exist. If the
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given patterns do not have the property, the network can never learn to perform the desired

computation.

For example, the Boolean AND function is linearly separable. There are generally two types of

failure (see Figure 13). The first type is represented by the Boolean XOR function. The second

Figure 13: Two cases without the linear separability [2]: the XOR problem (left) and the linear depen-

dence case (right).

type is caused by linear dependence of patterns.

Assume linear separability, there is a simple learning algorithm, which can be realised with

different detailed models:

∆wik =


2ηζµi ξ

µ
k if ζµi 6= Oµi

0 otherwise

(41)

or

∆wik = η(1− ζµi O
µ
i )ζµi ξ

µ
k (42)

or

∆wik = η(ζµi −O
µ
i )ξµk (43)

where η is called the learning rate.

In spite of different forms, the three updating rules share the same core idea. At a certain step

of learning, if the output coincides with the input, ζµi = Oµi for all i, ∆wik = 0 since it is not

necessary to readjust the connection strength; otherwise, the generalised Hebb rule is applied,

that is, the connection is strengthened in proportion to the product of pre- and post-synaptic

neuron states. In the case of Equation (43), one may consider the network is trying to forget

the incorrect matches (to learn the opposite) while learning the desired.
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Note this product directly interacts with the learning rate, which decides the ’speed’ of learning.

Large η assigns more weight on the patterns newly learnt; wij might oscillate. On the other

hand, small η readjusts wij in a humble manner. Both situations may lead to slow convergence

to effective connection strengths. An appropriate choice of the learning rate is thus important.

Sometimes, it is a better idea to require the value of the output larger than some given number

w · xµ > Nκ (44)

where κ is called the margin size. As the sum on the left-hand side scales with N , placing N on

the right-hand side could keep κ fixed.

Applying this new rule to equation (42) gives the perceptron learning rule [21]:

∆wik = ηΘ(Nκ− ζµi O
µ
i )ζµi ξ

µ
k (45)

or, in the vector form,

∆w = ηΘ(Nκ−w · xµ)xµ (46)

Note Equation (42) is the special case with κ = 0 and the scaling in η of factor 2.

Equation (46) gives a geometrical description of the updating rule. If the projection of the

connection strength matrix onto xµ, i.e. w · xµ, is less than Nκ/|w|, w is then changed in the

direction of xµ. This procedure iterates until all projections are large enough. It is proved that

this algorithm ensures wij to converge to the optimal solution in finite steps [21].

A measure to evaluate how easy or hard the problem arises according to the margin:

Dmax = max
w

D(w) (47)

where

D(w) =
1

|w|
min
µ

w · xµ (48)

is the smallest margin for all the given patterns, that is, the distance between the plane per-

pendicular to w and xµ that is the nearest to it. The value is only determined by the direction

of w due to the factor of 1/|w|. Apparently, if the nearest pattern vector could have a positive

margin, then the linear separability holds.

Hence, if this worst-case margin is maximised as in Equation (47), the solution, called optimal

perceptron, naturally represents the solvability of the problem. If Dmax < 0, there is no solution.

If Dmax ≥ 0, there is a solution and the larger the value is, the easier the problem. For instance,

for the Boolean AND problem, Dmax = 1/
√

17, while, for XOR, Dmax = −1/
√

2.
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3.1.2 Linear Neurons

From now on the activation function g(h) is generalised to be continuous and differentiable. This

technique is useful because it allows the system to be equipped with a cost (or error) function

E(w), which directly measures the network performance. Then through the minimisation of

E(w), the appropriate w is obtained.

Here assume the neuron is linear, that is, g(h) = h, which makes it easier to analyse, though

less useful in practice comparing to non-linear neurons. Remark that image compression is an

important application of linear networks, where it is proved theoretically [22] and indeed found

by the simulations [23] that nonlinearity in this content is of no advantage.

Given input ξµk , a linear simple perceptron is to present the output as

Oµi =
∑
k

wikξ
µ
k (49)

With the usual association condition (38), wik could be explicitly solved by the pseudo-inverse

method [12]:

wik =
1

N

∑
µν

ζµi (Q−1)µνξ
ν
k (50)

where

Qµν =
1

N

∑
k

ξµk ξ
ν
k (51)

or, recalling Equation (26),

Qµν = mν(ξµ) (52)

which is just the crosstalk entry between input patterns µ and ν.

Note Oµi is now continuous-valued, but it is still possible to restrict the target ζµi to ±1. The

condition for a solution to be available is the existence condition of Q−1, which requires the

inputs are linear independent.

It should be pointed out that linear independence implies the linear separability but the reverse

is invalid; thus, it is a sufficient but not necessary condition for the existence of a solution [2].

Although an explicit solution could be calculated, it is more interesting to find a learning rule

as for the threshold perceptrons. This effort will become valuable when non-linear neurons are

under study.

As promised, a cost function is defined at the first place:

E(w) =
1

2

∑
iµ

(ζµi −O
µ
i )2 =

1

2

∑
iµ

(
ζµi −

∑
k

wikξ
µ
k

)2

(53)
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The smaller the value is, the better the perceptron behaves; when it becomes zero, the matching

condition (38) is naturally fulfilled.

Note the cost function depends on the connection strength matrix w and the input patterns

ξµ, whereas the Hamilton (14) depended on the current state S, which evolved to minimise the

energy, but w is a constant. Here, w is updated through the learning process.

A common algorithm for training the perceptron is the gradient descent learning:

∆wik = −η ∂E
∂wik

= η
∑
µ

(ζµi −O
µ
i ) (54)

The name follows from the optimisation technique which tries to find the minimum along the

gradient. If the changes is made for every input pattern in turn, the rule is reduced into

∆wik = ηδµi ξ
µ
k (55)

where δµi is the errors (also known as deltas) given by

δµi = ζµi −O
µ
i (56)

This algorithm is often called the delta rule, or the LMS (least mean square), or the adaline

rule, or the Widrow-Hoff rule [24, 25], which enables the network to find the optimal connection

by successive improvement.

Certainly, the existence condition for such optimal w is still the linear independence suggested

by Equation (50). With the minima exists, the updating process shall make the network con-

verges in an asymptotic way (for the proof see [2]).

Note Equation (55) is in exactly the same form as Equation (43) for the threshold neurons.

Equation (43) was an educated guess based on the Hebb rule but Equation (55) here is natu-

rally derived with gradient descent method. The advantage of this new approach will emerge

when multi-layer network is studied, because it is more easily generalised than the Hebb rule in

such cases.

Despite of the learning rule in the same form, threshold perceptrons have many differences from

linear ones. First of all, the neurons in the two models takes different values, binary versus

continuous. The second difference is the conditions for existence of a solution, linear separabil-

ity versus linear independence. Finally, networks with threshold neurons have their connection

strengths converge in finite steps but linear networks approach the optimal perceptron asymp-

totically.
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3.1.3 Nonlinear Neurons

Perceptrons with nonliner neurons generally have no explicit solutions as the linear networks

do. Nonetheless, the gradient descent learning technique could be easily generalised to any

differentiable g(h). The cost function now becomes

E(w) =
1

2

∑
iµ

(ζµi −O
µ
i )2 =

1

2

∑
iµ

[
ζµi − g

(∑
k

wikξ
µ
k

)]2
(57)

with the gradient being

∂E

∂wik
= −

∑
µ

[ζµi − g(hµi )]g′(hµi )ξµk (58)

Hence the update of the connection strengths could be written in the same form as Equation

(55) as the product of the input and the error, scaled by the learning rate, but now the delta is

different from Equation (56):

δµi = (ζµi −O
µ
i )g′(hµi ) (59)

as there is an additional factor of g′(hµi ) that is the derivative of the activation function. Similar

to the form of Equation (18), the choice of g(h) is often sigmoid, which could be still explained

as a stochastic activation (see Section 3.1.4), but here the neurons are modelled as able to active

at continuously different levels (for values from −1 to 1 representing ’very low activity’ to ’very

high activity’).

A particular convenient and useful choice is the hyperbolic tangent function g(h) = tanh(βh),

whose derivative is g′(h) = β(1− g2). This derivative is large when |hµi | is small, so at the early

stage of learning (when w is typically small), the update of w is very effective, while |w| grows

throughout learning and thus |hµi | decays which makes the updates more cautious.

Another good property of the sigmoid activation function is that it makes the condition for

the existence of a solution the same as for the linear perceptron, that is, linear independence

between input patterns. Since the function is invertible, to solve the present problem with the

desired patterns ζµi is equivalent to solve the linear one with g−1(ζµi ).

However, the gradient descent may run into a local minima with nonlinear neurons, rather than

the global one.

Another cost function, known as the relative entropy, is of common interest [26, 27, 28]

E =
∑
iµ

[
1

2
(1 + ζµi ) log

1 + ζµi
1 +Oµi

+
1

2
(1− ζµi ) log

1− ζµi
1−Oµi

]
(60)

because it gives the delta

δµi = β(ζµi −O
µ
i ) (61)
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which effectively omits the derivative factor in Equation (59) and is the same as Equation (56)

in the linear network and Equation (43) in the threshold case.

Since any differentiable function of ζµi and Oµi with minimum at ζµi = Oµi could be applied with

the gradient descent learning, it is possible in practice to find a suitable form of delta first and

construct cost function accordingly to acquire computational or analytical convenience.

3.1.4 Stochastic Neurons

Another generalisation is to use binary neurons Sµi with stochastic thresholds defined by Equa-

tion (18):

Pr(Sµi = ±1) =
1

1 + exp(∓2βhµi )
(62)

with the net input hµi =
∑

k wikξ
µ
k as usual. This gives, exactly as Equation (21),

〈Sµi 〉 = tanh

(
β
∑
k

wikξ
µ
k

)
(63)

Then 〈Sµi 〉 plays the role of Oµi in contribution to the delta

δµi = ζµi − 〈S
µ
i 〉 (64)

which is simply the average over individual possible updates using the linear delta rule (56).

Before closing this section, it might be interesting to mention the memory capacity as for

the Hopfield model. For perceptrons with continuous neurons, linear independence condition

directly implies the answer: pmax = N . It is more difficult to solve the problem for threshold

cases. For the networks with random continuous inputs, Cover derived the solution back in 1965

[29], which is remarkably simple: pmax = 2N . This result becomes exact in the large N limit

but the number of the output neurons must be fixed.

Simple perceptrons of various types have been studied. Although it is hardly possible to find

a real analogy in the nervous system, it has been shown even with such simple structures, the

networks are capable of learning some computational tasks. The core technique of training, the

gradient descent learning, will be directly adopted to multi-layer networks.

39



3.2 Multi-Layer Networks

Multi-layer perceptrons, by definition, have one or more hidden layers. They have a more

realistic architecture comparing with simple perceptrons, although only those of the strictly

feed-forward structure are to be studied, while natural neural networks normally have loops,

direct or indirect.

The desired computation is the same as before, to match the input pattern with a desired one,

i.e. Equation (38). As one may expect, they are more powerful, being able to overcome the

limitation of simple perceptrons. A network with only one intermediate layer can calculate any

Boolean function. For example, Figure 14 gives a solution to the XOR problem. The numbers

Figure 14: A two-layer perceptron solving the XOR problem: the neurons are binary taking 0 or 1 with

the same threshold 0.5; the numbers on the arrows is the connection strengths.

in the neurons (as circles) are the thresholds and those on the connections (as arrows) specify

the strengths. Note the hidden neurons on the left computes the logical OR, that on the right

operates AND (right) and the output neuron computes OR again.

The simple example apparently follows from basic logical gate in electronics or the simple learn-

ing algorithm for threshold neurons in Section 3.1.1, but to evaluate the connection strengths

in a multi-layer perceptron, the gradient descent learning introduced in Section 3.1.2 is applied.

However, before that, the architecture of the network has to be designed by hand, that is, the

number of hidden layers with neurons locating on each of them must be predetermined. For

particular applications, educated guesses or effortful trials are of common use, while there are

several instructive approaches to perform this task, though not constructive.

The particular supervised learning technique to be applied is called back-propagation, which lies
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at the very centre of the study of the multi-layer perceptrons in this dissertation.

3.2.1 Scheme of Back-Propagation

Before the back-propagation algorithm was invented, there had been no learning rules for multi-

layer perceptrons, which caused the interest in layered networks waning until late 1980s [2].

Being a learning rule, the algorithm specifies the form of ∆wpq as usual, depending on the

training set (ξµk , ζ
µ
k ). It is based on gradient descent, the same as in Section 3.1.2 and 3.1.3. The

core idea is to propagate errors backwards for readjustment while information flows along the

feed-forward network.

It is not realistic to think this algorithm also applies to real neural networks; back-propagation is

not directly linked to the Hebb rule. However, it might be still reasonable to consider similarities

in the metaphysical sense. Conceptually, the model mimics a top-down network, which sends

feedbacks to neurons at the earlier stage along its information process pathway. Although the

mechanisms could be completely different, effective feedbacks must be sent because otherwise

the neurons have nothing to adapt from.

For notatioanl convenience, two-layer perceptrons (see Figure 15) are mainly considered. Input

Figure 15: A two-layer perceptron with the notations for neurons and connections: the solid arrows are

the flow of information and the dotted ones represents the back-propagation of errors.

terminals are denoted by ξk, outputs by Oi and hidden neurons by Vj . The connections from

41



the input neurons to the hidden ones are presented by wjk and those from the hidden ones to

the outputs by Wij . Note the index k always refers to the input neurons, j to the hidden ones

and i to outputs.

Signals are propagating forwards in the direction the solid arrows as shown in Figure 15. Starting

from pattern µ, hidden neuron j receives a net input,

hµj =
∑
k

wjkξ
µ
k (65)

and computes its output

V µ
j = g(hµj ) (66)

Then output neuron i receives

hµi =
∑
j

WijV
µ
j (67)

and produces the final output

Oµi = g(hµi ) = g

(∑
j

Wijg

(∑
k

wjkξ
µ
k

))
(68)

Note the inputs might be still binary but since g is continuous, the hidden and output neurons

are always evaluated continuously.

The usual cost function (53) can now be written as

E[w] =
1

2

∑
µi

[
ζµi − g

(∑
j

Wijg

(∑
k

wjkξ
µ
k

))]2
(69)

This is clearly differentiable for every connection strength, so the gradient descent learning could

be applied.

For the hidden-to-output connections,

∆Wij = −η ∂E

∂Wij
= η

∑
µ

δµi V
µ
j (70)

where the error,

δµi = g′(hµi )[ζµi −O
µ
i ] (71)
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has the same form as Equation (59) for nonlinaer simple perceptrons.

For the input-to-hidden connections, using the chain rule to differentiate E,

∆wjk = −η ∂E

∂wjk
= −η

∑
µ

∂E

∂V µ
j

∂V µ
j

∂wjk

= η
∑
µi

[ζµi −O
µ
i ]g′(hµi )Wijg

′(hµj )ξµk

= η
∑
µi

δµi Wijg
′(hµj )ξµk

= η
∑
µ

δµj ξ
µ
k

(72)

with

δµj = g′(hµj )
∑
i

Wijδ
µ
i (73)

Note ∆Wij and ∆wjk are presented in the same form. In general, this form for back-propagation

could be generalised to any multi-layer perceptrons:

∆wpq = η
∑

patterns

δoutput × Vinput (74)

which only considers the ends of the particular connection concerned, with neuron q as the

input-end feeding forwards signal V and neuron p as the output-end contributing error δ. For

the final layer of connections, the deltas are given by Equation (71), while they are in the

form of Equation (73) for all other layers. This generalised result is derived simply by further

differentiation.

Note the errors are propagated backwards with the ’forward’ connection strength matrix. This

might be the most different point from a real neural network. A natural nervous system of

feed-forward and top-down synapses must have different routes for information flowing in and

feedbacks out; it is nearly impossible for neuron A to receive feedbacks from neuron B given A’s

dendrites have no contact with B’s axons.

Applying the learning rules (70) and (72) literally to update connections after summing over all

patterns, known as the batch mode, is not computationally economic. Usually, the connections

readjust themselves for each presented pattern incrementally. Clearly this approach would not

affect the solution and it is even better when the training pattern is chosen randomly, because

the system would explore the cost surface stochastically and thus widely, reducing the risk of

being captured by local minima.

There are two important consequences led by the learning rule (74), which makes the back-

propagation algorithm particularly powerful in practice [2]:
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1. The rule is local. Only quantities from two ends of the connection concerned are necessary to

compute the corresponding update. This enables parallel computation as real nervous systems.

2. The algorithm is computationally economic. If there are n connections in the network,

to compute the cost function takes operations of order n, so directly calculating n derivatives

requires operations of order n2. In contrast all the derivatives are to be calculated in operations

of order n with the back-propagation algorithm.

As before, the usual choice of the sigmoid function g(h) is

g(h) = fβ(h) =
1

1 + exp(−2βh)
(75)

for networks with neurons ranging from 0 to 1, or

g(h) = tanhβh (76)

for cases with neural activation of interval [−1, 1]. They are convenient because their deriva-

tives can be expressed by the functions themselves; no additional computation is required. For

Equation (75), g′(h) = 2βg(1− g) and for Equation (76, g′(h) = β(1− g2)). Therefore the form

of deltas in the last layer is considerably simplified (which could be very complicated due to bad

choice of g(h)). For example, Equation (71) can be easily presented as

δµi = Oµi (1−Oµi )(ζµi −O
µ
i ) (77)

with β = 1 for 0/1 neurons.

3.2.2 Alternatives for Cost Function

As aforementioned, any differentiable E could be chosen as the cost function as long as it is

minimised when ζµi = Oµi . It is straightforward to show that only deltas of the output layer,

that is, in the form of Equation (71) would change accordingly; all other deltas stay the same

as in Equation (74).

The entropic measure (60) from Section 3.1.3 appears to a particularly good choice. It is for ±1

outputs and, using g(h) = tanhh, the error becomes

δµi = ζµi −O
µ
i (78)

Note the factor of g′(h) disappears (for the output layer only) comparing to Equation (71). This

accelerates learning when |h| is large as g′(h) is small. However, it could cause oscillation or
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overshoot with h near 0.

It was found that the compromise of Equation (71) and (78) works better than both of them

[30]:

δµi = [g′(hµi ) + 0.1](ζµi −O
µ
i ) (79)

It keeps g′(h) but ensures δµi non-zero for large |h|, so less oscillations or overshoots will occur.

A different approach to make improvement is to modify the factor of ζµi −O
µ
i . For instance,

δµi = arctanh
1

2
(ζµi −O

µ
i ) (80)

which enables the network learns more from greater errors (δµi grows faster than the increase of

|ζµi −O
µ
i |) [30].

As pointed out in Section 3.1.3, it might be more convenient to build the appropriate delta at the

first place and thus construct the cost function. In fact, for purely computational aims, it might

be unnecessary to know the explicit cost function, as the network computation is performed

locally and parallel, while cost function is a global measure of the system.

Another approach is to modify the cost function through learning. The idea is to smooth out the

cost surface at first to allow the system reach the local area where the global minimum locates

and eventually depict the detailed landscape of the cost space to make the global minimum

reveal itself. An explicit example is given by [31]

E =


∑

µi(ζ
µ
i −O

µ
i )2γ if sgn(ζµi O

µ
i ) = 1∑

µi(ζ
µ
i −O

µ
i )2 if sgn(ζµi O

µ
i ) = −1

(81)

with γ grows from 0 to 1 gradually. This algorithm makes the network focus on learning the

correct sign first and then start to adapt the magnitude.

Certainly there are many other alternatives to the cost function and these different ideas to im-

prove learning could be combined to become more powerful in practice. It will be interesting to

study which cost function best models real networks and clearly this should be highly dependent

on the particular part of nervous system being concerned.

3.2.3 Extensions of Learning Rate

The learning rate η directly scales deltas and thus determines how fast the network learns. As

mentioned in Section 3.1.1, an appropriate value for η is important: if small, the connection

45



strengths may converge too slow; if large, oscillation may occurs. A simple but effective solution

to the problem is the construction of momentum [32], which has become commonly applied.

The idea is to impose some inertia or momentum on wpq, so that it explores the cost surface with

newly presented information as a ’force’ changing the tendency of changes, instead of deciding

it directly. This can be realised by

∆wpq(t+ 1) = −η ∂E

∂wpq
+ α∆wpq (82)

where α, called the momentum parameter, has to be between 0 and 1; a common choice is 0.9.

Note ∆wpq becomes a function of time as well, but the network computation could still be per-

formed essentially at local neurons, because the rule is defined recursively and only information

from the last learning epoch is required.

If a flat region of the cost surface is being explored, ∂E/∂wpq is approximately the same at every

time step. Hence, Equation (82) converges to

∆ ≈ − η

1− α
∂E

∂wpq
(83)

with the effective learning rate being η/(1−α), while in an oscillatory situation, it is still η. The

system thus slips into the plateau of the cost surface faster, where the global minimum locates.

Nonetheless, it is difficult to choose an appropriate value for η. Moreover, an optimal choice

at the beginning may become not so good in later stages of learning. A useful technique is to

adjust the value automatically during the procedure [33].

The idea is to check whether or not the current ∆wpq does actually reduce the cost. If not,

the system overshoots, and thus η should be adjusted smaller. On the other hand if several

successive updates have kept decreasing the cost, a larger η ought to be attempted. It seems a

clever trick to apply

∆η =


+a if ∆E < 0 consistently;

−bη if ∆E > 0;

0 otherwise

(84)

where ∆E is the cost function change due to ∆wpq, and a and b constants, so that several ’good’

steps increase η linearly but a ’bad’ step will lead to a geometric decay in it. This method is

trying to accelerate learning without amplifying oscillations. The meaning of ’consistently’ is to

be decided in more detailed models in practice.

Although this adaptation of learning rate is at the expense of computational storage and com-

plexity (as an individual neuron has to memorise a period of history or even perform some
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certain averaging work over it), it is worthwhile in the sense not only the problem to choose an

optimal value for η is solved, but also the computation is still taken place parallel at all neurons.

A further generalisation is inspired that each connection has its own learning rate ηpq [33].

The learning performance could be better even without an adaptive rule like Equation (84).

ηpq ∝ 1/(fan-in of site i) is a common choice [32].

The back-propagation algorithm give a general architecture in perceptrons performing the

learning task. Optimisation techniques other than gradient descent could be used in the al-

gorithm. For example, the steepest descent method [34, 35], which is based on line searches,

conjugate gradient methods [31, 35, 36], which combines gradient information in successive steps,

and quasi-Newton method [34, 36], which exploits the Newton rule for optimisation but avoids

the computation of the inverse Hessian of the cost function. These methods still require infor-

mation of the first derivatives only, so they fits the back-propagation algorithm well; network

computation is performed by individual neurons locally.

3.3 Simulation and Discussion

3.3.1 Algorithm Review

Section 3.2.1 offers a comprehensive introduction and analysis of the back-propagation algorithm.

Since it is important, the algorithm is summarised here. In addition, technical details concerning

simulations will be adapted.

The network is made up of M layers denoted by m = 1, 2, ...,M . V m
i represents the ouput of the

neuron i in the layer m. wmij is the connection strength from V m−1
j to V m

j . Note the superscript

m here is of the index of some layer, instead of µ for different patterns, which is saved because

here wij is updated incrementally; distinguishing µ is of no help.

With the above set up, the procedure is:

1. Initialise the connection strengths. As the starting point on the cost surface, the initial value

of wij is important. If its size is too large, the sigmoid activation function will saturate too early,

and thus the system is captured by a local minimum near the starting point. A prescription is

to make the size comparable with the typical net input, which could be obtained by making wij

of the order of 1/
√
ki where ki is the number of pre-synaptic neurons of neuron i [2].
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2. Choose a pattern ξµk randomly and feed it to the input terminals (m = 0), that is, for all k,

V 0
k = ξµk (85)

3. Propagate forwards the signal from layer m− 1 to m successively by

V m
i = g(hmi ) = g

(∑
j

wmij V
m−1
j

)
(86)

for all i and each m until VM
i , the final outputs, have been computed.

4. Compare the outputs with the desired match ζµi and calculate the errors:

δMi = g′(hMi )[ζµi − V
M
i ] (87)

5. Propagate backwards the errors from layer m to m− 1 successively by

δm−1i = g′(hm−1i )
∑
j

wmji δ
m
j (88)

for all i and each m until every neuron ’knows’ its error.

6. Adjust all connections by

∆wmij = ηδmi V
m−1
j (89)

7. Go back to step 2 and repeat to learn the next pattern, until the end of learning. Note the

stopping time is to be determined, or based on some criteria that, when the system meets, the

experimentalist is satisfied.

3.3.2 Overfitting Problem

Overfitting is often met in statistics and machine learning. A naive example is to fit a set of

points lying in the neighbourhood of a line with polynomials of high orders. The curve might

be perfect to trace the points, but it hardly yields good predictions of new cases. Since there

are too many free parameters, the model tries to represent the noise, rather than the regularity

of the data.

For neural networks, it usually has a consider number of free parameters of thresholds and con-

nections; for a training process, there could be even more, such as learning rates. Additionally,
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the realistic problem to solve is commonly beyond the human intuition; not like points on a

2-D plane, one can feel whether they lies along a straight line. Therefore, it is often difficult to

construct a network of the optimal size to avoid overfitting. It is well studied both in theory [37]

and practice [38] that neural networks with too many parameters do overfit and thus are unable

to generalise well to new situations. Hence, there were many efforts to simplify the networks,

such as removing the connection weights [39].

Another common method to prevent overfitting is using a validation set, also called self-test

set. Normally data is divided into training set, which is to be learnt by the model, and test

set, which is used to test whether the model well generalises. A validation set is no more than

another test set but keeping the model operating self tests during learning. The error against

the validation set normally decreases alongside that against the training set but then increases

when overfitting occurs, while the training set error would continue its decay.

This approach is based on the empirical evidence that shows large networks are not likely to

overfit than expected if they could stop learning at a relatively early stage. Caruana et al.

(2001) [40] explains that a large network firstly learns a simple model similar to the one learnt

by a simpler model of the optimal size, so the model would generalise well if stops learning at

this appropriate time.

3.3.3 Toy Example

A naive example is to be simulated with MATLAB to examine the various alternatives of per-

ceptrons that have been studied. Suppose a common fair die is thrown for six times and the

results are recorded: ξ1 for the first time, ξ2 for the second, etc., and the vector ξµ = (ξµk )k=1,2,3,4

is just an input pattern for the perceptron. Due to the simplicity of the example, there are at

most 46656(= 66) different patterns. (In contrast, pattern spaces of realistic problems are much

larger; even as simple as in Section 2.3, it has the cardinality of 230×30 > 10270). Three features,

denoted by ζµ, could be obtained from any pattern ξµ:

1. whether the sum of the six trials is odd (ζµ1 = 1) or even (−1);

2. whether the sum of the six trials is less than 20 (ζµ2 = 1), or not (−1); and

3. whether the sum of the first three trials is less than that of the rest (ζµ3 = 1), or not (−1).

Hence, the desired network computation of the perceptron is to match the pair (ξµ, ζµ), that is,

to fulfil the association condition (38).
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ξµ is randomly generated and then corresponding ζµ is calculated explicitly. Repeating this

procedure, data for the perceptron to learn and test could be easily prepared (see Code P1 in

Appendix B.2). Note the activation function of choice is g(h) = tanh(h), which allows neurons

to take continuous values. The learning algorithm has been summarised in Section 3.3.1 and

each entire learning process will be repeated for 100 times to average the effect of random pat-

terns (see Code P2 and P3 in Appendix B.2). The mean behaviour of the error on the learning

set and the test set will be a measure of the network performance as a memory system.

Note the random generated learning and test sets can and are likely to, when large, have re-

peated patterns. This should not be a problem because the probability of having many same

patterns is very low, and even in the extreme situation, these same patterns would not affect

the minima (either local or global).

Simulation 1: simple perceptrons

To realise this easy network computation, a simple perceptron might be good enough. Its struc-

ture is completely determined by the inputs and outputs, but since the thresholds are absorbed

by ξ0, there is virtually 7(= 6 + 1) neurons as inputs.

The four choices of deltas, Equation (77), (78), (77) and (80), are compared in Figure 16. Each

trajectory shows error percentage on the training set itself or the test set against learning time,

i.e. number of patterns learnt. Note for every delta, there are three cases of different learning

rates: small (η = 0.1), medium (1) and large (10). Error percentages for different features ζi

are not summarised but presented separately. Hence, there are many paths, but since only the

deltas are being concerned, all sub-cases of one delta are in the same colour.

It is reasonable to ignore those details as the error behaviour is generally determined by the choice

of delta (cost function). The blue and red paths are for deltas δµi = Oµi (1 − Oµi )(ζµi − O
µ
i ) and

δµi = ζµi −O
µ
i respectively. They are apparently not so good as δµi = [Oµi (1−Oµi )+0.1](ζµi −O

µ
i )

(green) and δµi = arctanh(ζµi −O
µ
i )/2 (cyan), as the green and cyan paths have reached 0. The

networks with such deltas may converge too slow, or in an even worse situation, they are con-

verging to a wrong solution. Nonetheless, the red oscillations, caused by the entropic delta, are

remarkable (recall each path averages 100 trials) just as the theory [30] suggests.

Now that it is known from both theory and practice δµi = [Oµi (1 − Oµi ) + 0.1](ζµi − O
µ
i ) and

δµi = arctanh(ζµi −O
µ
i )/2 are better, their details should be examined. Before that, a mean error

of those on the three features (equally weighted) is introduced to make the graph less messy.
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Figure 16: Errors on the training and test sets of the simple perceptron with the different deltas:

the blue trajectories are for δµi = Oµi (1 − Oµi )(ζµi − Oµi ), the red for δµi = ζµi − Oµi , the green for

δµi = [Oµi (1−Oµi ) + 0.1](ζµi −O
µ
i ) and the cyan for δµi = arctanh(ζµi −O

µ
i )/2.

Since it could be noted that the variances the error behaviour are mainly decided by the deltas,

the averages are representative.

Figure 17 zooms into the early stage of learning. The trajectories with dots are for δµi =

arctanh(ζµi − O
µ
i )/2. The blue ones represents η = 0.1 with both the deltas, red for η = 1 and

green for η = 10.

Note there are almost no differences between the errors on the training set and those on the test

set. This might be caused by random pattern in both the sets, or it is just because this example

is too easy. In either the case, it means the simple perceptrons could be generalised very well

to new cases (since they are likely to meet new cases in the test set). The networks are very

powerful in performing the desired computation with no more than 25 patterns learnt.

The learning rate η does determine the speed of convergence for δµi = [Oµi (1−Oµi )+0.1](ζµi −O
µ
i ),

but it is interesting that for δµi = arctanh(ζµi − O
µ
i )/2 the medium rate η = 1 results in faster

learning. Recall all the paths averages trial of 100 times, which apparently erases the oscillation

suggested by the theory, but it could be claimed for this example that the medium learning rate

is the best on average among the three values; it is not even boSelf and Test Errorsthering to

discuss whether the possibility to find the optimal connections faster is worthy of the risk of
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Figure 17: Errors on the training and test sets of the simple perceptron: the smooth curves are for

δµi = [Oµi (1−Oµi )+0.1](ζµi −O
µ
i ) and those with dots represents δµi = arctanh(ζµi −O

µ
i )/2; all blue paths

are for η = 0.1, red for η = 1 and green for η = 10.

wandering into other attractors.

Considering various performances of η, it appears that the best choice of delta is δµi = arctanh(ζµi −

Oµi )/2. It actually reduces the effect of the learning rate; in some sense, it has already made η

adaptive. It is quite a pity that the extensions of the learning rate in Section 3.2.3 are not simu-

lated and compared together, because the perceptron could learn so fast that very few effective

updates of η would occur before the end of training.

Two-Layer Perceptron:

The simple perceptron has been quite a success; it might be hard for a two layer perceptron to

outperform it. The network will have 7 = (6 + 1) input terminals and 3 output ones. Different

number of hidden neurons will be checked; note for h intermediate neurons with thresholds,

there shall be h+ 1 ones without thresholds effectively (same as in the simple perceptron case).

In order to be comparable with the one-layer case, let δµi = arctanh(ζµi −O
µ
i )/2 and η = 1.

In addition, blue paths are for the testing errors on the training set, red for those on the test

set. Similarly, they are not expected to be noticeably different.

When the hidden layer consists of only one neuron (see Figure 18), The network learns slower
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Figure 18: Errors on training and test sets of a 2-layer perceptron with 1 hidden neuron: the blue paths

represents the errors on the training set and the red shows those on the test set.

than the simple perceptron, but its overall performance is still acceptable. It is not surprising

that in order to estimate more parameters, more patterns are necessary to be learnt.

However, this expectation, or the opposite extreme case, too large networks may lead to overfit-

ting, is totally mistaken. The results for the perceptrons with 2 to 9 hidden neurons are shown

in Figure 19. Note the most green path is for 2 hidden neuron and the most red for 9; the

performances become better successively with the increasing number of intermediate neurons,

although the improvements are diminishing.

An extreme case of a two-layer perceptron with 100 hidden neurons is examined as well (see

Figure 20). The results are remarkable; with only on average 6 patterns learnt, the network

could perform the desired computation almost perfectly.

Note there are more than a thousand connections in this extremely large network. However, no

overfitting problem ever occurs. The complication of the model is only improving the perfor-

mances, which echoes the results of [40].

53



Figure 19: Errors on the training and test sets of a 2-layer perceptron: the most green curve is for the

perceptron with 2 hidden neurons and the most red is for that with 9; the networks with 3-8 intermediate

neurons are represented by the gradient colours in between.

3.4 Conclusion and Application

It has been shown that a perceptron, or a layered feed-forward network, is quite useful as a mem-

ory system and the additional interesting point is that the optimal connections are acquired by

supervised learning. However, its link with natural neural networks is weak. One might argue

the learning rules of the back-propagation algorithm are still generalisations of the Hebb rule,

but it is not compatible with the natural neural networks, because the post-synaptic neuron

cannot receive information from the pre-one (otherwise, the network becomes recurrent, rather

a feed-forward).

Nonetheless, due to its effectiveness, perceptrons are widely used in realistic applications, such

as the NETtalk project [41], trying to train a network to pronounce English, image compression

[23] for high quality television signal transmission, and handwritten ZIP code recognition [38],

helping the U.S. mail system to deal with the handwritten postal code.
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Figure 20: Errors on the training and test sets of a 2-layer perceptron with 100 hidden neurons: the

blue paths represents the errors on the training set and the red shows those on the test set.

4 Conclusion

In this dissertation, two main models have been studied: the Hopfield model and the percep-

tron. They are both artificial neural networks capable of storing and extracting memories. They

share the same fundamental assumption of McColluch-Pitts neurons, but have totally different

structures. The most significant factor is the connection strengths in both the networks, where

essentially the memories are stored.

In the Hopfield model, the networks are recurrent. The connection strengths are inspired and

predetermined by the Hebb rule. A test input is then fed into the designed network and the most

similar memory to the input is expected to emerge. Borrowing models from physics also brings

in concepts such as energy and temperature, which plays an important role in analysing the

memory capacity. The core object determines the capacity is called the crosstalk term, which is

an interference produced by other memories when the system tries to recall a particular one. It

has been shown that with some assumptions the capacity is quite large, but realistic problems

may fail them. Further study may focus on the analysis of the structure of the crosstalk terms,

which may offer an explanation for the unacceptable performance in the simulations and even a

general solution.
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The perceptron is a layered feed-forward network. It learns the optimal connections by super-

vised learning, particularly, the back-propagation algorithm. The initial inspiration is still the

Hebb rule but gradient descent method appears to be more generalisable in multi-layer cases.

The core idea of the algorithm is to update the connections through learning, which eventually

reduces the cost function, built beforehand, measuring the performance of the network com-

putation. The perceptron has been proved powerful in the desired task both in theory and in

practice. However, a more realistic application should be investigated, in which it would be able

to check whether the adaptive learning rate is a useful technique.

There are many other topics that have not been investigated by this dissertation. For instance,

just pick one main feature from either the model has been studied, it would be interesting to

understand how a recurrent network may learn. Actually, this was mentioned by the original

paper of the Hopfield model [10], which found old memories are to be forgotten as soon as

the newly added memory makes the system overloads. Additionally, Boltzmann machine has

become popular and widely applied since introduced in 1980s [16]; it is particularly effective

in finding the connection strengths for symmetric recurrent networks. Future works could be

based on understanding the current theory and application of Boltzmann machine and heading

in solving asymmetric recurrent networks.
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Appendices

A Large Picture

Figure 21: Results of the simulation with the large Chinese characters: there are five groups of results

with each of 12 images exhibited in two lines; the first image of the first line in each group is the original

test input and the rest are results after 1000, 2000, 3000, 4000, 5000, 10000, 20000, 30000, 40000 and

50000 times of updates.
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B MATLAB Code

B.1 The Hopfield Networks

Code H1 reads the images and stores them in a 3-D matrix. No input other than the pictures

is required.

nu=['1.bmp';'2.bmp';'3.bmp';'4.bmp';'5.bmp';'6.bmp';'7.bmp';'8.bmp';'9.bmp';'0.bmp'];

sl=['a.bmp';'b.bmp';'c.bmp';'d.bmp';'e.bmp';'f.bmp';'g.bmp';'h.bmp';'i.bmp';'j.bmp';

'k.bmp';'l.bmp';'m.bmp';'n.bmp';'o.bmp';'p.bmp';'q.bmp';'r.bmp';'s.bmp';'t.bmp';

'u.bmp';'v.bmp';'w.bmp';'x.bmp';'y.bmp';'z.bmp'];

bl=['bigA.bmp';'bigB.bmp';'bigC.bmp';'bigD.bmp';'bigE.bmp';'bigF.bmp';'bigG.bmp';

'bigH.bmp';'bigI.bmp';'bigJ.bmp';'bigK.bmp';'bigL.bmp';'bigM.bmp';'bigN.bmp';

'bigO.bmp';'bigP.bmp';'bigQ.bmp';'bigR.bmp';'bigS.bmp';'bigT.bmp';'bigU.bmp';

'bigV.bmp';'bigW.bmp';'bigX.bmp';'bigY.bmp';'bigZ.bmp'];

% 62 patterns, each with 30x30 pixels

pattern=zeros(30,30,62);

% pattern 1−10 are images of the 10 digits

for p=1:10

picture=imread(nu(p,:));

for i=1:30

for j=1:30

pattern(i,j,p)=picture(i,j);

end

end

end

% pattern 11−36 are images of the 26 letters in small case

for p=11:36

picture=imread(sl(p−10,:));

for i=1:30

for j=1:30

pattern(i,j,p)=picture(i,j);

end

end

end

% pattern 11−36 are images of the 26 letters in large case

for p=37:62

picture=imread(bl(p−36,:));

for i=1:30
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for j=1:30

pattern(i,j,p)=picture(i,j);

end

end

end

Code H2 calculates the connection strength of the network. It requires the value of pattern

produced by Code H1.

[h,l,p]=size(pattern);

N=h*l;

w=zeros(N,N);

xi=reshape(pattern,N,p)/255*2−1;

for mu=1:p

xxi=xi(:,mu);

w=w+xxi*xxi';

end

w=w/N;

for x=1:N

w(x,x)=0;

end

Code H3 recalls the memory (the stored patterns) for a given input. It requires the value of

connection strength produced by Code H2.

item1=imread('sample.bmp');

S=ones(h,l);

for x=1:h

for y=1:l

if item1(x,y)<=200

S(x,y)=−1;

else

S(x,y)=1;

end

end

end
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S=reshape(S,N,1);

for t=1:10000

i=randi(N);

S(i)=sign(w(i,:)*S);

end

item2=reshape(S,h,l);

imwrite(item2,'recall.bmp')

B.2 The Perceptrons

Code P1 randomly generators the results of throwing a die for six times and calculates the

results of the three features explicitly.

function desired=aa0 sixdicegenerator(p)

xi=ones(7,p);

zeta=ones(1,p);

for mu=1:p

dice=randi(6,6,1);

fetr=ones(3,1);

sumodc=sum(dice);

sum123=sum(dice([1:3]));

sum456=sumodc−sum123;

if mod(sumodc,2)==0

fetr(1)=−1;

end

if sumodc>=20

fetr(2)=−1;

end

if sum123>=sum456

fetr(3)=−1;

end

for k=1:6

xi(k,mu)=dice(k);

end

xi(7,mu)=−1;

for i=1:3
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zeta(i,mu)=fetr(i);

end

end

desired=[xi;zeta];

end

Code P2 simulates a simple perceptron trying to learn the features (patterns) from the results.

clf

p=100;time=100;

eta=10;

avestem=0;avetem=0;

for t=1:time

stem=[];tem=[];

self test error=0;test error=0;

xizeta=aa0 sixdicegenerator(p);xi=xizeta([1:7],:);zeta=xizeta([8:10],:);

testxizeta=aa0 sixdicegenerator(100);

testxi=testxizeta([1:7],:);testzeta=testxizeta([8:10],:);

O=zeros(3,1);w=zeros(3,7);

% −−− initialisation −−−

for i=1:21

w(i)=(1/sqrt(7)+randn)*(randi(2)*2−3);

end

% −−− learning −−−

mord=randperm(p);

for mm=1:p

mu=mord(mm);

% −−− signal forwards −−−

hoO=w*xi(:,mu);

for i=1:3

O(i)=tanh(hoO(i));

end

% −−− error backwards −−−

doO=(zeta(:,mu)−O); % eqn.6.8/6.20/6.21

% −−− connection update −−−

w=w+eta*doO*xi(:,mu)';

% −−− self test −−−

V=zeros(3,p);
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for mu=1:p

hoV=w*xi(:,mu);

for i=1:3

V(i,mu)=(tanh(hoV(i)))*2−1;

end

end

error=abs(V−zeta(:,[1:p]));

fserror=zeros(3,1);

for i=1:3

fserror(i)=length(find(error(i,:)<1));

end

self test error=fserror/p;

% −−− test −−−

T=zeros(3,100);

for mu=1:100

hoT=w*testxi(:,mu);

for i=1:3

T(i,mu)=(tanh(hoT(i)))*2−1;

end

end

error=abs(T−testzeta);

fterror=zeros(3,1);

for i=1:3

fterror(i)=length(find(error(i,:)<1));

end

test error=fterror/100;

stem=[stem,self test error];

tem=[tem,test error];

end

avestem=avestem+stem;

avetem=avetem+tem;

end

avestem=avestem/time;

avetem=avetem/time;

hold on

plot([10:10:p],avestem(:,[10:10:p]),'b')

plot([10:10:p],avetem(:,[10:10:p]),'r')

Code P3 simulates a two-layer perceptron trying to learn the features (patterns) from the
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results.

clf

% There are 6+1 input terminals, 3 output units and one hidden layer with

% h+1 units.

p=100;time=100;

eta=1;h=100;

avestem=0;avetem=0;

for t=1:time

stem=[];tem=[];

self test error=0;test error=0;

xizeta=aa0 sixdicegenerator(p);xi=xizeta([1:7],:);zeta=xizeta([8:10],:);

testxizeta=aa0 sixdicegenerator(100);

testxi=testxizeta([1:7],:);testzeta=testxizeta([8:10],:);

O=zeros(3,1);W=zeros(3,h+1);V=zeros(h+1,1);w=zeros(h+1,7);

% −−− initialisation −−−

for i=1:(3*(h+1))

W(i)=(1/sqrt(h+1)+randn)*(randi(2)*2−3);

end

for i=1:((h+1)*7)

w(i)=(1/sqrt(7)+randn)*(randi(2)*2−3);

end

% −−− learning −−−

mord=randperm(p);

for mm=1:p

mu=mord(mm);

% −−− signal forwards −−−

hoV=w*xi(:,mu);

for j=1:(h+1)

V(j)=tanh(hoV(j));

end

hoO=W*V;

for i=1:3

O(i)=tanh(hoO(i));

end

% −−− error backwards −−−

doO=atanh((zeta(:,mu)−O)/2);%

doV=(1−V).*(W'*doO);

% −−− connection update −−−
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W=W+eta*doO*V';

w=w+eta*doV*xi(:,mu)';

% −−− self test −−−

S=zeros(3,p);

for mu=1:p

hotV=w*xi(:,mu);

for j=1:(h+1)

tV=(tanh(hotV(j)))*2−1;

end

hoS=W*tV;

for i=1:3

S(i,mu)=(tanh(hoS(i)))*2−1;

end

end

error=abs(S−zeta(:,[1:p]));

fserror=zeros(3,1);

for i=1:3

fserror(i)=length(find(error(i,:)<1));

end

self test error=sum(fserror)/p;

% −−− test −−−

T=zeros(3,100);

for mu=1:100

hotV=w*testxi(:,mu);

for j=1:(h+1)

tV=(tanh(hotV(j)))*2−1;

end

hoT=W*tV;

for i=1:3

T(i,mu)=(tanh(hoT(i)))*2−1;

end

end

error=abs(T−testzeta);

fterror=zeros(3,1);

for i=1:3

fterror(i)=length(find(error(i,:)<1));

end

test error=sum(fterror)/p;

stem(mm)=self test error;

tem(mm)=test error;
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end

avestem=avestem+stem;

avetem=avetem+tem;

end

avestem=avestem/time;

avetem=avetem/time;

hold on

plot([1:p],avestem(:,[1:p]),'b')

plot([1:p],avetem(:,[1:p]),'r')
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