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Abstract

inputs in vitro).

In this thesis, we mainly add™
vestigating its effects on dendigs

P via mathematical and computational
R the global dendritic branching struc-

model of dendritic electro-physiology by gener-
pich allows us to study resonant membranes and

alyse a neuronal system with complex morphology
, and simulate such models accurately and efficiently.

2 neuronal circuit.

In addition, our approach is perfectly compatible with other existing meth-
O, that makes it straightforward to recruit stochasticity and non-linearity into the
framework. Future works of large neural networks could easily adapt this work to
improve computational efficiency, while preserving biophysical details at the same
time.



Chapter 1

Preface

&
o~




1.1 Overview of neuroscience

Amongst a few ultimate questions that we have striven to find answers, ‘ What makes
us human?’ ranks top since, if not earlier than, the twilight of civilisations. The fa-
mous Ancient Greek aphorism ‘know thyself’ could be more than a pedagogic phrase
to individuals as expounded by Socrates and other philosophers, but an evidence

of our curiosity in ourselves as homo sapiens; the phrase may actuallyghave been

going to know the gods.” [De Lubicz, 1978|.

I consider the name of our species, homo sapiens, or literaly

species, because we are superbly intelligent comparing to them, we could be

the only species being consciously aware of the fact, act’ might

being responsible for intelligence and

for us to know and react to tlhg [ straining’ our nerves, on principle, al-

¢ huge complexity since a human brain consists of ap-

r cells. The monstrous number is of the same order as that

form of electric signals along neurites, and often transmits from cell to cell with
he assistance of chemical messengers at synapses. Both the processes occur at the
el of molecules, and they are highly affected by their kinetic and electric potential
energy.

An average nerve cell connects to thousands of other cells, locally and distantly,
forming small neuronal circuits, large neural networks and eventually an entire ner-

vous system. Models with biophysical details, e.g. the Blue Brain Project [Markram,



2006], trying to construct neuronal circuits bottom-up from the molecule level, are
effective but inefficient; even running on some of the most powerful computers in
the world, the project had simulated a column of 10% neocortical cells by 2008, and
100 such columns by 2011, only a tiny fraction of an average human brain.

In order to investigate larger nervous systems, models can be simplified by reducing

the complexity of individual cells. For instance, a computational brain of exactly

it still took fifty days to produce the data of one second in the
An alternative approach in model reduction is to ignore theg
and to consider a nervous system, typically a human brain, cons

gions. Whereas such brain regions and their connect g

e 2 [Spencer, 1884], Herbert Spencer composed, ‘ Everywhere structures in great

measure determine functions; and everywhere functions are incessantly modifying
ctures.

Whereas the interplay between anatomy and physiology in nervous systems is ev-

idently vital, the core question to be addressed in this thesis is ‘How dendritic

morphology influences electro-physiology?’, only the first half of the quote, because

the time scale of any structural changes is much larger than the scale of signal prop-



agation on dendrites considered by us.

In Chapter 2, dendritic morphology and electro-physiology are to be introduced re-
spectively in the content of neuroscience in general. The two aspects of dendrites are
then brought together and synthesised in the mathematical formalism of dendritic
cable theory [Rall, 1962]. Some general results are also discussed in preparation for
analytical deductions in the later chapters.

Chapter 3 and 4 are to deal with arbitrary dendritic morphology via

ematical approaches. Based on the path integral formulation, t
sum-over-trips is derived [Abbott et al., 1991] and extended |
Timofeeva et al., 2013], and we develop the method of loc
framework of sum-over-trips is further generalised in Chapte

models to tapered ones.

current work.



Chapter 2

Dendritic Morphology ar&
Electro-physiology ?

...........................



2.1 Dendritic trees

The term dendrite, coined by Wilhelm His in 1889 [Finger, 2001], like neuron, origins
from Greek, which literally means a tree, or a tree-like form [Hoad, 1993]. Scien-
tists have been fascinated by these complex structures since the exemplary work
of Ramén y Cajal [1891], and the classification of neurons in accordance with their
distinct morphologies is one of the most common and conventional perspgatives, e.g.

pyramidal neurons (see Fig. 2.1 for more examples).

Such anatomical varieties can directly lead to functional differ

have shown that, with identical ion channel types and distrilutions, di

igure 2.1: Neurons have distinct morphologies. (A) Cat motoneuron. (B) Locust
yesothoracic ganglion spiking neuron. (C) Rat neocortical layer 5 pyramidal neuron.
Cat retinal ganglion neuron. (E) Salamander retinal amacrine neuron. (F)
Human cerebellar Purkinje neuron. (G) Rat thalamic relay neuron. (H) Mouse
olfactory granule neuron. (I) Rat striatal spiny projection neuron. (J) Human
nucleus of Burdach neuron. (K) Fish Purkinje neuron. Modified from Mel [1994]
[Stuart et al., 2016].



phologies present distinct signal propagation and firing patterns (see Fig. 2.2) [Vet-
ter et al., 2001; Mainen and Sejnowski, 1996].

However, due to the natural heterogeneous distributions of ion channels on den-
drites (and axons) [Lai and Jan, 2006], it is difficult to perform experiments with
the distributions as control variables on neurons of different morphologies. Thus,
in order to deepen our understanding of neuronal functions in practice, theoretical

analysis, as this thesis addresses, shall help shed light on the functio roperties

of dendritic trees.

2.1.1 Reconstructions

To obtain the morphological model of a real neuron, neuron traci digital neiron

reconstruction, is one of the most fundamental tasks i utational)

neuroscience [Ascoli, 2002], as these neuron recoga or simula-

Pof human labour [Capowski and Sedi-

u tracing had remained as a difficult

iple neurons are present, neurites are the next to be tracked,
MW spines are detected [Meijering, 2010]. The processing order is not only
also insightful, because a successive step can utilise or even rely on the
ts of its¥roceeding steps. After measuring parameters for all segments identi-
ed, automatic tracing is thus complete but proof-editing is needed, since structural
rors in reconstructions could potentially consume researchers more time to find
than conducting manual tracing [Peng et al., 2011].

One may thereby run realistic simulations on such neuron reconstructions (e.g. Fig.
2.4) [Coombes et al., 2007], or perform experiments that are nearly impossible in
reality but insightful in theory [Mainen and Sejnowski, 1996; Vetter et al., 2001].

For scientists or projects that are not directly working with neuron tracing, there
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R cnt morphologies with identical ion channel types and distribu-
stinct=ponses. (A) - (C): Backpropagation (from soma) and forward
(from location at —) of action potentials. (a) - (d): Firing patterns
ed b atic current injection. All neurons are two-dimensional projections
ree-dim®&nsional digital reconstructions from rat brains. (A) Substantia nigra
bpamine neuron. (B) Neocortical layer 5 pyramidal cell. (C) Cerebellar Purkinje
cell. (a) Layer 3 aspiny stellate. (b) Layer 4 spiny stellate. (c) Layer 3 pyramid.
A Layer 5 pyramid. (A) - (C) modified from Vetter et al. [2001] and (a) - (d) from
ainen and Sejnowski [1996].




morpho.org [A

As thesg i i els preserves the most comprehensive morphologi-

lologically detailed neurons, in the hope of shedding light on biological

ciousne¥Wand intelligence. Whereas the Blue Brain Project project was running
some of the most powerful computers in the world, it had by 2011 simulated a
etwork of 10% neurons, only a tiny fraction of an average human brain that consists

0! neurons.

2.1.2 Weighted graphs

In order to draw theoretical insights and to save computational expenses, recon-

structed neurons (e.g. Fig. 2.4) can often be simplified as multi-compartment



The reconstruction consists of 396 branches and a soma and
into 3961 cylindrical segments. Modified from [Coombes et al.,

is constantly changing its shape [Bo

acquire ‘perfect’ details of dengassms ‘ ogy by simply increasing imaging res-

While schematic di ore often in theoretical works, a dendrogram is
onstructed neurons, which is firstly introduced
holl diagram as well (see Fig. 2.6).

to be a weighted graph whose nodes are soma and

cture, representing the dendritic morphology, and parameters of nodes and
dges, encoding electro-physiological properties, our invetigation will be focused

these models.

2.1.3 Point neurons

The most simplified morphology is no morphology, that is, representing a neuron

by a single point. We can consider it as the most extremly reduced compartmental

10



Figure 2.5: Schematic diagrams of ¢
as in Fig. 2.4 (up to rotation) og

s of morphological simplification, from
d only 1 compartment (rightmost).
Note that the soma (rep
compartment, which ig

studying the fundamental electro-physiological models,
odel and Integrate-and-fire model (see §2.2.2), but eclucide
or us since dendrites virtually do not exist. Nevertheless, we can implant
els into dendritic trees (see §2.3).

thermore, it has become applicable, efficient and powerful in artificial neural
networks, since the groundbreaking work of McCulloch and Pitts [1943], especially
he recent decade, e.g. the digitalisation and automation of neural tracing have

largely benefited from the field of machine learning, as mentioned in §2.1.1.

11



Pimunication is mainly excuted by action potentials, or spikes, which are essen-
The

lally fast and notable changes of membrane potentials (e.g. Fig. 2.2a-d).
hemingly all-or-none’ property of neuronal activities inspired McCulloch and Pitts

[943] to apply propositional logic in the study of neural networks, and thus an

artificial neuron could be modelled by only two states, firing (occurence of spikes)

and resting.
Nonetheless, membrane potentials in real neurons are not binary but continuous.

12



At equilibrium, they are maintained at approximately —70 mV. When a neuron is
hyper- or de-polarised, the electrical change propogates along the neurites, and if the
change is large enough (about +15 mV) a spike could occur, which causes the mem-
brane potentials to rise rapidly by around 100 mV, following by an undershooting

drop to approximately —90 mV in a short time (about 1 ms).

2.2.1 Electrical circuits

Cell membranes separates intracellular plasma from the extracel

the membrane potentials.

Before investigating membrane potentials on a n ere we as-

alogy of electrical

s from control theory

(2.1)

ote that extra-cellular potentials are often assumed zero, which makes

potentials equal to membrane potentials.

esistors: leakage channels

wever, the lipid bilayer of the cell membrane is not perfectly dielectric, and at
tlfe same time there are leakage ion channels that allow selective ionic species to
travel across the membrane. Together they permit the leakage current, which can
be written as,

L(t) =) gfAm(V — Ef), (2.2)
k

13



Extracellular environment

s
1
1

(o)
Intracellularg

ance-base® model. The membrane
d extra-cellular potentials,
ented by a capacitor. The membrane

Figure 2.7: A circuit diagram of a geg
potential V' is the voltage dlfference b8
which is measured at the lipid s

leakage is analogous to thedl¥ i g resistor g; and a battery Fj, and
a voltage-gated ion cha P of a non-linear voltage-dependent
conductor and a batte ) Pnic species of k are not of a single type, we can

extend the model i ar series of conductors and batteries as parrallel
circuits onto the i

efore rewrite the leakage current in a simpler form,
Li(t) = g Am(V — Ey), (2.3)

where

=>4
k

14



is the total leakage conductance per unit area, and

k ok
B = > 9 Ei :
gi

is the passive resting potential.
If the membrane potential of a point neuron is only determined by the currents (2.1)

and (2.3), the neuron is purely passive. It is equivalent to a resistor-cagéitor (RC)

circuit, whose voltage is proportional to an exponential-filtered inp

Non-linear conductors: voltage-gated channels

where, for each ionic species k, gﬁla g mal ac conductance per unit
iables wh € [0,1] gives the

We therefore the sub-threshold regime and instead implant

aviours to compensate the removal of non-linear

Lres 8Ih _ Tres
A, ot ——Amfh+(V_El)7 (2.5)

re L,.s is the inductance and 7,5 the resistance per unit area. The neuron de-

termined by Eqs. (2.1), (2.3) and (2.5) is analogous to an resistor-inductor-capacitor
(RLC) circuit, which is therefore called resonant.
An alternative approach to obtain Eq. (2.5) is by linearising Eq. (2.4) near Ej and,

since it is reduced from a truly active, i.e. non-linear, system, it is also termed as

15



quasi-active [Koch, 1984; Coombes et al., 2007]. This approach gives a sum of many
quasi-active currents in the same form as Eq. (2.5) but the entire entire system be-
comes linear in V. Hence, even though the number of partial differential equations
has not be decreased, the entire system becomes considerably easier and analytically

solvable in the frequency domain (see §3.1.2).

Batteries: reversal potentials

Here we identify the reversal potentials in Egs. (2.2) and (2.4) as

tt, 2001]. The mechanisms can be explained

ar conductors (not linearisable). Nonetheless, the

e most famous conductance-based model of spiking neurons is the Nobel Prize
winning Hodgkin-Huzley model, which was first presented in Hodgkin and Huxley
52] to explain the initiation and propagation of action potentials in the squid

giant axon.

16



There are two non-linear ion currents explicitly considered,

INa = gNamSh(v - ENa)7 (26)
Ix = gkn*(V — Ex), (2.7)

where g, = g% .. An is the maximal conductance for ionic species k& € {K,Na}

(potassium and sodium), and n,m, h € [0,1] are gating variables for t

of potassium channels, fast activation and slow inactivation of sq
respectively.
Note that there are two gating variables for the sodium curre

general we could consider, for each ion species k,

wh(V) =[] ",

s lack of biological details, they are useful because they are
olvable, even in cases of stochastic inputs, and therefore they have been
analysis of emergent properties of neuronal circuits [Richardson].

ere we introduce the leaky IF model, whose subthreshold behavior is described

imply by the passive membrane (2.1) and the leakage current (2.3), that is,

Iy
—=F -V +—= 2.8
T ot l + gl’ ( )
where

(2.9)

T =

¢
a

17



In addition, once V' > Vi, a spike arises and the voltage is instantly reset to V.

For a constant Iy, if the right hand side of Eq. (2.8) is negative, the system has
an equilibrium potential at Ey = E; + Iy/g; but is excitable by additional inputs.
Otherwise, the potential keeps increasing but always reaches V4, before the equilib-
rium, that is, the neuron spontaneously fires, and the system becomes a non-linear

oscillator.

Without loss of generality, we may choose V(0) = Ve and write dow solution
to Eq. (2.8) as

V(t) = Eo + (Vie — Eo)e™"/7, (2.10)

which gives the duration for the potential to reach the thre

explicitly,
Ey
T=rl 2.11

rln ( P (2.11)
Since T is exactly the period of the oscillator, theQg n be easily found as
T
To generalise this simple model, one co i (2.4) (or linearised
ones) into Eq. (2.8), or define the 4gki o by some function hs instead
of the instant reset. The modificati ’ Told behaviour of the neuron
(2.8) determines the solvabil and is to be discussed in §2.3.1.

The definition of hs(t — §
variation during the i g at t% with the spiking voltage profile specified

pike. After the spike, the system switches back

we consider neurons with spatial extent, which is the main content of
chwemmer and Lewis [2012] implants such extensions of the leaky IF
el into We model of a soma and a single dendrite, and studies the dendritic
fluence on the firing patterns.

ince the soma is attached to one end of the dendrite, there is always a boundary
dition for the dendritic membrane potential at this end that enforces it to be
same as the somatic potential (i.e. the continuity of voltage, see §2.3.2). Hence, it
would be problematic if the somatic potential became discontinuous in time due to
the instant reset.

A less realitic but mathematically simpler modification is the quadratic IF model,

18



taking the canonical form as,

av
S =aV e, (2.12)

for ¢ > 0. As it allows the voltage reaches infinity within finite time, it is reset
to —oo from +oo, which could produce oscillations and appear to release spikes
[Gerstner and Kistler, 2002].

The neuron is excitable for negative Iy, but fires spontaneously onl

the case of

positive Iy. The model can be rewritten as

do
o = q(1 — cos®) + Iy(1 + cosb), 13)
by the transformation,
0
V = tan <2> (2.14)
As the infinities can be avoided after the tzg solutions are ana-

ey are the means by which neurons transmit

A typical neuron have several thousand

Wy due to an action potential) from synaptic vesicles into the synaptic cleft, and
immediate opposite are the neurotransimitter receptors of the post-synaptic cell.
pending on whether the synapse is excitatory or inhibitory, the post-synaptic cell
will produce two different types of transmembrane currents that result in either de-
polarisation, i.e. excitatory post-syaptic current (EPSC), or hyperpolarisation, i.e.

inhibitory post-syaptic current (IPSC).

19



A common and convenient mathematical model of an EPSC is the alpha function,
Igpsc(t) = Agte P, (2.15)

for t = 0 the time the post-synaptic neuron starts to depolarise. The function
reaches the maximum value of Ag(Boe)~! at time t = B .

Many chemical synapses can be found on dendritic spines, which are e

e in the ion flows and thus signals can propagate in either the direction.

We thereby consider a gap junction as a resistor whose conductance is ggy = Ra}
ofeeva et al., 2013]. This simple model is able to reflect the observations that
the post-synaptic neuron always receives a signal smaller in amplitude than the
source from the pre-synaptic neuron, and that there is almost no time delay in

signal transmission.

20



Hebbian learning

The strength of a synapse varies based on its activities, which is known as the
synaptic plasticity. Synaptic plasticity is believe to be one of the most basic adap-
tation processes occuring in the nervous system, that ultimately enables learning
behaviours of any creature with a nervous system [Dayan and Abbott, 2001].

Hebbian theory [Hebb, 2005] offers the most well-known explanation fgr synaptic

d non-linear (see Fig.

e in spikes.

marised in the book of Segev et al. [1995].

he aim of dendritic cable theory is to study the electro-physiology on a potentially
iplex dendritic morphology, and the approach is to extend the models for an
isopotential neuron (see §2.2.1) onto a weighted graph (see §2.1.2).

It is ideal to build electro-physiological models in a three-dimensional space, be-
cause 'any other approach risks excluding important features of the three-dimensional

structure or incorporating three-dimensional features incorrectly’ [Lindsay et al.,

21



Figure 2.8: Spike-timing dependent alised change of synaptic
strength as a function of the timyj the pre- and postsynaptic
spikes, where w;; is the syng ween neuron %, j, Aw;; is its change,
] glls, respectively. Modified from Bi

arying radius r(x), into which an input current I, (x;t) is applied.
1s then easy to obtain the classical standard cable equation and other simplified
odels.

General cable equation

To begin with, we work on a little section of the dendritic branch from x to x + A.

By Kirchhoff’s current law (the conservation of electrical currents at a point), we

22



have
I () + Ij(x) + Ig(x) + I(x + A) + Lin(x + A) = I(x) + Lin(z), (2.16)

where I(z) is the axial current flowing into the section and I(z + A) flowing out.
By substituting Eqgs. (2.1), (2.3) and (2.4) in Eq. (2.16) and some rearrangments,

we have

oV
C ot +gl(v l)+ §k ImaxW (V g)

where the surface area of the section is

Ap(z,z+ A) = 27r/

T

with
(2.19)
as we assume the cross-sectional are
Only the right hand side of Eq. (2.17 lls on A @nd thus by taking the limit
A | 0, it becomes,
_[I(a:—i—A)—I(x) 7_8[/8x+8fm/8x (2.20)
a 2mp(z) '
If the input cu 3 of Iy is injected only into the section from
ytoy+ A, gi 1 0, we have
= —Iinjo(z — ), (2.:21)

yt

Tac delta function. Note that, without loss of generality, from
ssume all input currents are point processes as we can always easily
ults for a region of input by integrating the input region.

the same time, we can compute the axial current I (z) flowing through the section.

As we know V(x) and V(z + A) at the respective ends, by Ohm’s Law, we have

V(zx+ A)—V(x)=—-IR, (2.22)
where A2
o B o)
f; Ac(s)ds

23



for R, the axial resistivity and A.(x) = 7r?(z) the cross-sectional area. By simple

arithmetics, it follows from the above equations that

s ST Ad)ds Ve +8) — V()
N R,A A ’

and again with the limit A | 0, we obtain

10V
I(2)= ——2~
() re O’
where R
)= Gy

which gives
or 7w 0 |,
95~ Rios [ ( (2.26)

inear channels are
that is,

ith n

The general cable equation of a radius-varyg
obtained by substituing Eqgs. (2.21) a

oV
Crgy =~V = E1) Zg

rents in Eq. (2.27) by the I; current following Eq. (2.5), we obtain

e quasi-active (resonant) cable equation with tapering,

ov 1 0 oV
EAZA VAR FNT S I 2.2
¢ ot gV = In+ 2R.p(x) Ox [T (@ )8ZC:| o (2.292)
I
Lres% = _Treslh + V. (229b)

24



Note that, without loss of generality, from now on we measure the membrane poten-
tial from E; and use C' instead of C), as the membrane capacitance per unit unless
otherwise specified.

A further simplification is to remove the I current from the model, which can
be experimentally performed by toxinating the I, channels, and is mathematically
equivalent to take the limit r,.s — 00. The passive cable equation with tapering is
thus obtained,

v 19 [, 0V
ot = Rup(e) 0x [r (m)(%}

An alternative simplification of Eq. (2.29) is to assume co
r(x) = r. while keeping the I}, current in the model, which gi

equation with cylinder,

oV T

ol
Lresﬁ - _TresI (231b)

If we reduce the model with both 4§ ve arrive at the passive cable

equation with cylinder, i.e. the

+ I, (2.32)

or, in a more well

Iy

. (2.33)
(2.34)
(2.35)

ote that the tapering cable equations (2.29) and (2.30) work for general radius-
rying dendrites as clearly shown in the derivation. We have chosen the term
‘®pering’, because the tapered dendrites are to be investigated in more details. In
addition, this thesis mainly studies Eq. (2.29) and its simplifications due to their
mathematical solvability within the subthreshold regime, while spikes are considered

as somatic current inputs which can be added back into the system via Ij.
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Figure 2.9: Current profiles of three types of inputs with Ay i . (A) An
EPSC modelled by an alpha function, with By = 0.1. (B) t. (C)
A chirp current with wepirp = 0.003 kHz.

Input currents

Iinj(t), which is assumed zero for ¢
If Ip = 0, Egs. (2.29) - (2.32) are homo¥

diffeTom®] equations. Since they are

all linear, the solutions to thg eterogenous equations with different

and oscillating behaviours of electrical systems.

gle input is described by
Liect(t) = AoH (t — to) H(t1 — 1), (2.36)

ere Ay is the strength of the current, H(t) is the Heaviside function, and tg, t;
are the starting and finishiing times respectively. For simplicity, we consider ¢y = 0
so tp is then the duration of the injection. If the finishing time t; — oo, the input
becomes a step current. A step current drives a neuron to some new equilibrium

voltage, which allows us to compute input and tranfer impedances (see §3.3.3) and

26



340 T T T T T T T T T

320 h T
<
g
o 300 A
=
2
s |
S
<

280

260 1 1 1

0 1 2 3
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is thus usually a pri

The chirp current 4

(2.37)
v can be found as
1d Wechirp
) = —— (wapiept?) = —hirpy 2.38
1) 21 dt (w hirp ) T ( )

is the rate of frequency, i.e. chirpyness. As the frequency is vayring
. (2.37) defines a linear chirp.

ince the amplitudes of the response in the Fourier domain are almost constant for
wide range of frequencies (see Fig. 2.10), that is, the power spectrum of the chirp
ut is similar to that of a Dirac delta impulse, the envelope of the correspondent
oscillating response in time domain will roughly trace the Green’s function (which
is by nature the response of a Dirac delta input). Therefore, such chirp inputs are
useful in experiments to characterise resonant systems.

Note that, however, the phases of a chirp input and a Dirac delta impulse are
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different, and thus the chirp responses cannot provide an accurate experimental

measurement of the Green’s function.

2.3.2 Boundary conditions

Four types of boundary conditions in a neuronal network (see Fig. 2.11) are consid-

ered in the thesis. They are all determined by two physical contraints, ghe Kirch-

hoff’s current law and the continuity of membrane potentials.

Note that it is only for the simplicity of expression that in this we change
the spatial coordinate case by case so that the point under in
location z = 0, while it is common to fix the coordinate whe

model.

Terminals

We call the end of a dendritc branch a terminal. It 0 be either open or
closed.

If a terminal is open, we have

(2.39)

which corresponds to the siig®io dendritic branch is cut off at z = 0

and thus there is no barrg@@ior ions ly into or out from the neuron.

——(0;t) = 0. (2.40)

gendritic branches radiating from the point under investigation.

1ons are required for axial currents and membrane potentials, respectively

Wi .y
— 14,(0) Oz (0:2) =0, (2.41)
Vi(0;t) = V;(0;1), (2.42)

fori,j € {1,2,3,..., N} indexing the different branches.
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Gap junction

Soma Terminal

¥

Soma

Branching node

Figure 2.11: A schematic of a network of two neuron junction.

Somata

A soma is treated is an isopotential sphg math tically equivalent to the

model of a point neuron as in §2.2, e modeMits active properties as

esonant model, explicitly,

8—?(0;2&) — I, (2.43a)

(2.43Db)

Vs(t) = Vi(0; ). (2.44)
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Gap junctions

A gap junction is modelled by a resistor whose conductance is gg; = Ra}, (see
§2.2.3), that is, it follows Ohm’s law,

L [OVy- Vit | ‘ .
o [ o (0;¢) + o (O,t)] = 9a7 (V- (0;t) — V,,-(0; 1)), (2.45a)
1 [oV,- oV,+
L it ——(0;t)| = -(0;¢) — V- (05 ¢ 2.45b
|0+ T 050)| = g (Vi 038) = Vi 010 P (2450)
where m~ and m™ (n~ and n™) are the two segments of dendriti (branch

n) before and after the gap junction.
At the same time, the membrane potentials are continuous on ame bran®hes,

that is,

Vo= (05t) = Vit (0N (2.46a)
V,-(0;t ‘). (2.46D)
2.3.3 Green’s functions
In order to obtain the solutigs equations, a classical approach is to

(2.47)

e L is a¥inear differential operator and ¢ is the Dirac-delta function. It is thus

ploited to solve inhomogeneous linear differential equations of the form,

Lu(z) = f(7),

for Z,y € R™, because we can directly write down the solution as

u(@) = / G(z.5)(5)dg. (2.48)
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or simply,
u=Gxf, (2.49)

where * represents the convolution of the two functions.

A chain of convolutions

Assume L = L1y and G1,Go are the Green’s functions of L1, Lo respgpively. By

applying Eq. (2.49) twice with respect to L, Ly in order,

u==Go*xGyx* f, (2.50)
and, if G is the Green’s function of L, we obtain
(2.51)

or explicitly,
(2.52)

(2.53)

G(t, to) = G(t —to). (2.54)

s a linear time-invarient (LTI) system and any LTI system can be
mpletely characterised by the Green’s function, since the output is simply the

onvolution of the input with the Green’s function,

u(t) = / Gt — to) (to)dto, (2.55)

which is essentially a special case of Eq. (2.48).
Due to Eq. (2.52), Eq. (2.54) can be extended to a series of time points ¢, t1,
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to, ... tN =t,

Laplace and Fourier transforms

The Laplace transform £ of a function f(t) is defined as

F(w) = L{f()} = /0 " ft)etar,

where w is the complex frequency.

By applying the Laplace transform operating on ¢ on Eq. (2.2

1 0

EWV(w) = —=——— |r? 2.58
@V () = g [P(a) (2.58)

where
(2.59)
(2.60)
As it is an LTT system, 4@ o initial data, that is, V(¢ = 0) =
It =0) = i Since the Green’s function in the frequency
domain, also kn er function, is one-to-one correspondent to the
Green’s functi@ i W, it completely charactersises the system as

the time domain is equivalent to multiplicatioin
u(w) = Gw)f(w), (2.61)

ecover function in time domain, the inverse Laplace transfrom £7! is used,

c+ioo
F(t) = — / Fw)edu, (2.62)

21 Jo—ioo

for ¢ an arbitrary real number that guarantees the coutour integration to be con-

vergent with respect to F(w).
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At the same time, the Fourier transform is defined as
f@) = / F(b)e= 1. (2.63)

Whereas the Fourier frequency @ is usually understood as a real number, it can be

in general treated as complex, in which cases the two transforms (2.57) and (2.63)

thesis.
If we assume @ real valued, the Fourier frequency is then merel
ponent of the Laplace frequency, which characterises the perj
system, while the real component is responsible for the transie

In addition, the inverse Fourier transform which is de

ple inputs

has been long since the existence of non-linear interactions of synaptic
ts on dWRrites were discovered [Koch et al., 1983], it is widely accepted that, in
e presence of multiple inputs, the total output is the superposition of the outputs
f the individual inputs, roughly though.

ur idealised models, this property directly follows from the linearity of the
resonant equations, e.g. Eq. (2.58), in which the property can be easily checked.

Mathematically, we can write,

V(z,y;w) = G(z,y;w)lo” (y;w), (2.65)

33



where y = (y1,¥2,¥3,...,yn) is an array of N input locations, and G, I are arrays
of size N whose individual elements are successively defined by the correspondent
elements of y.

We can easily rewrite Eq. (2.65) into an integration form in y, by assuming the
points of y locate closely in a certain region and taking the limit so that these

points are continously distributed, that is,

V(e yiw) = / Gy 0) o (y: )y,

with Ip(y;w) here a field of input that is a continuous densg

calculate general inputs directly from our inputs that are assu be
point processes, and in turn explains why we claim t lon is working
without loss of generity in Eq. (2.21), the first pla included

when we derive the cable equations.

Reciprocity between input and outg

Since Eq. (2.58) is a second order differential equation, it can be
rewritten in the Sturm-Liouville form9 ime, Eq. (2.58) is also a
Fokker-Planck equation whig - ecast into the canonical form [Park
and Petrosian, 1995], whyg ' W is the Hamiltonian (see §4.3.2 for
the conversion).

Because a Green’ ion i pnmetric if a self-adjoint operator is acting on it

G(z,y) = G(y,z), (2.67)

he reciprocity principle.
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Chapter 3

Method of Local Point
Matching
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3.1 Framework of sum-over-trips

In order to study the electro-physiology on a dendritic tree, we use the cable theory,
which describes the membrain potentials in the sub-threshold regime by Eq. (2.29)
with boundary conditions defined in §2.3.2. Since it is important to know the input-
output relationship, we naturally adopt Green’s functions as the solutions to the
nt to the

’s function

cable equations (see §2.3.3). As a Green’s function of an input is equiv,

response to a Dirac-delta impulse at the same input location, the G
automatically satisfies all boundary conditions as well. However trary den-
dritic tree generally rises many boundary conditions, and it i
the Green’s function.
An approach to bypass the non-trivial boundary condition problé as first estab-

lished in Abbott et al. [1991] for obtaining Green’s f e dendritic

a resonant dendritic tree. It is recently JFTongh i . [2013] by
that the approach is

ov oV

or ~oxz VTl (3:-1)

Iin'é(‘r - y)
=22 2 2
27reg; (3 )

absorbing the time and diffusion constants into the diffusion operator,

-1 (3.3)
T
X

x -2 3.4
X (3.4)

where 7 and X are defined in Egs. (2.34) and (2.35) respectively.
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An infinite cable

To begin with, we consider a single cable of an infinite length, on which the Green’s

function is known to be Gaussian,

Go(X —Y;T) = (X_Y)Q]

1
ex —
o/aT P [ AT

which can be obtained by summing up all paths generated by rando lks on the

cable, i.e. path integral. A path is defined as a configuration of a
starts from X, moves forwards or backwards by length (2¢t/N
with equal probability py = 1/2 at each step, and stops after
T, with the limit N — oo [Abbott et al., 1991].

Heuristically, this purely mathematical description ¢

ions undergoing Brownian motion along the lea

A semi-infinite cable

it with a
onditions (2.39) or (2.40)

pen or closed terminal

a0t (see Fig. 3.1). At the same time,
Go(X +Y) = P, (3.7)

ause Y and —Y is symmetric to the origin and thus the reflection principle
applies. To be more specific, since all paths starting from X and terminating at —Y
st pass the origin, and by reversing only the direction of the random walks at
the origin, there is a one-to-one correspondence between the paths terminating at
—Y and Y, which guarantees that the two sums are equal as they are of the equal
probability to move in either the direction.

If the terminal is open, all paths touching the origin escape from the cable, that is,
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that is, the paths terminating at —

which gives,

Gii(X,Y) = 2pi Py + Py, (3.10)
otherwise, if X, Y locate on the different branches, i.e. i # j,
Gii(X,Y) = 2p; Py, (3.11)

where Py, P; are defined as in the previous case, and p; is the probability that the

random walk moves into cable ¢ when it stands at the branching node, that should
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be proportional to the axial conductance, and sum up to 1 over all 7, which implies,

3/2
"j
pj = 3727 (3.12)
i
assuming the axial resistivity R, the same for the entire dendritic tree.
To see why Eqs. (3.10) and (3.11) are correct, we can consider p; as the grobability
= 1 in this
is thus the

that a closed terminal boundary condition applies at the origin (as
special case), and 1 — p; for an open terminal (as p; = 0). Eq.
superposition of the open and closed terminals defined by Egs:
Eq. (3.11) simply follows because all paths have to pass the
which implies the abscence of Pj.
Therefore, by substituting the values of Py, P, we o
Gij(X,Y) = 6;;Go(X —Y) + (2p; (3.13)
fori,j € {1,2,3,..., K}, where §;; is t
It is not difficult to check that Eq. |
and (2.42), and that Eqgs. (3.8) and (3 . Wes of Eq. (3.13).

An arbitrary tree

tree with branching nodes, terminals and semi-

ology. Recalling,

,T) =P(Y € j|X €4;T), (3.14)

Ly
Gij(X,Y;T) = Z/O Gin(X,Z;6)Gj(Z,Y;T — €)dZ, (3.15)
k

k running over all dendritic segments. Since G;;(X,Y;T) is an LTI system, the
value of € can be chosen arbitrarily and Eq. (3.15) is indeed well defined due to the
properties (2.52) and (2.56).

At a particular node on the dendritic tree with the limit € | 0, the paths forming

Gi(X, Z;€) are not touching other nodes and thus no boundary conditions other

39



than those at the node, i.e. Egs. (2.41) and (2.42), have to be considered.

Therefore, although it is not trivial to contruct the Green’s function directly on an
arbitrary tree as in the previous cases due to the presence of multiple boundary
conditions, it is possible to decomposite the Green’s function similarly to Eq. (3.13)
locally at individual nodes. By such decompositions successively on all segments,

eventually the Green’s function is to be rewritten as the sum of Green’s functions

on an infinite cable Gy.
However, it is more cumbersome than simply presenting and provjgthe rules for
sum-over-trips [Abbott et al., 1991]. We will list the rules in
for a passive dendritic tree are similar to and essentially a
a resonant tree, and a detailed proof for sum-over-trips with ta

most recent generalisation, can be found in §4.2.

3.1.2 On a resonant dendritic tree

(x) =re
(3.16)
where
, (3.17)
(3.18)
Iinj (y,(,L))(S(fE - y)
= . 3.19
277, ( )
the scaled spatial variable
X =v(w)z, (3.20)
we obtain
(1—dxx)V = A, (3.21)
where (X
A(X;w) = Io(X/v(w);w) (3.22)

CD»?(w)
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An infinite cable

Since the Green’s function on an infinite cable of the operator (1 —dxx) is
L -1x|
Ho(X) = 3¢ (3.23)

the general solution to Eq. (3.21) is

V(X;w) = /OOO Hoo(X — Y)A(Y;w)dy,

which, in the original coordinates, is

where

et al. [2007] where it is convoluted w . o The new definition of the
Green’s function by Eq. (3.25)gem Pecause it separates the information of
the input and the system cg i he original definition the strength of

(3.27)

(3.28)

(3.29)

and Hyj(x,y;w) is contructed by the rules of sum-over-trips.



Rules for trip construction

A trip is defined to be a highly restricted path that starts from z and terminates
y but can only change direction at nodes, while a typical path of the random walk

make frequent changes of direction [Abbott et al., 1991]. Explicitly, we define

Hij(l’,y) - Z AtripHoo<Ltrip(x7y))v (330)
trip
where Agp, is called the trip coefficient, a product of all the node nm along

the trip, and Liyip(z,y) is the scaled length of the trip.
the factor contributed by the trip travelling locally from seg
determined by the boundary condition at the node.
As we have shown the local effect of boundary conditi obability of
a path is the product of the transition probabilitg
the transition probability from z to y on a cable ing any boundaries.
If we consider a family of paths that sl conditions, they
virtually live on an infinite cable.
The definition of a trip is based on Tt

factors A,;, which encodes thegmsa] ing@Mtion of the nodes that the trip visits,

Note that the same argu ' ’s function of any linear differential
operator as long as property is justified, and thus Eq. (3.30) is

the general for W 's functions in time and frequency domains.

ey are therefore in the similar form but generally different in time and frequency

domains, except for terminals, where
Apym = —1, (3.31)
for an open terminal, and

Apm =1, (3.32)
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for a closed one.
At a branching node,
Anm = 2Ppm — Onms (3.33)

where the transition probability py is defined as Eq. (3.12) in the time domain,

while, in the frequency domain,

2k (w)

>z (W)

The node factor for a somatic node share the same expression &

pr(w) =

_ 2 (w)
ps(w) = zs(w) + > 2z (w

where
=C 3.36
zs(w) sw + Rs + s ( )
is the conductance of the somatic mem@p
At a gap junctional node,
(3.37)
(3.38)
(3.39)
thout changing direction, where
= 2m (W) . (3.40)

Zm(w) + zm (W) + 2RG72m (W) zn (W)

difficult to check that Eq. (3.30) with node factors defined as above
n Fig. 3.2) is the solution to Eq. (3.16) and satisfies all the boundary
onditions in §2.3.2.

he detailed proofs for the terminal, branching and somatic node factors can be
d in Coombes et al. [2007] and that for the gap junctional node factors in
Timofeeva et al. [2013]. A proof for the node factors in the generalised framework
of sum-over-trips with tapering, which follows similar protocols and generalises the

framework, can be found in §4.2.2.
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Branching node Somatic node GJ] node

" Pcin(w)
2Pk (w) L

>— PGn(w)

37—
2pg(w) — 1
n

Figure 3.2: The node factors of different types of nodes defined ver-trip
rules. In addition to those in the figure, the node factor of is —1

and that of a closed one is +1.

In above sections, we have reviewed the develop constructed the rules

of the sum-over-trips framework. Although , we implant the

@ uct all trips from the output location x to the input location y;

trip, compute the product of all node factors and Ho(Ltrip) where

Lyyip is the scaled length by local v of the trip;
4. sum over all the trips by Eq. (3.30);

5. scale the sum by a predetermined constant to obtain the Green’s function
G(z,y;w).

In order to retrieve the Green’s function in the time domain G(z,y;t), we need

to perform the inverse Laplace transform in the end. When an input finj(y;t) is
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considered, it is more convenient to transform it into the Laplace domain so that
we can compute the product of Iiyj(y;w) and G(z,y;w), and then bring it back to

the time domain, instead of working with the convolution of Iinj(y;t) and G(x,y;1t).

3.2 Method of local point matching

By the sum-over-trips framework, the Green’s function on an arbitr

tree with resonant membranes follows,

Gij(x,y;w) = ! ZAtrip(w)Hoo(

which is simply obtained by substituting Eq. (3.30) §
. (3.41) is
guaranteed by the property of Ho, [Abbott, 1992 an Atrary tree in practice,

However, despite of the fact that the convergence,of th

the summation generally consists of an ig

simple task to rewrite it as a convergg i In ot words, it is non-trivial

for computational purpose in

with a finite scaled length L, all trips can be sorted into four classes
k skeleton trips (see Fig. 3.3), as any other trip with more reflections
sists of one skeleton trip and multiple recurrences (yABy or yBAy).

Bince the recurrences y A By and y B Ay both gives the same factor R = AjApHyo(2L),
ere Ay and Ap are the node factors for a trip reflecting at the two ends, the

een’s function in this case can be written as

00 4
1
Glz,yiw)=— D R") Ci, (3.42)
J n=0 i=1
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Class 1: xy Class 2: x4y
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Class 3: xBy

Figure 3.3: The four classes of trips on a single finite
the most direct trip not touching two ends. Clas¢l tA
end without passing y. Class 3: xBy, the trip pa
other end. Class 4: the trip reflecting at g

cting at one
en reflecting at the

where, with z =0 at A and X,Y ¢t

s successive movements. It then identifies four shortest words which is essentially
e same as the four skeleton trips in the previous case (see Fig. 3.3), and proves
aW% other trips can be constructed by inserting fixed letter pairs into the shortest
words. The compact solution is found by combinatorics and appears to be a geo-
metric series again.

However, these methods cannot be generalised to an arbitrary tree. Numerical ap-

proximations are thus necessary in computing the infinite summation. Cao and
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Abbott [1993] offers an algorithm based on finding the shortest trip, and Caudron
et al. [2012] proposes a method with four main trips, plus local recurrences. The
four main trips are essentially constructed with the same idea as in Fig. 3.3, and
the algorithm is named as the four-classes algorithm.

Caudron et al. [2012] further introduces the length-priority algorithm and com-
pares its convergent errors with the four-classes algorithm on different dendritic

morphologies (see Fig. 3.4). Other approaches, e.g. the Monte-Carlo

also investigated in the paper, and a more comprehensive study of e numerical
methods can be found in Caudron [2012].

We can see from Fig. 3.4 that the approximations converge b
a simple morphology, while considerably worse on realistic de
methods are thus not efficient and effective in the se
to existing simulation environments, e.g. NEURON es, 2006],

which gives accurate solutions.

3.2.2 Deriviation of local point

Ps the method of local point matching,
which is theoretically rootedd ips framework, but avoids the infinite
summation and always v« solutio® in algebraic forms.

To derive the metho 5 troducing the function,

= 22;Gyj(x, y; w), (3.44)

,y;w) = ZAtrip(w)f(Ltrip(x7y;w))7 (345)

trip

f(z) =2Hy(z) =€e"". (3.46)

e assume that there are two points v; and w; placed on the segment j infinites-
ally close to either of its ends and that the point y which is not at a node (i.e.

0¥ y < Lj) is between v; and wj. J;;(x,y;w) can thus be found as the sum of two
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A. Binary Tree, Parameter Set A

= Length—Priority Method

J ——— Four Classes Method

&
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B. Binary Tree, Parameter Set B
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ure 3.4: Convergence of the four-classes and length-priority algorithms on differ-
ent dendritic morhpologies. The relative error of the approximation of the Green’s
function is plotted as a function of the number of trips generated according to either
the algorithm in each case [Caudron et al., 2012].
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] ]
vi oy Wj
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J

by the functions J,; and J,,,. Dashed lines indicate all possi

groups of trips,

Tij(@,y) =Y Av f(Lurip(2,9)) + Y Aw; f (Lirip (3.47a)
trip trip
= F(0; =) Y A, f (Luip (2, (a,w;™")
trip
(3.47b)
Note that w is omitted for
The two separated group . (3.2%%) are those that are passing by v;

at are passing by w; just before reaching y (see
pduce Liyip (2, vj_w) which defines the length of a

trip that mov j i hd ends at v; before reaching y, and, similarly,

just before reaching

a trip that moves in the direction of y and ends at

ng x vj ZAv]f Ltrlp( T,; ))7 (348)

trip

d, similarly, for w; infinitesimally close to the other end of the segment,

Jij(x,w;) ZAw]f Lsip (2, w; ). (3.49)

trip
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Now we simplify the notations as J;(z,y) = Jy, Jij(x,v;) = Jy; and Jij (7, w;) = Ju,
and rewrite Eq. (3.47b) as

Jy = fvj —y)Ju, + flwj —y)Ju,;. (3.50)

Since both the points v; and w; are placed infinitesimally close to the individual

ends of the segment j of length L;, without loss of generality, we considerghat v; = 0

and w; = Lj, and therefore Eq. (3.50) becomes

‘]Z/ = f(y)ij + f(Lj - y)ij‘ (3‘51)
wards infinity, then |w; — y| = oo, implying f(w; —
Following similar steps, by placing two points ent k in-
finitesimally close to either end, we can define fulNg nd .J,, which can be
written in terms of functions J,,, and Jy,, 3
branches connected to a single node. j i ode with K segments

and K pairs of points (v, wg) (see i o, for k=1,2,3,..., K

can be found as

(3.52)

K
Jop = > Ak f(Ln) Ju, + Ak f (). (3.53)
n=1

Therefore, summarising Eqgs. (3.52) and (3.53), in general we have

K
Joo = > Anif (Ln)Jw, + i Ask f (2). (3.54)
n=1
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Figure 3.6: Part of a network with the placed pairs of pegmts (vg,w d the

corresponding functions J,, and J, .

Note that J,, takes exactly the same form as in Eq. values of
node factors and lengths.

Since an unknown J,, is linearly dependent g v, that are on the
locally connected segments, by writting w using Eq. (3.54) we
obtain a system of linear equations.
For a fixed network the number of to the degree sum of the

Rhat the system of equations is linearly

(3.55)
,y) can then be calculated from Eq. (3.44) as
1
Gij(z,y) = 27ij- (3.56)

that tI® coefficient before J, is different from that in Yihe and Timofeeva
016], because the original definition of the Green’s funtion Eq. (3.26) is modified
explained in §3.1.2.

3.2.3 Summary of the local point matching algorithm

In above sections, we have reviewd several techniques for computing the Green’s

function obtained by the sum-over-trips approach. The methods introduced in §3.2.1
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are generally based on truncation of the infinite summmation and thus yield approx-
imated numerical results only, whose error is strongly dependent on the complexity
of the dendritic morphology, while the method of local point matching derived in
§3.2.2 is analytically exact and computationally cheaper.

Here we summarise the steps of the algorithm for the local point matching method:

1. compute the spatial scaling parameter «y for individual dendritic seggnents and

node factors A,,, at all nodes;

2. construct the linear system of J, and J,, by Eq. (3.54)

connectivity;
3. solve the linear system by matrix inversion;

4. compute J, and scale it by a predetermin

function G(z,y;w).

Note that the first and last steps are th
steps are different, as the method esg e computation for the
infinite summation and instead requ inear system, i.e. matrix

inversion.

ice properties of a Green’s function on an arbitary resonant
work. Since a Green’s function is the response function to a Dirac-delta
Priies of the Green’s function can automatically be extended to any

ponse functions given the input is predetermined.

e input-output reciprocity

If we assume that the original trip has trip coefficient to be,

Atrip = Aty Ak ko Akokes - - Akyy_1ky Ao (3.57)
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we immediately have the trip coefficient for the reversal trip, namely ’pirt’,
Apirt = Ay Aknkn—1 Ak 1kn_s - - Akokr Ak (3.58)

as the reversal trip exactly travels in the opposite direction. Note that the node
factors are equal if m = n, while any pair of A, Amn share the same denominator

and

Apm X Zm, (3.59)
if m # n. Hence,

Atrip — ij 60)

Apirt Zq '

which gives
Z AtripHoo (Ltrip) ﬁ

==, 3.61
Z Apirt H (Lpirt) i ( )
because for any trip from x to y, its reversal tri ex the same (scaled)
length, i.e. Liyip(z,y) = Lpirt(y, ).
Therefore, by Eq. (3.41), we can cong
(3.62)
and similarly for the Grg ‘ e domain. Recall the reciprocity

principal (2.67) is di Eral systems in §2.3.3, and here we have proven

aplex boundary conditions.

in input locations

ractice, experimentalists can inject current into a node, e.g. a soma. However,
t is assumed that the input location y does not locate at any nodes in §3.2.2 where
e method of local point matching is derived.

Ii? the original framework of sum-over-trips, locating the input at a node is well
defined, since the continuity of the Green’s function in the input (or output) location
is guaranteed essentially by the path integral formulation. A path starting from (or

termiating at) a point infinitesimally close to a node is probabilitically equivalent to
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the path starting from (or terminating at) that node, since the transition probability
between the two points is asymptotically 1.

By the method of local point matching, we claim that the Green’s function is still
continuous in the input location. To prove it, we recall that the continuity in x
are among the boundary conditions considered in §2.3.2. Since we have proven the

input-output reciprocity in the previous section, it immediate yields the continuity

in 9.

3.3.2 Features of local morphology

Here we consider some interesting features of a part of a den

the sum-over-trips framework.

Loops in neuronal networks

ave a closed terminal (see Fig. 3.7).

hod of local point matching, we can write down

n
a; = bifi(2pi — 1)+ D b;fi2pi+ ao fo2pi, (3.63a)
i#j=1
bi = a;fi, (3.63Db)
which gives
2pi . 2
a; 5 [aofo+D aif?]|, (3.64)
1+ f Pt
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Figure 3.7: Schematic of a branching node in an arbitrary d
connects n terminal segments, index from 1 to n, and segme€
links this branching node to the soma (on the left).

for f; = f(l;) and a; = Ja,,b; = Jp, being the 1

(3.65)
(3.66)
Eq. (3.64) gives
(3.67)
and heng
ao fo(2po — 1) + > bifi2po
= apfo(2po — 1) + 2poA (3.68)
_ 2po
— aOfO |:1 ) 1:| )
20
= ——. 3.69
Po 20 + Z Zi ( )

sume the output = does not locate on the local segments under investigation,
and that there exists an equivalent cylinder for segments 1,2,3,...,n that keep the

Green’s function invariant if they are replaced by it. By the same steps, we have

* * 2 0
%:%thgqu (3.70)
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where

* 20
= —, 3.71
Po Zo+2’f ( )
* pk2
Bt - i . (3.72)
1+ ff

Note that all variables in the equivalent model are denoted by the supeg@eript *.

In order to show the equivalence, we want to show ag, by are unch
replacement. Since the morphology from the soma to segment, itrary but

fixed, it is necessary that a = ag, bf, = bp, which implies

Po Do
1 - B* 1-B’

since the two conditions aj = ag and bj = b
other.

Comparing Egs. (3.66) to (3.72) and (3 . to further assume
fi = fi, B = B*, which implies

i = S, (3.74)

(3.75)

pns of the original branching model and the

indifferent. If the input does locate on any of

hermore, due to the reciprocity (3.62), we have shown a cylinder is equivalent to
a local branching morphology if the conditions (3.74) and (3.75) are satisfied. In the
cal situations, branching structures can be replaced by such equivalent cylinders
stccessively from the terminals to the root (usually the soma) of the dendritic tree.
Additionally, a loop can also be equivalent to such a cylinder if the same conditions
are valid.

Note the conditions are exactly the famous 3/2 branching rule, as Eq. (3.74) requires
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identical electronic lengths while Eq. (3.75) can be written equivalent as

3=, (3.77)

=1

where 7 is the corresponding radius.

3.3.3 Responses at steady states

A typical neuron in vivo is constantly receiving thousands of i

in Chapter 5 by numerical simulations.

Step input

By injecting a step current into the
finally reaches some equilibrium. In¢@ler to ojgin such equilibria, we can use the
Wites that,

(w) are in the left half-plane.

A
]step(y;w) = er—tow’ (379)

thus apply the theorem and obtain

Jim Wz, y; t) = oljig%w G(w,y;w)%e_tow = A)G(x,y;w = 0). (3.80)
ote that, for a passive system G(x,z;w = 0) is by definition the input resistance
r, because Ay in the strength of the injected current and lim; ,oo V(z,z;t) is
the steady-state voltage. However, the measure cannot fully characterise a resonant
neuron, as overshoots and undershoots are to be observed before the system settling

down to its equilibrium.
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Sinusoidal input

In order to account for the resonant properties of a neuron, we can apply a sinusoidal
signal of the form,
Isin = A() sin(wot). (381)

The system will settle on the following steady state,

Vss(x,y;t) = Bosin(wot + ¢k ), (3.82)

where the amplitude,

B0:A0|K($7y;w)|» 83)

and the phase shift,

¢x = arg(K(z,y; @ (3.84)
can be found with G(z,y;iwg) [DeCarlo and Lin,
Therefore, the steady-state responses to g i 1 frequencies fully
characterise the Green’s function (or tj i T1 systems introduced

in §2.3.3). Koch [1984] terms K (z,

dependent transfer impedance, géashi War K (z,z;0) = G(z,z;w) is the input

g, the system on principle never reaches any

yson why the envelope of the oscillating response
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4.1 Tapering cable equations with analytical solutions

In Chapter 3, a comprehensive review of the sum-over-trips framework is present.
On an arbitrary resonant dendritic tree with cylindrical segments, the framework
permits analytic Green’s functions. However, the radius of a realistic dendritic
branch could vary from location to location. Such phenomena are mostly noticeable

in the distal segments where the dendritic branches taper and terminat

In this chapter, we are aiming at extending the sum-over-trips fra ork to den-

dritic trees with non-cylindrical segments.

4.1.1 Simplification of tapering cable equations

. (2.30) and

ints. Here

Poznanski [1991] considers the passive tapered cabl
shows the possibility of obtain analytical solutions gi
we follow the same steps but work on the resonan le e ion with tapering Eq.
(2.29) instead.

We first rescale the temporal variable ig

(4.1)
where 7 is defined in Eq.
(4.2a)
(4.2b)
(4.3)
(4.4)
nd Eq. (4.2a) becomes
oV 0%V 0 oV Iy—1Iy
=V 4 s + A= (Inr2 ()27 = 4.
oT V+(9Z2+ ax(m (z) )8Z+ g (4.5)
or simply,
oV *V dInF oV Iy—1Iy
o _ _ 9V 4.
or —ozz 't Taz ezt g (4.6)
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by defining the geometric ratio,

r?(z)

Az)

Note that the value of the constant Fy is fixed but arbitrary if only a single dendritic

F(Z(x)) = Fo

(4.7)

branch is considered, and thus Poznanski [1991] 1mphc1t1y chooses Fy so that F'(0) =

segments, we prefer F = 1 to be a global constant (not dep the local

segment), so that we have less parameters to concern.

Now introducing a new dependent variable V*(Z;T) by

V(Z;T) =V*(Z;T)9( (4.8)
where
(4.9)
(4.10)
where
e ¢
1+ T + = 5 (4.11)
dln F 1dF
—rresIn + V (Z). (4.13)

e now perform the Laplace transform operating on 7" to Egs. (4.10) and (4.13),

e obtain

* *(p _ aQV* * IO — Ih
é QL — In(t = 0)] = —rvesln + V*6(2), (4.14D)
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Type of tapering F(Z) Constraint Domain

Exponential exp(2K7) K<0 0<Z
S sinh? K (Z—a) 2
Hyperbolic sine il K*>0 0<Z<a«
. s cosh? K(Z—a) 2
Hyperbolic coinse ko K*>0 0<Z<a
2 B
Sinuosoidal %,(KZ'J“) K?<0 0<Z<7/|2K|+a
Trigonometric cos? |[K|Z K?2<0 0<Z<7/|K|
Quadratic (1—Z/a)? a>0 0<Z<a
Table 4.1: Six geometric types that permits analytic solutions Ao den-
drite. « is a positive constant, while the constant K could b er in

certain cases. Modified from Poznanski [1991].

which, by assuming zero initial data and carrying out St earrange-

ments, can be reduced to
(4.15)

where

be a constant, which, as Poznanski [1991] points

icatti equation and there exist six types of tapering

types, are indeed all constants.

.2 Real shapes of tapered dendrites

Amongst the six types that Eq. (4.15) can be solved analytically, Poznanski [1991]
studies the difference in voltage transfers on a cylindrical cable and a tapered branch
of the Quadratic type, only in the reparameterised dimensionless coordinate (Z;T).

However, it seems more interesting if we can investigate relevant problems in the
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Exponential Sinusoidal

Hyperbolic sine Trigonometric

Quadratic

e curves are tapered cables in the coordinate of F'(Z) derived from
le 4.1 with parameters (taken the same as in Poznanski [1991]): o = 1.5 and
= —7/3, except for the sinusoidal cable where o = 0.15 and K = —7/2.7. Red
rves are the same cables but in the coordinate of r(x). Note that all functions in
figure are rescaled so that their starting radii equal 1.
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original physical coordinate (z;t) instead.
Given r(z), it is straightforward to find F(Z) by Egs. (4.3), (4.4) and (4.7). How-
ever, it is generally only possible to find r(x) from F(Z) by numerical methods,
because r(x) is implicitly defined by F(Z), and these six types are not exceptions.
This non-trivial reversal problem prevents us from understanding easily the real
shapes in the coordinate of r(x) of the six geometric types.

Nonetheless, as the change of dendritic radius is considered small in mo tuations,
that is, [r'(z)]? < 1, Eq. (4.4) reduces to

Aaz) = A[r(a)]'/?, (4.17)

where

(4.18)

which, by Eq. (4.7), gives
(4.19)

and thus we obtain

(4.20)

(4.21)

see Fig. 4.1 for particularly the six types), and
that Eq. (4.21) indeed describes the relationship

eal dendritic branch could be less smooth than the nice

pe Fig. 4.2). Dendritic tapered structures may be different

on tracing, a conclusion on how realistic dendrties taper or which theoretic

pe of tapering is the best model has yet not been drawn.

y
onetheless, realistic dendrites are found typically to exhibit initial rapid decay in

rXius [Bartlett and Banker, 1984; Clements and Redman, 1989; Wilson and Call-
away, 2000; Kubota et al., 2011]. Hence, in theoretical works, tapered structures that
described by exponential decays, or computationally, decreasing radii of successive

compartments by a common factor [Wilson and Callaway, 2000; Lowe, 2002], and
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1.3 T T T T T

Figure 4.2: An example of the nog-trivia uously varying radius of one terminal
cted rat pyramidal cell as in Fig. 2.4.
3 econstructed sample data, and the
(by the MATLAB function interp1 with the
measured in um, and their distances are physical
The red dashed curve is the normalised radius
malised geometric ratio. Both of the dashed
curves start w nits for their values. In addition, although they
the geometric ratio is measured in the electronic

solid red curve is interpold
method of pchip). ]
distances, that a

ckman, 1975; Lowe, 2002; Walker et al., 2017], which is on principle a special
case of power laws, but usually treated as a different type.

te that the power laws and the exponential decays mentioned in the last para-
graph are descripitions of r(x), which are generally convex, except for the special
case of linear tapering. We can thus see from Fig. 4.1 that Sinusoidal, Trigometric,

and Quadratic types are relatively unrealistic, as they are concave in r(zx).
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4.1.3 Reasons for favouring Exponential type

Amongst the three tapering types that give more realistic convex shapes, we prefer
the Exponential type to the other two Hyperbolic types, and therefore in Chapter
5 where we conduct simulations, we always consider the Exponential type for the

tapering structures. Here we explain the reasons.

Equivalence to quadratic tapering

It was long before the existence of the term, geometric ratio, tha solutions

comparing with cylindrical cables. It is also noted in t e FExponential
type of F'(Z) is approximately the quadratic tapering ssumption
[r'(2)]? < 1.

Here we prove this equivalence in the opposite dir Ao by assuming the

dendritic segment is tapered quadratica hysT oordinate, that is,

(4.22)
Since [r'(z)]? < 1, by Eqs
l—x

(z) = A T (4.23)

1 [1—2]°
= — ) 4.24
< 5 (4.24)

I l—x
= (4.25)
3A

F(Z)= rg/2 exp {—ZOZ} , (4.26)
Ao = Mrg/?. (4.27)
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We can therefore conclude the equivalence between the quadratic tapering and the

Exponential type by identifying in Eq. (4.26) that

3

K =— . 4.28
5] (4.28)

Note that K is a small number because ry/l < 1 which can be obtained by differ-
entiating Eq. (4.22) and applying the assumption [r/(z)]? < 1.

Fig. 4.3 shows that the fit between the quadratic tapering by the E ential type

is extremely good.

0.6

0.5

Normalised Error

0.4

0.3

0.2

Quadraticin
* Exponential in 7

of quadratic tapering

due to its simplicity and representativeness that the quadratic ta-
ng is favoured, but also due to its optimality in current tranfer. Cuntz et al.
007] suggests that dendritic segments tapered quadratically would optimise cur-
t transfers from distal inputs by computational simulation, and later Bird and
ntz [2016] mathematically proves that the conjecture is valid on a single passive
cable that follows quadratic tapering.

The proof starts with the assumption of 7' (x) < 9V (z;t)/0x and negligible reflective
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currents at the distal end where the radius is small, and maximises the functional,

l
j:/o V(0,z)dx, (4.29)

given the dendritic length [, the distal radius 7 (/) and the total volume.
The first assumption is almost equivalent to [r(x)]> < 1, and the second one is

justified by the ending radius 7 () being small, as r, is to be huge near I, which

at the terminal and propagate back. We can also explain it

formulation that, there are only a tiny number of paths whg

siderably small while it is large in the opposite directy

pering is on a dendritic tree and finds that, eve

morphologies of all types of neurons, it fits nj i ic morphology (see

Mckay, 2001].
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Figure 4.4: Scatter plots of the dendritic radius measured in experiments against
the optimal quadratic tapering and the correlation coefficients for different classes
of neurons [Bird and Cuntz, 2016].
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We therefore prefer the Exponential type to the other five types as it is equivalent
to the quadratic tapering, which is optimal in theory and meaningful in practice.
Equivalence to Hyperbolic types

Numerically, one could actually find a good fit of the quadratic tapering by the two

Hyperbolic types, but we prefer the Exponential types, because it is characterised

by only the parameter K, while the two Hyperbolic types are additio tuned by
mathematical deductions, rather than biological reality.
To remove this constraint, we could assume o — +00. Now

geometric ratios of the two Hyperbolic types as

K(Z-a) 4 (~K(Z-a)
e e
F(z)= Ko L o Ka ] (4.30)
The denominator inside the brackets re
same limit we obtain
(4.31)

reduce Eq. (4.15) to the form of Eq. (3.21) as we have done for Eq.

efore, it directly follows the application of the sum-over-trips framework,

Vote that a trip length is now measured based on Z instead of x and that node
actors have to be modified, because the reparameterised dependent variable V*
® to satisfy potentially different boundary conditions, even though the boundary
conditions for V are unchanged. In addition, it is more convenient for computational
purpose that the algorithm is performed in the original coordinate of V(x;w).

Here we derive the extended framework of the sum-over-tirps approach with the six

tapering shapes discussed by Poznanski [1991].
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4.2.1 The Green’s function

Since v is a constant in Z, we can rescale the spatial variable by Z = vZ, which
would reduce Eq. (4.15) to

Vi +V* =A, (4.32)
where (3
A(#;w) = 702"”/%_“’). (4.33)
Y2 q19(Z)
Recall that the Green’s function of the operator (1 —dzz) is Hoo 2, we can

write the general solution to Eq. (4.32) as
7
Vi (@w) = / dyHij (, ) Ag (4.34)
~Jo
J

where H;;(Z,y) satisfies

(1 —daz (4.35)
and is to be determined by the sum-
We may rewrite the solution i
(4.36)
(4.37)
(4.38)

Gij (:1:7 Y3 w) = Klj(y; w)¢z (37) Z Atrip(w)Hoo(Ltrip(xv Y; w))7 (439)

trip
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where

1
Ki(yw) = ——————, (4.40)
! 2j(y;w);(y)
(W)
zi(yyw) = —————. (4.41)
’ Aj (y)Ta,j(y)
Note the coefficient before H;; here is different from that in Eq. (3.28). J& §4.2.3, it
is to be shown that Eq. (4.39) can be reduced to Eq. (3.28) in the ca; cylindrical

dendrites.

4.2.2 Tapering node factors

As in cylindrical cases, the node factors in the fra er-trips with

arbitrary dendritic tree.
The boundary conditions for V are the saigass
with the new dependent variable V*, g
have different ¢ that reparameterise
factors.

The deriviation will be cond
under investigation, beca
63.1.1.

For simplicity, we er the node under investigation to locate at the

K(Y)p(X) [Hoo (VY —7X) + . Hoo (7Y + X)), (4.42)

ere a, k € {o,c} is the node factor for open and closed terminals, respectively.

The boundary condition for an open end is given by Eq. (2.39), equivalently,
G(0,y) = 0. (4.43)
By Egs. (4.42) and (4.43), we have

K(y)P(0)(1 + ao) Hoo (1Y) =0,
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which simply gives
a, = —1. (4.44)

The boundary condtion for a closed end is given by Eq. (2.40), which implies,

_ oG
- Oz

_0Gax
00X dx

1 oG

= —_22(0,Y).
0y)  M0)axX

0

(4.45)

(0,y)

Since
99p(X) 1
“OX —if(XM)(X)y
MOR) — hx)

by differentiating both sides of Eq. (4.42) we have

o = r600) (|3 - 3600 Hy -

which can be substituted in Eq. (4.

oG

0=ox

0, Y) = /{(y)qb

Solving for ., we obtain

~ 1. (4.48)

Branching no

G1(r1,y) = k1(yY)91(X) [Hoo (Y — 1 X) + a1 Hoo(mY + 11 X)), (4.49a)
Gr(wk,y) = k1(y)or(X)agHoo (MY + X)),  for k# 1. (4.49Db)

The continuity of voltage boundary condition Eq. (2.42) requires

G1(0,y) = Gk(0,y), (4.50)
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that is,
$1(0)(1 + a1) = ¢k (0)a, for k # 1. (4.51)

At the same time, the conservation of currents boundary condition Eq. (2.41)

requires 8G .
B 1 Gy 1 k
ro (@) a0V = zk: T (0)A:(0) 9X
where
oG
2 0.9 =60 (| - 560)] — a1 [+ 5610
9G

ax (0.Y) = r1(y)dx(0) <—Oék [’Yk + ;Sk(O)D Hyo

#1(0) 1 B
a1 (0)1(0) [“ ) 2&(0)} -

which can be reduced by Eq. (4.51)

Y+ &,(0)/2
/\k(O)T(L’k(O) '

(4.53a)
for k # 1, (4.53b)
() = Ve + &) /2 (4.54)

N e (2)ra ()
omatic nodes

e we assume the same structure as in the last section but for a soma at the
centre. We immediately obtain the expression of Gy, the same as Eq. (4.49), and
Eq. (4.51) is also valid as the continuity of voltage Eq. (4.50) holds. However, the

soma has its own current leakage, which requires a new boundary condition, that
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is, Eq. (2.43), or equivalently in the Laplace domain,

1 0G
25GR(0,9) =Y :

4 rar(0) W(O’ Y), (4.55)

whose left hand side, by Eq. (4.50), is

zsGr(0,y) = 25G1(0,y) = 2561 (y)$1(0)(1 + 1) Hoo (1Y)

and whose right hand side can be rewritten as

21

25Gr(0,y) = k1(y)91(0) Hoo(MY) M0)rar(0)

We therefore obtain

21

)\1 (O)Ta,l (0)

which gives
(4.56a)

(4.56D)

) Okm-Hoo(YmY — vmX) + axHoo (VY + 1 X)], (4.57)
e continuity of voltage boundary condition Eq. (2.46) requires

Gm* (07 y) = Gm+ (Oa y),
Gm* (07 y) = Gm+ (07 y>7
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which gives,

1+ - = apt, (4.59a)
Qp— = Q- (4.59b)

Note that ¢,,-(0) = ¢,,+(0) = ¢, (0) and ¢,,— (0) = ¢,+(0) = ¢,,(0) because ¢y, is

continuous on segment k.

At the same time, the conservation of currents boundary conditj

requires

b i = 360 0)] = o [+ 36:0)| ) Hoom?),

O‘k)HOO(’VmY)>

1+ =) = ¢n(0)a,-]

=l ([ = 5600 = @ ) i+ 5600 )
ZTM%)()\OZ(O)(% + ) [’Yn + ;fn(o)] 7

75



or equivalently, by Eq. (4.59),

gGJ[(z)m(O)O‘mJr - ¢n(0)an+]

:m <27m — 2a,,+ [% - ;Em(O)D
:mza”+ {% + ;fn(o)] :

Solving for «a,,+, a,+ and then substituting the solutions in Eq. ( we obtain

Zm(0) (1 4+ 2R 72(0)

1 o _ 61
T = Q= Y 2 (0) + 2Ray 2, (0 2)
5
C—as = n 4.61b
= = Ot = O 2 (0) + 2 (4.61b)

4.2.3 Summary and discussion

To summarise, the tapering node factorg

Apm = -1, open terminal, (4.62a)
2
Apmm = ;m -1, for a closed terminal, (4.62b)

for a branching node, (4.62c

for a somatic node, (4.62d

)

)

sing through a gap junctional node,  (4.62e)
for reflecting at a gap junctional node,  ( )
)

for passing by a gap junctional node, (4.62g

Pm
4.63
o (4.63)
2k

4.64
- (164

2
4.65
25+ D 2 (4.65)

z

PGIk = i " (4.66)

z¥ 4+ 2t + 2Rgyzk 2
14+ 2Rgyz} 2
g = I 2RGIZ)Em/2 (4.67)
zh 2+ 2Ra 2520
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where all values are taken at the node under investigation.

At the same time, the tapering Green’s function Eq. (4.39) can be rewritten as

i y>
Gij(mny = ] ZAtrlp Ltl”lp(x Yy,w ))7 (4'68)

Z4
J y7 trip

where

iy, x) = =

25

therefore the algorithm follows exactly the same

we can write down the Green’s function as

= AS, D,y because & = 0 but &, # 1. Recall Eq.

146

trip —

= Afy Ak ko Abiokes - Ay 1kn Ak (4.71)
hile in the tapering framework, it becomes

t
Atrlp

t t t t
Ay Ay Ak - - Ak 1k Ak

(4.72)
= A’ik’l ¢7;kl AiﬂCQ@klk‘Q Azgkg ¢k52k3 st Azn_lk’n Qk

C
A i Phnjs

n—1kn

77



assuming all node factors are not reflective. Hence, the ratio is

Al 2
A;p = Bty Py by Phooy - - - Py 1o Py = ¢Tj (4.73)
rip ?

Note that ¢, here is not dependent on the specific location x but only on the segment
index k, and that the ratio is consistent for all trips from x to y including those

ncel each

have reflections, as all reflective node factors are pairwise the same a
other. We therefore obtain

ZAiripHOO(Ltrip) _ ﬁ
Z AgripHOO(Ltrip) bi’

4.74)

which yields the new term ®j;(y,x) in Eq. (4.68) th

Similar results as in cylindrical cases

Many results for the cylindrical Green’s in ectly valid for the
tapering Green’s function as well. Forg frame permits the existence
of loops and yields similar results at

Here we study the reciprocity jdems ¥ as it is not straightforward to obtain.

(4.75)

ent kn,, km+1 indexed by 0, and ¢ = ko,j = ky, we

Rkm41 (Mm) 2 Vi1
_ = =t 4.76
m+1 k'm Zk'm (nm) k’mkhn‘kl (nm) ’ykm ( )
2,...,n, which gives

% AvipHos(Lasp) _ . W)

Z ApirtHoo (Lpirt) Yi

refore, by Eq. (4.68), we obtain
G ) .

Gjily,z)  z(y) Ty

We then immediately obtain the continuity in input locations as well.
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4.3 Sum-over-trips with general morphology

Although we have extended the originial sum-over-trips framework which works on
a cylindrical dendritic tree so that the generalised framework can now deal with ta-
pered dendritic branches, the types of the shapes are still limited, because otherwise
we cannot solve Eq. (4.15) analytically and do not have a known kernel if v there

is dependent on Z.

Nonetheless, as it is explained in §3.1.2 when we initially derive the -over-trips
framework from the path integral formulation, the same argu ks for all

Green’s functions other than the heat kernel. Since the regonant cab

tree could

At are dependent on locations. The cable is then discretised into N
partmen® which are small enough so that, approximately, all individual com-
arments are cylinders with constant local parameters.

the method of local point matching, we can write down

22’i+1 22i+1
Jo = Ju i) —ZH g [ 22 1), 479
=T B ) (22 1) o
Ty = Ju B —Z— 1) + Jy s fra (i) —2 4.79b
= S ) finl) (T
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b1

(4.81)

be de

from other cab as in the method of local point matching for

where J4 and Jp ent only on each other and all other unknowns

;1) [i(Axi—1)(22; + 2Az%) + (Bi + AB;) fir1 (Azy) Az,
(4.82a)

(i — A1) fi( Axi_1) (=A%) + (Bi + ABs) fiy1(Axi)22;, (4.82Db)

renaming «; = Jo,, i = Jp, fi and use A for any variable which defines the
difference from step i + 1 to i, e.g. Az; = 211 — 2;.

ce the Taylor expansion of f;(z) = e 7" at x =0 is
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we have the following first order expansions,

filAzi—q) =1 —vAzi g +...,
fir1(Azy)) =1 —vip1Awy + - =1 —yAz + ..,

as Yit1 = Vi + Av.

By taking the limit N — oo, that is, all Az; — 0 and assuming J,, Jp, smooth,

Eq. (4.82) becomes a pair of differential equations,

202y = (a + B)2 — 2z2d/, 4.83a)
—28zy = (a+ B)2 — 228

Note from now on we abuse all notations as they ar continuous

Jp, are not

or Jp,. Since the

y conditions as

oes very close to the left end of the cable; we

can treat it as th ending at this point. The similar and symmetric

B(0) = J-a, (4.86)
a(l) = J_p. (4.87)

's are substantial when applying the method of local point matching,

of the neighbourhood attached to the current segment will ask for this

nalytic solutions

addition and subtraction of Eqgs. (4.83a) and (4.83b), we obtain

Z/

m' +yn = —m, (4.88a)
z

n' +ym =0, (4.88b)
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where

m=a+p,

which gives

and obtain m by Eq. (4.88b).
Note that, by the method of lo ing, in the case when the input is on

is not, we have

_my) (4.91)

_ 2Ry (z)E(x;w)
r(z)

aramters can be location-dependent. Eq. (4.89b) thereby

(4.92)

2R,

n’ —[né&r)n —
,

n=0. (4.93)

he coefficients in Eq. (4.93) are constants, or Eq. (4.93) is a Cauchy-Euler
equation, we can obtain analytic solutions.

the first case,
&= 017", (4.94)

where C7 # 0 is an arbitary constant. Note that R, is assumed to be a global
constant, because it is not realistic to assume the axial resistivity varying along the

cable.
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At the same time,
In&r)" =2[lnr], (4.95)

is also a constant (in z), which implies

r = et2rtCs (4.96)

where Cs, ('3 are arbitrary constants. If Co = 0,  and thus £ are con
recovers the most trivial cases that the cable is not tapered and omogeneous
electrical properties.

Otherwise, the cable is tapered exponentially, which, by Eq.
E = Cue?®,

where Cy = C1€“% and Cy, Cy # 0.
In the other case when Eq. (4.93) is a Cauchy-Eul

In&r (4.98)
(4.99)
where Cy, Cs, Cg are arbi , ¥.08) gives,
L — O (x4 C), (4.100)
for arbitrary 2 (4.99) and (4.100), we obtain
£ = Cg(z + Cp)e5/%71, (4.101)
r = Co(z + Cp)C6/>+1, (4.102)

08 _ 6161/2607/27
Cg = 06_1/2607/2.

te that Cg = 2 recovers the special case of the quadratic tapering with homoge-
neous electrical properties discussed in §4.1.3.

In summary, we can acquire analytic solutions if either Eqs. (4.96) and (4.97) or
(4.101) and (4.102) are satisfied for r, £, respectively. The framework of sum-over-

trips is thereby extended for a larger family of tapered dendrites.
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4.3.2 Conformal quantum mechanics: a complementary

In §3.1.2 where we construct the framework of sum-over-trips, it is stated that a
dendritic tree whose electro-physiology is described by a linear cable equation can
be solved via the same approach, as long as the kernel, i.e. the Green’s function on
an infinite cable, is known.

Here we consider the dendritic radius following a power law, similar to Eg. (4.102),

but for simplicity, we define

r(z) = ro [ : } = ro(1 + az)”, (4.103)

1

where v and a = —[~" are arbitrary constants that charaterise the

Note that v = 0, 2 recover the cylindrical and parab

On passive cables

Romero and Trenado [2015] proves that N S ritic branch whose mor-
phology can be described by the po
with tapering is invariant under the c3 " 4 ation. Hence, by introduc-

ing new variables,

AR (4.104)
—mfﬁe—tﬁ\p(c;ﬂ’ (4.105)
Eq. (2.30) can
OV(Gt)
= HU (1), (4.106)
[ (@) < 1.

06) appears to be in the same form as a time-dependent one-dimensional
uation for a non-relativistic free particle, where the Hamiltonian is

fined to be
A 0% 3v(5v—4) Dy

2
Do = X (4.108)
T

Although the transformation is not well defined for v = 2, we have discussed the

case of quadratic tapering in §4.1.3, and Romero and Trenado [2015] studies this
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0.5 1

Figure 4.6: A tapered dendrite in a conical shape.
(4.103) with v = 4/5.

case separately with a different spatial is essentially the
same as Eq. (4.25).
Other than v = 0 which recovers t that we have discussed,
v = 4/5 which represents a cQe
to a heat equation.
For v #0,4/5,2, Eq. (4. Folved by separation of variables [Romero and

Trenado, 2015], th > by ta

= e Ely(0), (4.109)

= Hy(0), (4.110)

the same form as a time-independent Schrédinger equation.

cables

assuming zero initial data and [r'(z)]> < 1, the resonant cable equation with
apering in the Laplace frequency domain (2.58) is now reduced to
1 oV (w)

E(w)V(w) = 2Rar(x)8ax |:T2(l‘) o } + Ip(w), (4.111)
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which, by change of variable Eq. (4.104), becomes

ro [0?V 3v 10V

&V =k, o T an—vycac) T

(4.112)

Since we are now working in the frequency domain, instead of ¥ defined in Eq.
(4.105), we introduce the new variable ¥* by

VI(Gt) = U™ (Gs), (4.113)

where

$e = (T 14)

or, equivalently, U* = ¢~*/7W which reduces Eq. (4.

2Ra€ n 3v(br—4) 1

o A2-v)2 2

(4.115)

Note that the operator has the simlia
have extended the method of Rom¥
resonant ones.

Additionally, we point out
essentially special cases ¢ .
since the dendrtic ragdays is% 4 to follow Eq. (4.103). It could also be checked

incorporate t

tapering.

form of Eq. (3.21) or (4.32) and hence the reparameterised variables share the
ame underlying Green’s function, which is simply an elementary function. There-

e, even though the cable equations can potentially be different from segment to

S

ment, they can be integrated into the framework of sum-over-trips.
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Location-dependent electrical properties

In order to obtain analytical solutions to Egs. (3.16) and (4.15), we enforce the
constraints that both ~ take values independent of location,
1 1 2R,

1

2

0 W E 4.116
Ve (%3 w) D T C(rpes + Lyesw) re ( 2)

Ry,
= R,|E — 1Dgl.
Tres + Liresw [ + (ﬁ )gl]

Wi (Zsw) =Tw+ B+

Note the difference between their definitions, and that we can re
v by recognising 5(Z) = 1 in 4 and some rescaling, and th
to the same structure as Eq. (4.116a) if v = 0,4/5.

Recall that in §4.3 we have obtain several analytj

in « by the Cauchy-Euler equation. By the same

-1
Ve, Yt X T .

likely to vary along a dendritic branch, theg

However, the leaky and axial re = 1/g;, R, are not
is also a constant,
and € = Cw+g+ (Tres+ Lresw) ™! involyg well (C' the capacitance
per area is also a constant). Therefg £ unrealistic for the Cauchy-Euler
equation to hold.
Nonetheless, £ can be locatiog . oth the cases as it encodes information

of resonant channels, whj pgeneous distribution. It has been

ave, for Eq. (4.116a),

pg(z — 20)

E(ryw) =Cw+g + :
1+ wpg/pp

(4.117)
Eq. (3.16) to the form of an Airy function [| whose Green’s function
be found in terms of elementary and Airy functions [Vallée and Soares, 2010].

athematically, we can take the same approach for Eq. (4.116b) with £(Z;w) and
in analytical Green’s functions by Airy functions. However, as £(Z;w) is linear

in Z, it is not linear in x unless we go back to the cylindrical cases.
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General morphology and resonance

Given a homogeneous distribution of resonant channels, we can obtain analytical
solutions only if the geometric ratio F'(Z) is one of the six types in Table 4.1, or
the dendritic radius r(z) = 7o(1 + az)*5. If v # 0,4/5,2 in Eq. (4.115), or more
generally, if £ is location-dependent, we cannot apply the heat kernel.

Nonetheless, as is stated in §3.1.2, any linear differential equation has Grgen’s func-

tions. For an arbitrary resonant cable equation with tapering, by the ace trans-

form and assuming zero initial data, we can write Eq. (2.58) as

E(r)V ! > P

T Rur(@) /11 (@) ox | o

where both the morphological parameter r and the e

ally dependent on location z. Differentiating thegaerms

E(x)V (4.119)
where

(4.120)

which can be reduced to
(4.121)
(4.122)
(4.123)

arbitrary constant.
quivalently, Eq. (4.121) can be rewritten as

Hv = u, (4.124)
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where

_Er+42ar’ -2 0?

— — o (4.125)

(4.126)

The Green’s function thus satisfies,

HGv<x7y) = 5(3/ - $>7

and can be explicitly found by

Gv(‘rv y) = Z I
n=0

where g, (z) are a set of eigenfunctions admitte

(z)gn(y)

operator H, whose

complex conjugates are g,(x), and u, aregy values.

(4.129)

for all n, which can be regg ger equation. Note that the Hamil-

tonian,

(4.130)

. p’s functions are available for V' (z;t) being linear [Brown and
04; Tsaur and Wang, 2006], harmonic [Tsaur and Wang, 2006; Rother,

poal [Tsaur and Wang, 2006], or somehow more generally, conservative

hereas we could obtain Green’s function for any linear cable equations, they ad-

it either too complicated or implicit solutions that are not practically useful if no

C

straints are applied. Besides, their Green’s functions are different, which means
they cannot fit into the framework of sum-over-trips together, even though they can
fit into the framework individually. In other words, for a dendritic tree with gen-

eral tapering and resonance, the appraoch of sum-over-trips would work, only if the
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cable equations on all branches are indifferent, which is apparently an unrealistic

assumption.
Nevertheless, such models are applicable if the entire dendritic tree can be reduced

to an equivalent single dendrite that is equipped with location dependent properties.

&
o~
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5.1 Preparations for computer simulations

In this chapter, we will take computational approaches based on the theoretical
results discussed in all the previous chapters. All simulations are conducted with
MATLARB. Here we first present the standard models, methods and measurements

to be considered in this chapter.

5.1.1 Model
In order to study the funtions of different neuronal morpholo ures and
parameters of dendritic trees could be different from case t . S, we

will only consider cylindrical and parabolic dendritic branches.
It has been discussed in §4.1.3 why the quadratic t,
type, but not other tapering structures is preferred.
dendrite is defined by Eq. (4.22) as

parabolic

(5.1)
for z € [0,lp], where Iy < [ is the de ro is the initial dendritic
radius. The choice of Iy instg to freely control the dendritic length

when necessary.

nal radius r; by inserting lp in Eq. (5.1),

0= lor. (5.

| radius is zero. Otherwise, the terminal radius is

We can thereby easil

it 1s more straightforward to define a parabolic dendrite by

o and intial and terminal radii rg, ;. We hence identify, from

- (5.3)

N
which together with rg fully charaterises the parabola, and determines the geometric
0.
In addition, we keep the values of other membrane parameters the same in different

examples, unless otherwise specified.

92



5.1.2 Method

To calculate the response voltage profile in time, we first find the Fourier transform
of the input Iiyj(t), and construct the Green’s function G(x,y;iw) by the method
of local point matching, multiply them, and and finally take the inverse Fourier
transform to obtain V'(z,y;t) (see §2.3.3).

Input currents

Whereas we can only find the Fourier transform of a general i
approaches (e.g. the chirp current in Fig. 2.10 is obtain
transform, the fft function in MATLAB), some idealised
be transformed analytically, or by simply refering to
[Abramowitz and Stegun, 1964].

For instance, a step function in time domain,

Lstep(t) (5.4)
appears exponential in the Laplace 8
(5.5)
and the EPSC (2.15)
Ao
= . 5.6
)= G (56)

local point matching following the steps in §3.2.3 and then
in numerical values. If all branches are cylindrical, the node factors are

b 63.1.2, and the spatial scaling parameter ~. is defined by Eq. (3.17)

1 1

) = - |w -t
¢ D T C(rpres + Lyesw)

(5.7)

ome of the dendritic segments are parabolic, the node factors are to be found in
§4.2.3, and all spatial parameters are firtsly transformed by Eq. (4.25) as
3 l—x

BE

Z(x) (5.8)
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and then scaled by v, which is defined in Eq. (4.16) as

R

2 —
’yp(W) =TW +,3(Z) + m.

(5.9)

For the rest dendrites which are cylindrical, instead of Eq. (5.8), we directly use the
definition (4.3), which gives

example (see §5.2.1), while the detailed calculation
examples and thus omitted.

Whereas we can obtain G(z,y;w) for all possibl
put locations, we will mainly consider sg

responses at the input location G(z =

5.1.3 Measurements

d the natural frequency Q*, because the real part of the

the Laplace domain characterises the transient behaviours,

en’s function reaches its largest amplitude. Q* is defined on the real frequency
axis of the Laplace domain, which can be obtained as a solution of the implicit

ation, for w > 0,
IG(z,y;w)
Ow

while the natural frequency 2* is defined on the imaginary axis of the Laplace

=0, (5.11)

domain, i.e. the real axis of the Fourier domain, which maximises the modulus of
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——————— ~<—|
L J,
Soma —>— — — — — — — -

the Green’s function, that is, for w > 0.

9|G(z, y; iw)|

ow

5.2 Results of simplified

5.2.1 Single neuron with a @& itic cable

Here we consider a model of Zme s tic branch, whose left end (z = 0) is

| point matching, a system of linear equations for

Jy and J; ir of points (v, w) takes the following form,

= [Juwf(velo) + f(7ex)](2ps,c — 1), (5.13a)
Jw = Jvf(’YclO) + f(76(10 - .I’)), (513b)

e found from Eq. (4.65).
ing the linear system (5.13) we can find that

(2ps.c = DIf (7e(2lo — 2)) + f(7e)]

T T s~ @) (5.142)
~ (2pse — 1) f(vello +2)) + f(e(lo — x))
o= 1— (2ps,c — 1) f(27clo) ’ (5.14b)
and by
Jy = Jvf(%i‘/) + wa(’)/c(l - y)) + f('7c|$ - y|)’ (5'15)
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we can obtain the Green’s function in the Laplace domain by Eq. (3.56).

It can be checked that the solution is equivalent to that in the form of an infi-
nite series obtained by directly applying the sum-over-trips method [Timofeeva and
Coombes, 2014].

Parabolic dendrite

By the method of local point matching, the linear system can be fou

Jo = [Juf(pZ (o)) + f(wZ(x))](2psp — 1), (5.16a)
Juw = [T f(1pZ(lo)) + f(1pZ(lo — 2))](2pcp

which is similar to the system (5.13) but with sever

Solving the system (5.16) we obtain,

—3vp/2K
= -l
(2psp— 1) [(W )

Jy =

(5.18)

Pured at the soma, i.e. & = 0, the Green’s functions can be

Ps,clexp(—7ey) + exp(Vey — 27.lo)]
ze[l = (2ps — 1) exp(—27clo)]

g\ ~3m/2K e —37p/2K
PSp [(lly) T+ 2oy — 1) (%71 l?+y) ' }

l 3/2
2p(y) [1 — (2psp — 1)(2pcp — 1) <%> —%/K} < I y) :

(5.19Db)

(5.19a)
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For comparison between the cylindrical and parabolic cases, we simplify the parabolic

model by assuming o = [, which gives,

1 cosh.(l — y)
Ge(0,y3w) = : 5.20
0,4;) zetanhy.l + 295  coshr.l ( 2)
3/2—3y, /2K
Ps.p l— Yy
G,(0,y;w) = [} 5.20b
p( ) Zp(y) l ( )

We can then easily obtain the Green’s functions in the case of semi-igite dendritic

cables from Eq. (5.19), that is,

given that all electrical parameters, the somatic radl adii of the
dendritic cables are identical in both the cylin arabolic models. Note
that the limit of Gp(0,y;w) in Eq. (5.21) can be cbraically, but it is
more heuristic to consider that the para v befomes a cylinder as

K — 0.
In the opposite case when the dendr™ pely short, it is straightfor-
ward to see that

D 0;w) = ! ; (5.22)

ture dOW8 not only affect the strength of the signal, but also the arrival time of
e peak, i.e. the phase of signal.

ow we consider a more realistic input modelled by the idealised EPSC defined by
(2.15). It can be clearly see from Fig. 5.4A that the difference between two
models are minor when the dendritic length is either small or large, and there is a
noticeable gap in the peak amplitudes for [ = 150 pm.

The peaks arrival times of the two models seem not distinguishable in the case of a

single EPSC, but if we apply a train of EPSCs with succesive time gap of 10 ms, such
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resonant frequency (kHz)

preferred frequency (kHz)
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dendritic length (um)

R,, = 2000 Q-cm?, R, = 100 Q-cm, 7res ) L,;®= 5 H-cm? are the

same for both the models. Somatic pag ) , Csoma = 1 pF-cm_Q,

difference in peak arrivals iffew phases) could cause the two models
to reach global maxima ag ig. @MB). In the case that the difference

occurs near the thres ) inear behaviour, e.g. an IF model (see §2.2.2),

e found for x =y,

(2ps,c — 1) exp(—27.y)][1 + exp(—27c(l — y))]
2ZC[1 - (2pS,c - 1) exp(—2%l)] ’
- 3/ K 31/ K
(2ps,— 1) ()" + @pe, - D () 41
2zp(3/) ’

(5.23a)

Gp(y,y) = (5.23b)

the assumption [y = [ again which reduces the parabolic model with the zero

ending radius.
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Figure 5.3: Somatic voltage respgnse t3 p input at soma with wepirp = 0.0003
kHz and Agirp = 0.2 nA, 150 um about where the differences
between the two resonant

ted location to the soma is defined by Koch

G(O,y;u))'
= | 2D 5.24
‘G(y,y;w (5:24)
2pSc
= : , 5.25a
XD(e0) T+ @pse — 1) exp(—7et) (5.25a)
2pS,p (I_Ty>3/273’yp/2K
Ayp(y) = . . (5.25b)
’ N3/ K
@rsp—1) (54) 7 + @pop - D (17 41

5.2.2 Single neuron with a compartmental dendrite

Here we consider a model of a single neuron similar to that in §5.2.1, but its den-

dritic branch is fixed in length and compartmentalised into N successive cylinders
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Figure 5.4: Somatic voltage responses to EPSCs at soiga. A. rofiles on the
three models with dendritic lengths of 15,150 and 15
EPSC. B. Voltage profiles on the model with degalri

; , (5.26)

where

i) =7 (min (@) (5.272)

TEA;

(i) =r (max(x)) , (5.27b)

TEA;

Az‘ is

”(5.26) ensures the total membrane areas in the two models are exactly the same,

egment of compartment i € {1,2,3,..., N}.

and the cylinders approximately tracks the dendritic shape of the quadratic tapering
A h a succesive decrease in their radii (see Fig. 5.5A). This compartmental model
is motivated by the fact that the dendritic membrane plays an important role in
signal filtration. Note the model is reduced to the cylindrical model when N = 1,
but its radius it not chosen to be the same as the starting radius as the parabolic
model as in §5.2.1.
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ponse at equilibrium as a function of input location, where r; = 0 ym
= 0.01 ym in (C).
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Dendrite with zero terminal radius

In Figure 5.5B, we plot the somatic responses at equilibrium (¢ — oo0) of a purely
passive neuron by a step input at different locations. When N = 1, we can clearly
see a large range that the parabolic model yields a higher voltage equilibrium than
the cylindrical model, as is proven by Bird and Cuntz [2016] for a single dendritic

branch.

When N > 1, we can further observe the same phenomena on each lo

segments regardless of the global morphology.
We have also verified that when N is large (e.g. ntal model

ly a few segments

(N < 10) Cuntz et al. [2007]. Hence of compartments, the
cylindrical model badly approximaté o del as it is believed.
Note in Fig. 5.5B the voltage g ; ¢ model reaches 0 when y = [, which

can be easily seen from Eq.4§F i of the cylindrical model never does

Rler than that of the cylindrical model always

is considerably small (at the scale of nm in Fig.

onclude that the somatic response of the cylindrical model will be greater given the
me size of EPSPs at the same input location, while that of the quadratic model
be larger due to same strength of EPSCs.

By the definition of the voltage attenuation ratio (5.25), we can additionally infer
that the input resistence is higher in the region close to the terminal end than the
region close to the somatic end. The results are consistent with the simulations on

neurons with real morphology [Kubota et al., 2011].
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0.9 — Cylindrical

0.8

05

voltage attenuation ratio

dius

Here we conside i abolic model with r1 = 0.01 ym, and plot Fig.
5.5C. The vol ic Yhodel exhibits no more drastic slump near the
that of the compartmental models.

ifferences between the parabolic model and the com-
all N. If we approximate the parabolic model by the

ith fixed N, the error is ignorable in the thicker segments,

.2.3 Single neuron with a ‘Y’-shaped dendritic tree

pe we consider two neuronal models of a simple ‘Y’-shape, whose dendritic tree
consists of one primary dendrite and two identical branched dendrites. The dendrites
are connected at the branching point (where we assume = = 0) and at the other end
of the primary dendrite the same lumped soma are attached (see Fig. ??). The two

branched dendrites are modelled by either two identical parabolas, or two identical

103



cylinders, so that we can see the effects of the global morphology more clearly. The

primary dendrite is a cylinder with r. = rg in either the model.

Identify the node factors by the rules of sum-over-trips

Firstly, at the soma, we have

Ay =2pf — 1,
where S
oS = Y005
0o — ;
Fg Hf)q + zg
with

Aby = 2pb®y, 5.31d
— Ab, = 2p%, 5.31e
where )
b b2
—1 ¢O )‘0
AT 5
I\
b
b Y08
=0 ___ 5.33
PO~ TogE 1 arter (5.33)
gb
QL S— (5.33b)

rbeb 4 21r%6%°

hich 6§, 0% are similarly defined as 65 in Eq. (5.30a) with their local parameters,

and

% =~ — Ko, (5.34a)
Y =y + K1, (5.34b)
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Finally, at the two closed terminals in the end of the branched dendrites, we have

2
1= Fill -1, (5.35)
where
I'=v—- K. (5.36)

Find the Green’s function by the method of local point m

With the output x = — L locating at the soma and closed ter

be(LO)Aoo + £(0)Af,

Jaf (Lo)Aby + f(Lo)Aby + Jaf (L1)AY, AboY
Je = Jof (Lo)Aby + f(Lo)Aby + Jaf (L1401 +

(L1)A]

Jg = Jef(L1

21>

11>

and Je, Jy are omitted since identical by assum or Lo =v0Zo(lp), L1 =

1Z1(l).
Equivalently, the linear system 3 ewritten in the matrix form as,
Jo+1] [~(45+)
Jp . 0
Je | 0
Ja 0
5.38)

L,), for 0 <y <y,
v) v=n (5.39)

for lg <y <ly+1.

870(20), Ly—1, = 11 Z1(y — lo), which then gives the Green’s function.

omatic responses

ig. 5.7A, we plot the somatic responses at equilibrium with different lengths of
the primary dendrite, based on the calculation in the previous sections. We can see
that, despite of the voltage change in different cases, the signals are locally larger
in the parabolas than in the cylinders for a wide range.

We can also set the primary dendrite to be parabolic but the branched dendrites
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T

IN
T

N
T

equilibrium voltage (mV)

W2 cylindrical primary dendrite with the other end attached
The radius of the primary dendrite is 79 = 1 ym and the length
A 80 and 100 pm, respectively in the six different cases. The soma is
ched at The other root of the primary dendrite. All other parameters are the
me as in Fig. 5.5B. (B) All segments are parabolic. 79 = 1 ym and r; = 0.01 ym
re fixed, while the radius at the branching node r, = 1 (solid), 0.5 (dotted) and
(dashed). Other parameters are unchanged from (A). (B-a & B-b) Zoomed-in
plots of (B) for (a) on the primary dendrite and (b) on the branched dendrits.
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Cell 1 Cell 2

ich leads to larger signals in either the proximal or the distal dendrites, comparing

to the cylindrical model.

5.2.4 Two simplified neurons coupled by a gap junction

Here we consider a simplified two-cell network. The two neurons are coupled by a
dendro-dendritic gap junction (see Fig. 5.8). For simplicity, all dendritic branches

are considered cylindrical and semi-infinite.
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Identical neurons

We start by considering a model of two identical cells, either of which consists of
a soma and N dendritic branches. We assume that the biophysical properties of
all dendritic segments are the same and that the physical lengths are scaled by the
characteristic function v(w). The gap junction is located at some distance Lgj away
different

" Points of

from the somata. We assume that this network can receive stimuli in fo

locations mimicking distal (y; and y3) and proximal (y3 and y4) in

Fig. 5.8),

Ja = Jof(Las)(2ps — 1) + f(22)(2ps — 1); (5.40a)
Ty = Jyf(Lay)pas + Jaf (L) (-~ (5.40b)
Jy = Juwf(Lcy)(2ps — 1), (5.40c)

T2)pGJ- (5.40d)

(5.41a)

(5.41b)

(5.41c)

(@2,0) = PLREF (@, OF (. )] i wa <y

F(ys, w2) — %F(H«“Q?O)F(M,O)} if 2y > .

ap = (2ps — 1) f(2Lgy), (5.42)

qo = 1 + 2pgjao, (5.43)
Fla,y) = f(e +y)(2ps — 1) + 29 (5.44)
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Laplace frequency (kHz)

Figure 5.9: The somatic Green’s function in the L hen input is
placed at y3 = 0, for (A) Cell 1 and (B) Cell 2. Biop
membrane are the same as in Fig. 5.2. Gap-ju
Rgy = 100 M.

Since the neurons are identical, the cg unctions for neuron 1
can be easily obtained from Eq. (5.4
In Fig. 5.9 we plot the Green’

of the input locations.
the soma of each cell (x; = 0 and
ied to Cell 1. Note that Egs. (5.41a)

applied at equal distances from each soma (y; =

on for each soma is identical. We obtain

F(0,91)  psf(y)
22 oz

y2) = G2(0,v1) + G2(0,92) = (5.45)

y from each soma (y3 = y4 < L), the somatic Green’s function for each cell

as the same form:

F(0,y3)  psf(ys)
22 z

G1(0,y3) + G1(0,94) = G2(0,y3) + G2(0,14) = (5.46)

Both the solutions are independent of ggy and Lgy and share the same form as
Eq. (5.21) for the single neuron with single dendrite model. This result can also be

inferred directly from the equivalent cylinders (see §3.3.2).

109



Different neurons

Now we consider the network consisting of two different neurons. Following the

same steps as for the previous case, we obtain the somatic Green’s functions for

neuron 1,
S GJ,2 T+ PG 20
G1(0,y2) = bf(ﬁl +y2 — £2)M7 (5.47a)
22 q12
1—
G1(0,y1) = L5 f(yy)=—PCI2 T PGI102 (5.47b)

q12

G1(0,y0) = B POR2 By ) £ 4 1), (5.47c)
22 q12

S PGI2 &
G1(0,y3) :pj flys) — q1‘122F1(y3,2£1) :

and, symmetrically for neuron 2,

G2(0,1) = %f(ﬁz +y (5.48a)
Ga(0,y2) = pi;ﬂy

zZ

(5.48D)

(5.48c¢)

)|, (5.48d)

1,201 + PGy,102, (5.50)

(@ +y)(2ps, — 1) + ;EZ; (5.51)
Y/ Tak

" Nyk/rap + Cs,w+ Rg! + (rg, + Lg,w) =1

vk (w) iS the characteristic function of the membrane of Cell k, and Ly is the

istance between the gap junction and the soma of Cell k.

p junction

Using Eqgs. (5.47) and (5.48) we can investigate how the strength and location of

the gap junction affect the dynamics of the two-cell model. Here, we consider that
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Figure 5.10: The preferred frequencies 2] and €3 i
of Cell 2 (B). The dendritic parameters of Cell 1

10092 - cm?. The dendritic parameters of Cell 9 = = uF -cm™2,
Ry = 20000 Q-cm?, Ry2 =150Q-cm, and 79 — 00 endritic membrane).
Both somas are passive.
a stimulus is applied to the soma of

(5.53)

U (97,93) = (Lai, 96) (5.54)

rom a pair of preferred frequencies (obtained from somatic sub-threshold stimula-
ons) to (Lay, ggy) might provide estimates for gap-junctional parameters. How-
e®r, the map ¥ is neither surjective nor injective (see, for example, Fig. 5.11 for a
network of two resonant cells showing that the system may demonstrate the same
resonant behaviour for two different gap-junctional locations, proximal and distal,
and identical coupling strengths) making it mathematically impractical to obtain

U~ At the same time, if a constraint on locations of gap junctions is imposed
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400

300

200

distance to soma (um)

100

0.005 0.01
gap junctional coy

(e.g., proximal or

(Lcs,9cy) and

lead to a one-to-one correspondence between

ore assists in the estimation of gap-junctional

euron has a soma attached to N dendritic branches, one of
c primary dendrite with the tuft spanning from its end. The two cells
their tufts by dendro-dendritic gap junctions (see Fig. 5.12A). As
the previous model, we assume that the biophysical properties of all dendritic
segments are the same and that the physical lengths are scaled by the characteristic
action y(w). We consider that each cell has nt segments in its tuft, and ngy of
them possess identical single gap-junctional points located Iy away from the end of
the primary dendrite. The primary dendrite of each cell has the length £, while the
other branches are semi-infinite. For simplicity, we consider that the membrane of

both cells is purely passive (i.e. v3(w) = (77! +w)/D), however it is straightforward
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Figure 5.12: A: A full two-cell tuff
model.

B: An equivalent reduced

to generalise it for the reggh

Although it i i hod of local point matching to construct the

etwork, it is more convenient to reduce the model

Z"},GJ = NGJZT, (5.55a)
Rgy = Ray/nay, (5.55b)

where z7 is the impedance of the individual tufted segments, 27 o; is that of the
equivalent cylinder with the gap junction, and Rqy, R(,; are the gap junctional re-

sistances in the original and simplified models, respectively.
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If the input is in the tuft but the output is not, it is easy to check that the con-
straints (5.55) would give the same J,, but due to Eq. (3.56), Green’s functions are

dependent on the input impedance z;(y). We therefore have

1
G(xo,yk) = mG*(woﬁyl), (5~56)

for the input y; applied to the branch without a gap junction, and

y2 = yg. The point z¢ (0 < z¢ < L) is located
the cells.

If the output is in the tufts but the inpu
(??) as we have derived the opposite g
tufts, the symmetry amongst the tu

reduction fails. Fortunately, syg

go(cosoto + 2ngypr — 1))’
1+ dof(L))co — G2(0,0), (5.58Db)

tedious and thus omitted here. All the details can be found in the
endices in Yihe and Timofeeva [2016].
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distance to branching node (um)

| colductances and dis-
tances from the branch point with tj f iteN@oth cells are identical
and passive. Dendritic parameters: & ~em™2, R =20009 - cm?,
R, = 1509 - cm. C i, Csoma = 1uF - cm™2,

Gap junction

For investigatin iunctions from the tufted regions of the cells on
the model’s b

axy InvLT{G2(0, 0;w) }(t)
max; InvLT{G1(0,0;w)}(t)

map can be compared with the CR map obtained earlier in Migliore
tor two mitral cells coupled by distal gap junctions. Note that the
Prap in Migliore et al. [2005] is obtained by brute-force numerical simulations of

computational model with a similar, but not identical, structure to our two-cell
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Chapter 6

Conclusion

------------------------



6.1 Summary

In this thesis, we have thorougly studied the dendritic cable theory, which provides
us a fundamental framework of understanding the effects on dendritic functions of
its structures.

Due to the complex morphology of dendrites, it is non-trivial to find the input-

output relationship, even though we simplify the electro-physiological

Finally, we conduct simulations in (8

dendritic morphologies. Wherg

rents from distal tg i tions than the non-tapered, and the signals are

L could potential cause the two neurons firing

bthreshold signals to transmit directly between adjacent

prvestigate its properties in the sum-over-trips framework. A

trength and location) by simply stimulating and recording the somata. This is
seful because the gap junctions are often so small that their parameters cannot be

asured directly in experiments.
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6.2 Further works

It has been shown in this thesis that the framework of sum-over-trips and the method
of local point matching are powerful tools in analysing and computing responses on
morphologically realistic neurons. However, we have explore little into the research
field of dendritic physiology (other than electro-physiology), and many important

aspects of neuroscience have yet not been considered. Here we point out e natural

directions of further work.

Realistic morphology from neuron reconstructions

The framework of sum-over-trips was desgined for realistic

et al., 1991], but has not become useful in practice, b

‘bad’ convergence. Nonetheless, the method of 1o

rate and efficient computation possible on

ion obtained by sum-over-trips will be the mean behaviour

Mastic Green’s function, and its variance can be written down directly as

yoly if the input as a white noise.

reshold and non-linear neuronal activities

reshold behaviours can be conveniently incorporated into the work, because
een’s functions are linearly additive. After computing the Green’s function, it
is trivial to check for some active points if or not their voltages are above the
thresholds. Response profiles after the occurance of threshold behaviours have to

be updated succesively, but such computational procedure still saves computational
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cost as no real computation is required for voltage variations between two threshold
behaviours. If the threshold behaviour is a spike that induces changes in synaptic
strengths, the processes of learning can be also included in the model.

An alternative approach to deal with active behaviours is to consider the non-linear
system directly, e.g. the Hodgkin-Huxley model. Green’s functions are originally
defined for linear systems and thus they appear not to be useful in neuroscience,

where non-linear properties are playing an important role. Nonetheless 4@ possible

tion as a description of input-output relationship. To extend
non-linear systems, we may want to use the Lippmann-Sch
allows us to derive Green’s functions functions via an iterativ
2017).

Emergent behaviours of neural networks

Finally, it is always much more challengig i ing i study a network
of neurons, especially when the nump d huge. We would be
able to simulate a network of mor/gogi labic csonant neurons at a lower
Esults of above further works can also
ic in electro-physiology as well as in

morphology.

119



Bibliography

Laurence F Abbott. Simple diagrammatic rules for solving de

Physica A: Statistical Mechanics and its Applications, 185

Laurence F Abbott, Edward Farhi, and Sam Gutm
dritic trees. Biological Cybernetics, 66(1):49-6

Giorgio A Ascoli. Computational né
Science & Business Media, 20Q

gryvam Halavi. Neuromorpho. org:

tlett andYGary A Banker. An electron microscopic study of the
Pns and dendrites by hippocampal neurons in culture. i. cells

elop without intercellular contacts. Journal of Neuroscience, 4(8):1944—

uo-giang Bi and Mu-ming Poo. Synaptic modification by correlated activity:
Hebb’s postulate revisited. Annual Review of Neuroscience, 24(1):139-166, 2001.

Alex D Bird and Hermann Cuntz. Optimal current transfer in dendrites. PLoS
computational biology, 12(5):€¢1004897, 2016.

Tobias Bonhoeffer and Rafael Yuste. Spine motility: phenomenology, mechanisms,
and function. Neuron, 35(6):1019-1027, 2002.

120



Paul C Bressloff and Stephen Coombes. Solitary waves in a model of dendritic cable
with active spines. SIAM Journal on Applied Mathematics, 61(2):432-453, 2000.

Lowell S Brown and Yan Zhang. Path integral for the motion of a particle in a linear
potential. American Journal of Physics, 62(9):806-808, 1994.

Heather A Cameron and Ronald DG Mckay. Adult neurogenesis produces a large

pool of new granule cells in the dentate gyrus. Journal of Comparati
435(4):406-417, 2001.

Joseph J Capowski. An automatic neuron reconstr
roscience Methods, 8(4):353-364, 1983.

Joseph J Capowski. Computer techniques in neu pringer Science &

Business Media, 2012.

Joseph J Capowski and Mathius J S e computer reconstruction and

ing staté-of-the-art interactive tech-

b 14(6):518-532, 1981.

ematical Neuroscience, 2(1):11, 2012.

herniak, Mark Changizi, and Du Won Kang. Large-scale optimization
arbors. Physical Review E, 59(5):6001, 1999.

neuron

John D Clements and Stephan J Redman. Cable properties of cat spinal motoneu-
nes measured by combining voltage clamp, current clamp and intracellular stain-
ing. The Journal of Physiology, 409(1):63—-87, 1989.

Susanne D Coates. Neural interfacing: Forging the human-machine connection.
Synthesis Lectures on Biomedical Engineering, 3(1):1-112, 2008.

121



Stephen Coombes and Aine Byrne. Next generation neural mass models. arXiv
preprint arXiv:1607.06251, 2016.

Stephen Coombes, Yulia Timofeeva, Carl-Magnus Svensson, Gabriel J Lord,
Kresimir Josi¢, Steven J Cox, and Costa M Colbert. Branching dendrites with
resonant membrane: a “sum-over-trips” approach. Biological Cybernetics, 97(2):
137-149, 2007.

Hermann Cuntz, Alexander Borst, and Idan Segev. Optimization iples of den-

dritic structure. Theoretical Biology € Medical modelling, 4:

Peter Dayan and Laurence F Abbott. Theoretical neuroscien
bridge, MA: MIT Press, 2001.

tional, 1978.

Raymond A DeCarlo and Pen-Min Lin.

sor, and Laplace transform approag

Ekrem Dere, editor. Gap junctio
Academic Press, 2012.

: physiotogical and pathological roles.

Nancy L Desmond and vy. Dendritic caliber and the 3/2 power re-

lationship of de Is. Journal of Comparative Neurology, 227(4):

WCd image analyzer for quantitating neurite outgrowth. Brain
(2):339-346, 1986.

fram Gerstner and Werner Kistler. Spiking Neuron Models Cambridge University
Press. Cambridge, 2002.

und M Glaser and H F Machiel Van der Loos. A semi-automatic computer-
microscope for the analysis of neuronal morphology. IEEE Transactions on
Biomedical Engineering, (1):22-31, 1965.

Steven S Goldstein and Wilfrid Rall. Changes of action potential shape and velocity
for changing core conductor geometry. Biophysical Journal, 14(10):731-757, 1974.

122



Gilbert Harman. Thought. princeton. NJ: Princeton University, 1973.

Donald Olding Hebb. The organization of behavior: A neuropsychological theory.
Psychology Press, 2005.

Terry F Hoad, editor. The concise Ozford dictionary of English etymology. Oxford
University Press Oxford, 1993.

Alan L Hodgkin and Andrew F Huxley. A quantitative descriptiongPmembrane

current and its application to conduction and excitation in nervy Journal of

Physiology, 117(4):500-544, 1952.

John J Hopfield. Neural networks and physical systems wit
computational abilities. Proceedings of the Nationg
2554-2558, 1982.

Fugene M Izhikevich and Gerald M Edelman.
thalamocortical systems. Proceedings ; of Sciences, 105
(9):3593-3598, 2008.

James Julian Bennett Jack, Denis

arube, Masaki Nomura, Allan T Gulledge, Atsushi
chertel, and Yasuo Kawaguchi. Conserved properties of

@ trces 10 tour cortical interneuron subtypes. Scientific Reports, 1:89,

en C Lai and Lily Y Jan. The distribution and targeting of neuronal voltage-

gated ion channels. Nature Reviews Neuroscience, 7(7), 2006.

r E Latham, BJ Richmond, PG Nelson, and S Nirenberg. Intrinsic dynamics in
neuronal networks. i. theory. Journal of Neurophysiology, 83(2):808-827, 2000.

Kenneth A Lindsay, Jay R Rosenberg, and G Tucker. From maxwell’s equations to
the cable equation and beyond. Progress in Biophysics € Molecular Biology, 85
(1):71-116, 2004.

123



Graeme Lowe. Inhibition of backpropagating action potentials in mitral cell sec-
ondary dendrites. Journal of Neurophysiology, 88(1):64-85, 2002.

Zachary F Mainen and Terrence J Sejnowski. Influence of dendritic structure on

firing pattern in model neocortical neurons. Nature, 382(6589):363, 1996.

Henry Markram. The blue brain project. Nature Reviews Neuroscience, 7(2):153—
160, 2006.

Warren S McCulloch and Walter Pitts. A logical calculus of the j
nervous activity. The Bulletin of Mathematical Biophysics.gb

Erik Meijering. Neuron tracing in perspective. Cytometry Pa
2010.

Bartlett W Mel. Information processing in dend@g@ic tre eural Computation, 6

(6):1031-1085, 1994.

M Sh d. The role of distal

al cell axonal output. Journal

Mathematical Biology, 53(3):457-467, 1991.

Q. Theory of physiological properties of dendrites. Annals of the New
ork Acad®my of Sciences, 96(1):1071-1092, 1962.

Wilfrid Rall. Distinguishing theoretical synaptic potentials computed for different
oma-dendritic distributions of synaptic input. Journal of Neurophysiology, 30(5):
1138-1168, 1967.

Wilfrid Rall. Distributions of potential in cylindrical coordinates and time constants
for a membrane cylinder. Biophysical Journal, 9(12):1509-1541, 1969.

124



Santiago Ramoén y Cajal. Significacion fisiologica de las expansiones protopldsmicas

y nerviosas de las células de la sustancia gris. 1891.

Magnus JE Richardson. Introduction to theoretical neuroscience (lecture notes).
URL: https://warwick.ac.uk/fac/sci/systemsbiology/staff/richardson/
teaching/madgd/ITN_LN1.pdf. Last visited on 2017/12/16.

equation
ters, 10(03):

Juan M Romero and Carlos Trenado. Analytical solution of a tapering ¢
for dendrites and conformal symmetry. Biophysical Reviews an

175-185, 2015.
Tom Rother. Green’s Functions in Classical Physics, volume Springer,

Michael A Schwemmer and Timothy J Lewis. Bistabil g i ate-and-fire
neuron with a passive dendrite. SIAM Journ
11(1):507-539, 2012.

Idan Segev, John Rinzel, and GM Shep] . . theoretical foundation of

dendritic function: selected papers g ] mentaries. MIT press,
1995.
Dd A Sholl. Dendritic organg wrons of the visual and motor cortices

ley & Sons, 2011.

ain and William H Brockman. A modified cable model for neuron
ocesses with non-constant diameters. Journal of Theoretical Biology, 51(2):
475-494, 1975.

¢ Stuart, Nelson Spruston, and Michael Hausser, editors. Dendrites. Oxford
University Press, 2016.

Yulia Timofeeva and Stephen Coombes. The Computing Dendrite: From Structure
to Function, chapter Network response of gap junction coupled dendrites, pages
449-464. Springer, 2014.

125



Yulia Timofeeva, Stephen Coombes, and Davide Michieletto. Gap junctions, den-
drites and resonances: a recipe for tuning network dynamics. The Journal of
Mathematical Neuroscience, 3(1):15, 2013.

Gin-yih Tsaur and Jyhpyng Wang. Constructing green functions of the schrédinger
equation by elementary transformations. American Journal of Physics, 74(7):
600-606, 2006.

Henry C Tuckwell. Introduction to theoretical neurobiology: wvol , nonlinear

and stochastic theories, volume 8. Cambridge University Pres

Josef Turecek, Genevieve S Yuen, Victor Z Han, Xiao-Hui
and John P Welsh. Nmda receptor activation strengthens weak
in mammalian brain. Neuron, 81(6):1375-1388, 2

Olivier Vallée and Manuel Soares. Airy functions applINQKons to physics. World

Scientific Publishing Company, 2010.

on of action potentials

Philipp Vetter, Arnd Roth, and Mich Propag

¥ of Neurophysiology, 85(2):
926-937, 2001.

Alison S Walker, Guilhery , lo, Rachel E Jackson, Mark Rigby,

¥ method of local point matching and its applications. Biological Cy-
bernetics, 110(2-3):117-133, 2016.

126



