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Abstract

Neurons are the basic units in nervous systems. They transmit electric sig-
nals along neurites and at synapses. The morphology of neurites, mainly dendrites,
is famous for its anatomical diversity, and many neuronal types are named after
their morphologies. As well as distributions of ion channels on cell membranes, den-
dritic morphologies contribute significantly to distinct behaviours of different types
of neurons in signal filtration and integration (even in the situation of receiving same
inputs in vitro).

In this thesis, we mainly address the importance of the morphology, by in-
vestigating its effects on dendritic functions via mathematical and computational
approaches. By ‘morphology’, we consider both the global dendritic branching struc-
ture and the single dendritic tapering geometry.

We build the mathematical model of dendritic electro-physiology by gener-
alising the classical cable theory, which allows us to study resonant membranes and
tapered branches. We also develop a novel method to solve cable equations on an ar-
bitrary branching structure that permits solutions in the form of compact algebraic
expressions. We can therefore analyse a neuronal system with complex morphology
theoretically and heuristically, and simulate such models accurately and efficiently.

By invetigating some explicit examples that are simplified but representa-
tive, we find the tapered dendrite is better at propogating current signals than the
non-tapered one, and this property is merely affected by the global morphology. We
also use the method to investigate the effects of gap junctional strength and location
in a neuronal circuit.

In addition, our approach is perfectly compatible with other existing meth-
ods, that makes it straightforward to recruit stochasticity and non-linearity into the
framework. Future works of large neural networks could easily adapt this work to
improve computational efficiency, while preserving biophysical details at the same
time.
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1.1 Overview of neuroscience

Amongst a few ultimate questions that we have striven to find answers, ‘What makes

us human? ’ ranks top since, if not earlier than, the twilight of civilisations. The fa-

mous Ancient Greek aphorism ‘know thyself ’ could be more than a pedagogic phrase

to individuals as expounded by Socrates and other philosophers, but an evidence

of our curiosity in ourselves as homo sapiens; the phrase may actually have been

adopted from an Ancient Egyptian proverb, saying ‘Man, know thyself, and you are

going to know the gods.’ [De Lubicz, 1978].

I consider the name of our species, homo sapiens, or literaly wise man, as the first

attempt in modern science to answer the question. We are different from other

species, because we are superbly intelligent comparing to them, and we could be

the only species being consciously aware of the fact, even though this ‘fact’ might

merely be a belief, as we have neither a consensus on the definitions of intelligence

and consciousness, nor established methods to test or prove them.

Neuroscience is our scientific frontier where we attack the very problem, as we have

found the nervous system the most essential in controlling human behaviours and

being responsible for intelligence and consciousness. Since there are no other ways

for us to know and react to the world than ‘straining’ our nerves, on principle, al-

most every human activity can be investigated as a direct result or some indirect

consequence of nervous functions.

Nonetheless, before finding our brains in a vat [Harman, 1973] or diving into a vir-

tual reality with some neural interface [Coates, 2008], that would potentially allow

our brains to connect to one another directly (perhaps via a computer), we may

want to leave the study of collective human behaviours to social scientists and sci-

ence fictionists, and concentrate on individual nervous systems.

However, we are still facing huge complexity since a human brain consists of ap-

proximately 1011 nerve cells. The monstrous number is of the same order as that

of the stars in our galaxy, but the interactions among nerve cells are not dominated

by the single force of gravity. Information in the nervous system travels mainly in

the form of electric signals along neurites, and often transmits from cell to cell with

the assistance of chemical messengers at synapses. Both the processes occur at the

level of molecules, and they are highly affected by their kinetic and electric potential

energy.

An average nerve cell connects to thousands of other cells, locally and distantly,

forming small neuronal circuits, large neural networks and eventually an entire ner-

vous system. Models with biophysical details, e.g. the Blue Brain Project [Markram,

2
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2006], trying to construct neuronal circuits bottom-up from the molecule level, are

effective but inefficient; even running on some of the most powerful computers in

the world, the project had simulated a column of 104 neocortical cells by 2008, and

100 such columns by 2011, only a tiny fraction of an average human brain.

In order to investigate larger nervous systems, models can be simplified by reducing

the complexity of individual cells. For instance, a computational brain of exactly

1011 nerve cells with almost 1015 synapses was simulated on the neuronal level

[Izhikevich and Edelman, 2008]. Whereas the model was able to exhibit brainwaves,

it still took fifty days to produce the data of one second in the brain’s real time.

An alternative approach in model reduction is to ignore the individuality of cells,

and to consider a nervous system, typically a human brain, consisting of different re-

gions. Whereas such brain regions and their connectivity are conventionally found

and named in neuroanatomy, modern neuroimaging techniques have revealed the

differences (and correlations) between the structural and functional connectivity.

By imaging, recording and measuring dozens of brain regions (a tiny number com-

paring to a billion nerve cells), these models could be efficient enough for clinical

usage, e.g. diagnosis of brain diseases or disorders. However, the models are phe-

nomenological (at the macroscopic level) and thus unable to explain fundamental

biological mechanisms of the brain functions.

Although neuroscience in general has to be studied with a multi-disciplinary method-

ology due to its complex nature at all levels, this thesis studies only structures and

functions of dendrites via mathematical and computational approaches. It will be

shown that the dendritic electro-physiology in a morphologically realistic nerve cell

can be modelled analytically based on molecule activities, and therefore we can in-

vestigate directly how dendritic structures influence functions, and simulations can

run on more realistic nerve cells but at a lower computational cost.

1.2 Outline of thesis

In §175 of Chapter I, the problems of morphology, The Principles of Biology Vol-

ume 2 [Spencer, 1884], Herbert Spencer composed, ‘Everywhere structures in great

measure determine functions; and everywhere functions are incessantly modifying

structures.

Whereas the interplay between anatomy and physiology in nervous systems is ev-

idently vital, the core question to be addressed in this thesis is ‘How dendritic

morphology influences electro-physiology? ’, only the first half of the quote, because

the time scale of any structural changes is much larger than the scale of signal prop-

3
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agation on dendrites considered by us.

In Chapter 2, dendritic morphology and electro-physiology are to be introduced re-

spectively in the content of neuroscience in general. The two aspects of dendrites are

then brought together and synthesised in the mathematical formalism of dendritic

cable theory [Rall, 1962]. Some general results are also discussed in preparation for

analytical deductions in the later chapters.

Chapter 3 and 4 are to deal with arbitrary dendritic morphology via purely math-

ematical approaches. Based on the path integral formulation, the framework of

sum-over-trips is derived [Abbott et al., 1991] and extended [Coombes et al., 2007;

Timofeeva et al., 2013], and we develop the method of local point matching. The

framework of sum-over-trips is further generalised in Chapter 4 from cylindrical

models to tapered ones.

Chapter 5 is the last chapter, where the analytical results are applied in special

dendritic morphologies. The generalised sum-over-trips framework and the method

of local point matching enable us to investigate the problems analytically with solu-

tions in compact algebraic forms and compute the results accurately and efficiently.

The morphological effects on functions can therefore be discussed on a valid quan-

tative basis. Finally, we finish by proposing several possible future directions of the

current work.

4
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Chapter 2

Dendritic Morphology and

Electro-physiology
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2.1 Dendritic trees

The term dendrite, coined by Wilhelm His in 1889 [Finger, 2001], like neuron, origins

from Greek, which literally means a tree, or a tree-like form [Hoad, 1993]. Scien-

tists have been fascinated by these complex structures since the exemplary work

of Ramón y Cajal [1891], and the classification of neurons in accordance with their

distinct morphologies is one of the most common and conventional perspectives, e.g.

pyramidal neurons (see Fig. 2.1 for more examples).

Such anatomical varieties can directly lead to functional differences. Simulations

have shown that, with identical ion channel types and distributions, different mor-

Figure 2.1: Neurons have distinct morphologies. (A) Cat motoneuron. (B) Locust
mesothoracic ganglion spiking neuron. (C) Rat neocortical layer 5 pyramidal neuron.
(D) Cat retinal ganglion neuron. (E) Salamander retinal amacrine neuron. (F)
Human cerebellar Purkinje neuron. (G) Rat thalamic relay neuron. (H) Mouse
olfactory granule neuron. (I) Rat striatal spiny projection neuron. (J) Human
nucleus of Burdach neuron. (K) Fish Purkinje neuron. Modified from Mel [1994]
[Stuart et al., 2016].

6
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phologies present distinct signal propagation and firing patterns (see Fig. 2.2) [Vet-

ter et al., 2001; Mainen and Sejnowski, 1996].

However, due to the natural heterogeneous distributions of ion channels on den-

drites (and axons) [Lai and Jan, 2006], it is difficult to perform experiments with

the distributions as control variables on neurons of different morphologies. Thus,

in order to deepen our understanding of neuronal functions in practice, theoretical

analysis, as this thesis addresses, shall help shed light on the functional properties

of dendritic trees.

2.1.1 Reconstructions

To obtain the morphological model of a real neuron, neuron tracing, or digital neuron

reconstruction, is one of the most fundamental tasks in (particularly computational)

neuroscience [Ascoli, 2002], as these neuron reconstructions can be used for simula-

tions to study neuronal electro-physiological behaviours.

Glaser and Van der Loos [1965] is one of the very first attempts on automation

in neuron tracing. They used computers to interact with the microscope and to

store point coordinates, which were manually indicated by a human operator. In

spite of many attempts to reduce the amount of human labour [Capowski and Sedi-

vec, 1981; Ford-Holevinski et al., 1986], neuron tracing had remained as a difficult

problem (see Fig. 2.3) [Capowski, 1983, 2012] until recent years, since the fields of

computer science and computer vision have advanced tremendously over the past

half century [Meijering, 2010].

Instead of directly recording neuronal morphologies by some automatic process,

nowadays it is preferred to acquire the entire image data first. They are initially re-

fined by several image preprocessing techniques so that segmentation methods could

be effectively applied. Segmenting usually starts with identifying soma, especially

in the case where multiple neurons are present, neurites are the next to be tracked,

and finally spines are detected [Meijering, 2010]. The processing order is not only

heuristic but also insightful, because a successive step can utilise or even rely on the

results of its proceeding steps. After measuring parameters for all segments identi-

fied, automatic tracing is thus complete but proof-editing is needed, since structural

errors in reconstructions could potentially consume researchers more time to find

out than conducting manual tracing [Peng et al., 2011].

One may thereby run realistic simulations on such neuron reconstructions (e.g. Fig.

2.4) [Coombes et al., 2007], or perform experiments that are nearly impossible in

reality but insightful in theory [Mainen and Sejnowski, 1996; Vetter et al., 2001].

For scientists or projects that are not directly working with neuron tracing, there

7
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Figure 2.2: Different morphologies with identical ion channel types and distribu-
tions have distinct responses. (A) - (C): Backpropagation (from soma) and forward
propogation (from location at →) of action potentials. (a) - (d): Firing patterns
evoked by somatic current injection. All neurons are two-dimensional projections
of three-dimensional digital reconstructions from rat brains. (A) Substantia nigra
dopamine neuron. (B) Neocortical layer 5 pyramidal cell. (C) Cerebellar Purkinje
cell. (a) Layer 3 aspiny stellate. (b) Layer 4 spiny stellate. (c) Layer 3 pyramid.
(d) Layer 5 pyramid. (A) - (C) modified from Vetter et al. [2001] and (a) - (d) from
Mainen and Sejnowski [1996].

8
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Figure 2.3: The multiscale nature of a dendritic treem: (A) from the level of a
individual neuron, (B) through the level of dendritic branches and bifurcations, (C)
to the level of individual spines. While this is a fairly high-quality data set, several
branches are still poorly stained in (A) and spines in (C) are usually poorly imaged
due to the limited resolution and can be further blurred by noises, in particular in
live-cell imaging experiments, thereby causing visual ambiguities and enhancing the
complexity of the problem [Meijering, 2010].

are online databases where neuron reconstructions are available for use, e.g. Neuro-

morpho.org [Ascoli et al., 2007].

As these three-dimensional models preserves the most comprehensive morphologi-

cal information, simulations on them are computationally expensive and theoretical

analysis becomes extremely difficult. Thus, there are very few but grand projects,

e.g. the Blue Brain Project [Markram, 2006], that does simulate a ‘large’ network

with such biologically detailed neurons, in the hope of shedding light on biological

consciousness and intelligence. Whereas the Blue Brain Project project was running

on some of the most powerful computers in the world, it had by 2011 simulated a

network of 106 neurons, only a tiny fraction of an average human brain that consists

of 1011 neurons.

2.1.2 Weighted graphs

In order to draw theoretical insights and to save computational expenses, recon-

structed neurons (e.g. Fig. 2.4) can often be simplified as multi-compartment

9
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Figure 2.4: A reconstructed neuron from a rat CA1 hippocampal pyramidal cell.
The reconstruction consists of 396 branches and a soma and is compartmentalised
into 3961 cylindrical segments. Modified from [Coombes et al., 2007].

models that are virtually spanning in a two-dimensional plane (see Fig. 2.5).

To study such simplified models is practical and reasonable, not only because we

can obtain useful results given our limited computational power, but essentially due

to the motility of dendritic spines, which elucidates the fact that a dendritic tree

is constantly changing its shape [Bonhoeffer and Yuste, 2002]. Hence, we cannot

acquire ‘perfect’ details of dendritic morphology by simply increasing imaging res-

olution or reconstruction accuracy. In addition, fixed dendritic spines are not too

bad an assumption (for reasons see §2.2.3).

While schematic diagrams appear more often in theoretical works, a dendrogram is

conventionally used to represent reconstructed neurons, which is firstly introduced

by Sholl [1953] and thus known as a Sholl diagram as well (see Fig. 2.6).

Either way, a neuron is considered to be a weighted graph whose nodes are soma and

branching points, connected by edges representing dendritic segments. Since such

models satisfy the mathematical definition of a graph, or more specifically, a tree,

one may apply graph theoretical techniques in investigating dendritic morphologies

[Cherniak et al., 1999; Cuntz et al., 2007].

Since we can easily control the complexity of such a model by modifying its graph

structure, representing the dendritic morphology, and parameters of nodes and

edges, encoding electro-physiological properties, our invetigation will be focused

on these models.

2.1.3 Point neurons

The most simplified morphology is no morphology, that is, representing a neuron

by a single point. We can consider it as the most extremly reduced compartmental

10
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Figure 2.5: Schematic diagrams of compartmental models of the same pyramidal cell
as in Fig. 2.4 (up to rotation) on different levels of morphological simplification, from
397 compartments (leftmost), down to 26, 4, and only 1 compartment (rightmost).
Note that the soma (represented by a disc) in each model here is an isopotential
compartment, which is not necessarily the case, e.g. the soma of the reconstruction
in Fig. 2.4 consists of 3 segments.

model with only one compartment (see Fig. 2.5) or an isopotential neuron whose

dendrites and axons are funtioning with instant signal propagation, communicating

with other point neurons via metaphysical synapses.

Such models are useful in studying the fundamental electro-physiological models,

e.g. Hodgkin-Huxley model and Integrate-and-fire model (see §2.2.2), but eclucide

no insights for us since dendrites virtually do not exist. Nevertheless, we can implant

the same models into dendritic trees (see §2.3).

Furthermore, it has become applicable, efficient and powerful in artificial neural

networks, since the groundbreaking work of McCulloch and Pitts [1943], especially

in the recent decade, e.g. the digitalisation and automation of neural tracing have

largely benefited from the field of machine learning, as mentioned in §2.1.1.

11
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Figure 2.6: Dendrogram of the same pyramidal cell as in Fig. 2.4. Each horizontal
segment represents a dendritic segment with its physical length and each vertical
segment is correspondent to a branching point. Generated in NEURON [Carnevale
and Hines, 2006].

2.2 Membrane potentials

Neurons are equipped with these branching structures so that they can directly

communicate with more and distal cells, comparing to other types of cells. The

communication is mainly excuted by action potentials, or spikes, which are essen-

tially fast and notable changes of membrane potentials (e.g. Fig. 2.2a-d). The

seemingly ’all-or-none’ property of neuronal activities inspired McCulloch and Pitts

[1943] to apply propositional logic in the study of neural networks, and thus an

artificial neuron could be modelled by only two states, firing (occurence of spikes)

and resting.

Nonetheless, membrane potentials in real neurons are not binary but continuous.
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At equilibrium, they are maintained at approximately −70 mV. When a neuron is

hyper- or de-polarised, the electrical change propogates along the neurites, and if the

change is large enough (about +15 mV) a spike could occur, which causes the mem-

brane potentials to rise rapidly by around 100 mV, following by an undershooting

drop to approximately −90 mV in a short time (about 1 ms).

2.2.1 Electrical circuits

Cell membranes separates intracellular plasma from the extracellular environment

in order to maintain homeostasis. Neuronal membranes, in particular, modulate

the flows of charged ions selectively by its pore-forming membrane proteins, so that

there are differences in ionic densities at the two sides of membrane, which create

the membrane potentials.

Before investigating membrane potentials on a neuron with morphology, here we as-

sume an isopotential neuron so that it is easier to study the basic electro-physiology.

From now on, we start to build quantative models based on the analogy of electrical

circuits (see Fig. 2.7) and thus adopt the notations and terms from control theory

(see §?? for the complete list).

Capacitors: lipid bilayer

The cell membrane is a lipid bilayer, which prevents ions at the both sides moving

freely. Hence, it behaves as a capacitor, that is, it can be charged up by an injec-

tion of a current Im (generally varying with respect to time t) into the plasma, or

mathematically,

Im(t) = CmAm
∂V

∂t
, (2.1)

where Cm is the capacitance per unit area, Am is the surface area of the membrane,

and the membrane potential V is the difference between extra- and intra-cellular

potentials. Note that extra-cellular potentials are often assumed zero, which makes

intra-cellular potentials equal to membrane potentials.

Resistors: leakage channels

However, the lipid bilayer of the cell membrane is not perfectly dielectric, and at

the same time there are leakage ion channels that allow selective ionic species to

travel across the membrane. Together they permit the leakage current, which can

be written as,

Il(t) =
∑
k

gkl Am(V − Ekl ), (2.2)
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Figure 2.7: A circuit diagram of a general conductance-based model. The membrane
potential V is the voltage difference between the intra- and extra-cellular potentials,
which is measured at the lipid bilayer, represented by a capacitor. The membrane
leakage is analogous to the series circuit of a resistor gl and a battery El, and
a voltage-gated ion channel is the series circuit of a non-linear voltage-dependent
conductor and a battery Ekg . If the ionic species of k are not of a single type, we can
extend the model by adding similar series of conductors and batteries as parrallel
circuits onto the circuit diagram.

where gkl is the leakage conductance per unit area and Ekl is the reversal potential

of ionic species k. Note that actually most of leakage channels behave as rectifiers,

that is, they conduct better in one fixed direction than the other, since membrane

potentials are negative for most of the time, it is convenient to assume the leakage

channels as resistors.

Since both gkl and Ekl are constants predetermined by the ionic species k, we can

therefore rewrite the leakage current in a simpler form,

Il(t) = glAm(V − El), (2.3)

where

gl =
∑
k

gkl ,
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is the total leakage conductance per unit area, and

El =

∑
k g

k
l E

k
l

gl
,

is the passive resting potential.

If the membrane potential of a point neuron is only determined by the currents (2.1)

and (2.3), the neuron is purely passive. It is equivalent to a resistor-capacitor (RC)

circuit, whose voltage is proportional to an exponential-filtered input current.

Non-linear conductors: voltage-gated channels

The other class of ion channels that contribute more to the non-linear behaviour of

neurons are voltage-gated ion channels. They are generally described by,

Ig(t) =
∑
k

gkmaxw
k(V )Am(V − Ekg ), (2.4)

where, for each ionic species k, gkmax is the maximal active conductance per unit

area, Ekg is the reversal potential, and the gating variables wk ∈ [0, 1] gives the

fractions of channels that are open. Since wk is non-linearly dependent on V , these

channels are modelled as non-linear conductors.

Combining Eqs. (2.1), (2.3) and (2.4) we obtain a general conductance-based model,

as resistors are simply linear conductors. Due to the non-linearity, the model is gen-

erally not analytically solvable, especially when many ionic species are considered.

We therefore focus our model only in the sub-threshold regime and instead implant

active properties as threshold behaviours to compensate the removal of non-linear

ion channels. More details on models of spiking neurons will be discussed in §2.2.2.

Nonetheless, within the subthreshold regime, the effects of voltage-gated ion chan-

nels are still important. For instance, many neurons are equipped with the Ih cur-

rent, a hyperpoloarisation-activated depolarising current, that protect them from

too strong hyperpolarisations. The Ih channels can be modelled as inductors, that

is,
Lres
Am

∂Ih
∂t

= −rres
Am

Ih + (V − El), (2.5)

where Lres is the inductance and rres the resistance per unit area. The neuron de-

termined by Eqs. (2.1), (2.3) and (2.5) is analogous to an resistor-inductor-capacitor

(RLC) circuit, which is therefore called resonant.

An alternative approach to obtain Eq. (2.5) is by linearising Eq. (2.4) near El and,

since it is reduced from a truly active, i.e. non-linear, system, it is also termed as
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quasi-active [Koch, 1984; Coombes et al., 2007]. This approach gives a sum of many

quasi-active currents in the same form as Eq. (2.5) but the entire entire system be-

comes linear in V . Hence, even though the number of partial differential equations

has not be decreased, the entire system becomes considerably easier and analytically

solvable in the frequency domain (see §3.1.2).

Batteries: reversal potentials

Here we identify the reversal potentials in Eqs. (2.2) and (2.4) as the equivalence of

batteries in the electrical circuit. A reversal potential of an ionic species is defined

to be the membrane potential at which the net flow across membrane is zero. It can

be derived directly from the definition and is explicitly given by the famous Nernst

equation,

E =
kBT

zq
log

(
N e

N i

)
,

where kB the thermal energy in Joules per ion, T the body temperature in Kelvins

and q the charge of an electron in Coulomb are constants [Richardson]. As z the

algebraic charge and N e, N i the external and internal densities are completely pre-

determined by the intrinsic properties of the ion, Ek is specific for the ionic species

k and thus we assume it constant from the beginning of our models.

2.2.2 Spiking neurons

When the membrane potential reaches −55 to −50 mV, a typical neuron will fire

an action potential [Dayan and Abbott, 2001]. The mechanisms can be explained

by Eq. (2.4) with certain non-linear conductors (not linearisable). Nonetheless, the

change in voltage is so rapid during a short time, that we may want to model the

two states independently. Both the approaches are well known in the neuroscience

community, but we prefer the second one due to its mathematical solvability.

Conductance-based models

The most famous conductance-based model of spiking neurons is the Nobel Prize

winning Hodgkin-Huxley model, which was first presented in Hodgkin and Huxley

[1952] to explain the initiation and propagation of action potentials in the squid

giant axon.
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There are two non-linear ion currents explicitly considered,

INa = ḡNam
3h(V − ENa), (2.6)

IK = ḡKn
4(V − EK), (2.7)

where ḡk = gkmaxAm is the maximal conductance for ionic species k ∈ {K,Na}
(potassium and sodium), and n,m, h ∈ [0, 1] are gating variables for the activation

of potassium channels, fast activation and slow inactivation of sodium channels,

respectively.

Note that there are two gating variables for the sodium current in the model and in

general we could consider, for each ion species k,

wk(V ) =
∏
i

nαii ,

where ni ∈ [0, 1] models the ion channel activites of different time scales in response

to V , and αi > 0 is usually obtained by fitting model with experimental data.

The Hodgkin-Huxley model has so many dependent variables and non-linear inter-

actions that it is impossible to study analytically. Nonethelss, it can be reduced to

the Fitzhugh-Nagumo model by certain assumptions and simplifications [Gerstner

and Kistler, 2002]. The reduced model has only two dependent variables, and hence

becomes easier to analyse mathematically and to simulate computationally.

Integrate-and-fire models

Instead of a continuous model, Integrate-and-fire (IF) models describe the two states

of a neuron, firing and resting, independently by specifying the threshold voltage Vth,

e.g. −55 mV. When the membrane potential eventually ‘integrates’ to Vth, it ‘fires’

an action potential and resets its value to Vre. Whereas IF models are mathematical

idealisations and thus lack of biological details, they are useful because they are

analytically solvable, even in cases of stochastic inputs, and therefore they have been

widely used in analysis of emergent properties of neuronal circuits [Richardson].

Here we introduce the leaky IF model, whose subthreshold behavior is described

simply by the passive membrane (2.1) and the leakage current (2.3), that is,

τ
∂V

∂t
= El − V +

I0

gl
, (2.8)

where

τ =
C

gl
. (2.9)
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In addition, once V ≥ Vth, a spike arises and the voltage is instantly reset to Vre.

For a constant I0, if the right hand side of Eq. (2.8) is negative, the system has

an equilibrium potential at E0 = El + I0/gl but is excitable by additional inputs.

Otherwise, the potential keeps increasing but always reaches Vth before the equilib-

rium, that is, the neuron spontaneously fires, and the system becomes a non-linear

oscillator.

Without loss of generality, we may choose V (0) = Vre and write down the solution

to Eq. (2.8) as

V (t) = E0 + (Vre − E0)e−t/τ , (2.10)

which gives the duration for the potential to reach the threshold by V (T ) = Vth,

explicitly,

T = τ ln

(
E0 − Vre

E0 − Vth

)
. (2.11)

Since T is exactly the period of the oscillator, the firing rate can be easily found as

T−1.

To generalise this simple model, one could add non-linear currents (2.4) (or linearised

ones) into Eq. (2.8), or define the spiking behaviour by some function hs instead

of the instant reset. The modifications of the subthreshold behaviour of the neuron

(2.8) determines the solvability of the system and is to be discussed in §2.3.1.

The definition of hs(t − ts) for t ∈ (tis + Ts] is to manually describe the potential

variation during the i-th spike occuring at tis with the spiking voltage profile specified

by hs and Ts the duration of the spike. After the spike, the system switches back

to the subthreshold behaviour with effective reset potential Vre = hs(Ts).

It is straightforward to see that the original leaky IF model with the instant reset is

a simplification of the new model with the limit Ts → 0, and the new oscillator has

a period of T + Ts, which implies the new neuron has a firing rate of (T + Ts)
−1.

Whereas the definition of hs is, if not too, trivial, it becomes quite important and

useful when we consider neurons with spatial extent, which is the main content of

this thesis. Schwemmer and Lewis [2012] implants such extensions of the leaky IF

model into the model of a soma and a single dendrite, and studies the dendritic

influence on the firing patterns.

Since the soma is attached to one end of the dendrite, there is always a boundary

condition for the dendritic membrane potential at this end that enforces it to be

same as the somatic potential (i.e. the continuity of voltage, see §2.3.2). Hence, it

would be problematic if the somatic potential became discontinuous in time due to

the instant reset.

A less realitic but mathematically simpler modification is the quadratic IF model,
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taking the canonical form as,

dV

dt
= qV 2 + I0, (2.12)

for q > 0. As it allows the voltage reaches infinity within finite time, it is reset

to −∞ from +∞, which could produce oscillations and appear to release spikes

[Gerstner and Kistler, 2002].

The neuron is excitable for negative I0, but fires spontaneously only in the case of

positive I0. The model can be rewritten as

dθ

dt
= q(1− cos θ) + I0(1 + cos θ), (2.13)

by the transformation,

V = tan

(
θ

2

)
. (2.14)

As the infinities can be avoided after the transformation and the solutions are ana-

lytically accessible, such neuron is used as a basic unit in building neuronal networks,

which makes it more consistent and convenient to analyse the effects of microscopic

variables on emergent properties of large networks [Latham et al., 2000; Coombes

and Byrne, 2016].

2.2.3 Synaptic activities

A synapse is a structure of physiological connection between cells in the nervous

system. They are essential because they are the means by which neurons transmit

electrical signals from one to another. A typical neuron have several thousand

synapses, and they mostly connect axons to dendrites. Synapses can be classified

into two fundamentally different types, chemical and electrical.

Chemical synapses

At a chemical synapse, the pre-synaptic neuron releases neurotransmitters (typi-

cally due to an action potential) from synaptic vesicles into the synaptic cleft, and

immediate opposite are the neurotransimitter receptors of the post-synaptic cell.

Depending on whether the synapse is excitatory or inhibitory, the post-synaptic cell

will produce two different types of transmembrane currents that result in either de-

polarisation, i.e. excitatory post-syaptic current (EPSC), or hyperpolarisation, i.e.

inhibitory post-syaptic current (IPSC).
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A common and convenient mathematical model of an EPSC is the alpha function,

IEPSC(t) = A0te
−B0t, (2.15)

for t = 0 the time the post-synaptic neuron starts to depolarise. The function

reaches the maximum value of A0(B0e)
−1 at time t = B−1

0 .

Many chemical synapses can be found on dendritic spines, which are extensions on

dendrites that directly touch pre-synaptic axons. Whereas S. Ramón y Cajal antic-

ipated the movements of dendritic spines after discovering them, and recent works

have verified the fact, they were conventionally considered stable [Bonhoeffer and

Yuste, 2002]. In fact, their rapid mophological changes (from seconds to minutes)

are still much slower than typical electro-physiological processes (milliseconds), and

hence it is quite safe to assume that the dendritic spines are fixed. Furthermore,

the size of a typical spine is much smaller than any dendritic branch (see Fig. 2.3)

and thus the morphological changes could have little global effects.

As spines are closely related to action potentials, the classical models of spiking neu-

rons introduced in Section 2.2.2 are applicable to them. For the spine head which

is equipped with active properties, Baer and Rinzel [1991] assumes Hodgkin-Huxley

dynamics and later Bressloff and Coombes [2000] simplifies it with the IF model,

while they both treat the spine neck as a passive conductor that follows Ohm’s law.

Electrical synapses

An electrical synapse, also known as a gap junction, is a mechanical coupling be-

tween adjacent neurons that permits direct ion flows between them. Having been

first discovered at the giant motor synapses of the crayfish in the late 1950s, gap

junctions are now known to be expressed in the majority of cell types in the brain

[Söhl et al., 2005; Dere, 2012].

Unlike chemical synapses, since there is no biochemical process undergoing during

the signal transmission between the coupled neurons, gap junctions are faster and

metabolically cheaper in passing signals. In addition, there is no orientation prefer-

ence in the ion flows and thus signals can propagate in either the direction.

We thereby consider a gap junction as a resistor whose conductance is gGJ = R−1
GJ

[Timofeeva et al., 2013]. This simple model is able to reflect the observations that

the post-synaptic neuron always receives a signal smaller in amplitude than the

source from the pre-synaptic neuron, and that there is almost no time delay in

signal transmission.
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Hebbian learning

The strength of a synapse varies based on its activities, which is known as the

synaptic plasticity. Synaptic plasticity is believe to be one of the most basic adap-

tation processes occuring in the nervous system, that ultimately enables learning

behaviours of any creature with a nervous system [Dayan and Abbott, 2001].

Hebbian theory [Hebb, 2005] offers the most well-known explanation for synaptic

plasticity, which is often summarised roughly as ‘cells that fire together wire to-

gether ’, and its idea is also widely used in artifical neural networks, e.g. the Hopfield

model [Hopfield, 1982].

Whereas the generalised Hebb’s rule used in artificial neural networks is often as

simple as a bilinear form in the activities of the pre- and post-synaptic neurons, that

is,

∆wij = ηxixj ,

in which xi and xj are the activities of neuron i, j, ∆wij is the change in the synaptic

strength between them, and η is the learning rate, the biological version, known as

spike-timing dependent plasticity (STDP), is asymmetric and non-linear (see Fig.

2.8), which reveals the importance of temporal precedence in spikes.

Note these learning rules are mainly concerned with chemical synapses and the

funtion of STDP could in particular imply the casuality between spikes in pre- and

post-synaptic neurons as the signal propagation is uni-directional. The strength of

electrical synapses are often difficult to measure experimentally and had been poorly

investigated until recently Turecek et al. [2014] found a mechanism of coupling

enhancement at the inferior olive electrical synapse.

2.3 Cable theory

The dendritic electro-physiology started to be revealed via intracellular recordings

by using sharp micropipette electrodes in experiments, and was thoroughly stud-

ied theoretically by Wilfrid Rall, whose significant contribution to the topic is well

summarised in the book of Segev et al. [1995].

The aim of dendritic cable theory is to study the electro-physiology on a potentially

complex dendritic morphology, and the approach is to extend the models for an

isopotential neuron (see §2.2.1) onto a weighted graph (see §2.1.2).

It is ideal to build electro-physiological models in a three-dimensional space, be-

cause ’any other approach risks excluding important features of the three-dimensional

structure or incorporating three-dimensional features incorrectly ’ [Lindsay et al.,
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Figure 2.8: Spike-timing dependent plasticity: the normalised change of synaptic
strength as a function of the timing difference between the pre- and postsynaptic
spikes, where wij is the synaptic strength between neuron i, j, ∆wij is its change,
and ti and tj are the spiking times of the two cells, respectively. Modified from Bi
and Poo [2001].

2004]. Nonetheless, the standard cable equation is one-dimensional in space, since

all radial currents are assumed to be transmembrane, which is justified by the fact

that the diameter of a typical neurite is considerably small comparing to its length

[Rall, 1969].

2.3.1 Cable equations

Here we first derive the general cable equation of a single dendritic branch with

continuously varying radius r(x), into which an input current Iin(x; t) is applied.

It is then easy to obtain the classical standard cable equation and other simplified

models.

General cable equation

To begin with, we work on a little section of the dendritic branch from x to x+ ∆.

By Kirchhoff’s current law (the conservation of electrical currents at a point), we
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have

Im(x) + Il(x) + Ig(x) + I(x+ ∆) + Iin(x+ ∆) = I(x) + Iin(x), (2.16)

where I(x) is the axial current flowing into the section and I(x+ ∆) flowing out.

By substituting Eqs. (2.1), (2.3) and (2.4) in Eq. (2.16) and some rearrangments,

we have

Cm
∂V

∂t
+gl(V −El)+

∑
k

gkmaxw
k(V −Ekg ) =

I(x)− I(x+ ∆) + Iin(x)− Iin(x+ ∆)

Am(x, x+ ∆)
,

(2.17)

where the surface area of the section is

Am(x, x+ ∆) = 2π

∫ x+∆

x
ρ(s)ds, (2.18)

with

ρ(s) = r(s)
√

1 + (r′(s))2, (2.19)

as we assume the cross-sectional area is always perfectly round.

Only the right hand side of Eq. (2.17) depends on ∆ and thus by taking the limit

∆ ↓ 0, it becomes,

− [I(x+ ∆)− I(x) + Iin(x+ ∆)− Iin(x)]/∆

Am(x, x+ ∆)/∆
= −∂I/∂x+ ∂Iin/∂x

2πρ(x)
. (2.20)

If the input current of a total strength of Iinj is injected only into the section from

y to y + ∆, given the same limit ∆ ↓ 0, we have

∂Iin
∂x

∣∣∣∣
y+

= −Iinjδ(x− y), (2.21)

where δ(x) is the Dirac delta function. Note that, without loss of generality, from

now on we assume all input currents are point processes as we can always easily

recover the results for a region of input by integrating the input region.

At the same time, we can compute the axial current I(x) flowing through the section.

As we know V (x) and V (x+ ∆) at the respective ends, by Ohm’s Law, we have

V (x+ ∆)− V (x) = −IR, (2.22)

where

R =
Ra∆

2∫ x+∆
x Ac(s)ds

, (2.23)
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for Ra the axial resistivity and Ac(x) = πr2(x) the cross-sectional area. By simple

arithmetics, it follows from the above equations that

I = −
∫ x+∆
x Ac(s)ds

Ra∆

V (x+ ∆)− V (x)

∆
,

and again with the limit ∆ ↓ 0, we obtain

I(x) = − 1

ra

∂V

∂x
, (2.24)

where

ra(x) =
Ra
Ac(x)

, (2.25)

which gives
∂I

∂x
= − π

Ra

∂

∂x

[
r2(x)

∂V

∂x

]
. (2.26)

The general cable equation of a radius-varying dendrite with non-linear channels are

obtained by substituing Eqs. (2.21) and (2.26) in Eq. (2.20), that is,

Cm
∂V

∂t
= −gl(V −El)−

∑
k

gkmaxw
k(V −Ekg )+

1

2Raρ(x)

∂

∂x

[
r2(x)

∂V

∂x

]
+I0, (2.27)

where

I0 =
Iinjδ(x− y)

2πρ(x)
, (2.28)

could be considered as the driven force in Eq. (2.27). Note that I0 is completely

determined by y and Iinj, because δ(x− y) = 0 unless x = y.

Simplified cable equations

As most of the voltage-gated channels are non-linear, Eq. (2.27) is generally impos-

sible to solve analytically. Nonetheless, in the subthreshold regime, they could be

linearised and the Ih channel is a main representative (see §2.2.1). Substituting the

non-linear currents in Eq. (2.27) by the Ih current following Eq. (2.5), we obtain

the quasi-active (resonant) cable equation with tapering,

C
∂V

∂t
= −glV − Ih +

1

2Raρ(x)

∂

∂x

[
r2(x)

∂V

∂x

]
+ I0, (2.29a)

Lres
∂Ih
∂t

= −rresIh + V. (2.29b)
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Note that, without loss of generality, from now on we measure the membrane poten-

tial from El and use C instead of Cm as the membrane capacitance per unit unless

otherwise specified.

A further simplification is to remove the Ih current from the model, which can

be experimentally performed by toxinating the Ih channels, and is mathematically

equivalent to take the limit rres → ∞. The passive cable equation with tapering is

thus obtained,

C
∂V

∂t
= −glV +

1

2Raρ(x)

∂

∂x

[
r2(x)

∂V

∂x

]
+ I0 (2.30)

An alternative simplification of Eq. (2.29) is to assume constant dendritic radius

r(x) = rc while keeping the Ih current in the model, which gives the resonant cable

equation with cylinder,

C
∂V

∂t
= −glV − Ih +

rc
2Ra

∂2V

∂x2
+ I0, (2.31a)

Lres
∂Ih
∂t

= −rresIh + V. (2.31b)

If we reduce the model with both simplifications, we arrive at the passive cable

equation with cylinder, i.e. the classical standard cable equation,

C
∂V

∂t
= −glV +

rc
2Ra

∂2V

∂x2
+ I0, (2.32)

or, in a more well known form,

τ
∂V

∂t
= −V + λ2∂

2V

∂x2
+
I0

gl
, (2.33)

by identifying

τ =
C

gl
, (2.34)

λ2 =
rc

2glRa
. (2.35)

Note that the tapering cable equations (2.29) and (2.30) work for general radius-

varying dendrites as clearly shown in the derivation. We have chosen the term

‘tapering’, because the tapered dendrites are to be investigated in more details. In

addition, this thesis mainly studies Eq. (2.29) and its simplifications due to their

mathematical solvability within the subthreshold regime, while spikes are considered

as somatic current inputs which can be added back into the system via I0.

25

PREPRIN
T



0 100 200 300
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 100 200 300

0

0.1

0.2

0.3 B

cu
rr

en
t (

nA
)

C

0 100 200 300

0

0.5

1 A

times (ms)

Figure 2.9: Current profiles of three types of inputs with A0 = 0.2 nA. (A) An
EPSC modelled by an alpha function, with B0 = 0.1. (B) A rectangle input. (C)
A chirp current with ωchirp = 0.003 kHz.

Input currents

An input current can be caused due to synaptic activities, or directly from exper-

imental injection. Either the case is considered a point process with the location

specified by δ(x − y). The duration and strength of the input is determined by

Iinj(t), which is assumed zero for t < 0.

If I0 = 0, Eqs. (2.29) - (2.32) are homogeneous differential equations. Since they are

all linear, the solutions to the corresponding heterogenous equations with different

I0 6= 0 are additive. It is hence possible to generalise the input from a point process

to a field. Nonetheless, in this thesis we consider inputs only as point processes.

The current profiles of Iinj can vary from cell to cell due to heterogeneous synaptic

activities, or from case to case under different experimental protocols. For simplic-

ity, an EPSC is often modelled by the alpha function (2.15) (see Fig. 2.9A) [Rall,

1967; Jack et al., 1975; Kubota et al., 2011; Coombes and Byrne, 2016].

In addition, we also consider a rectangle input and a chirp current (see Fig. 2.9B,C)

in this thesis, because they are widely utilised in experiments to investigate, respec-

tively, the asymptotic and oscillating behaviours of electrical systems.

The rectangle input is described by

Irect(t) = A0H(t− t0)H(t1 − t), (2.36)

where A0 is the strength of the current, H(t) is the Heaviside function, and t0, t1

are the starting and finishiing times respectively. For simplicity, we consider t0 = 0

so t1 is then the duration of the injection. If the finishing time t1 → ∞, the input

becomes a step current. A step current drives a neuron to some new equilibrium

voltage, which allows us to compute input and tranfer impedances (see §3.3.3) and
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Figure 2.10: Amplitude in the Fourier frequency domain of the chirp current in Fig.
2.9B.

is thus usually a primary indicator of signal attenuation on dendrites.

The chirp current is defined as

Ichirp(t) = A0 sin
(
ωchirpt

2
)
, (2.37)

whose instantaneous frequency can be found as

f(t) =
1

2π

d

dt

(
ωchirpt

2
)

=
ωchirp

π
t, (2.38)

where ωchirp/π is the rate of frequency, i.e. chirpyness. As the frequency is vayring

linearly in time, Eq. (2.37) defines a linear chirp.

Since the amplitudes of the response in the Fourier domain are almost constant for

a wide range of frequencies (see Fig. 2.10), that is, the power spectrum of the chirp

input is similar to that of a Dirac delta impulse, the envelope of the correspondent

oscillating response in time domain will roughly trace the Green’s function (which

is by nature the response of a Dirac delta input). Therefore, such chirp inputs are

useful in experiments to characterise resonant systems.

Note that, however, the phases of a chirp input and a Dirac delta impulse are
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different, and thus the chirp responses cannot provide an accurate experimental

measurement of the Green’s function.

2.3.2 Boundary conditions

Four types of boundary conditions in a neuronal network (see Fig. 2.11) are consid-

ered in the thesis. They are all determined by two physical contraints, the Kirch-

hoff’s current law and the continuity of membrane potentials.

Note that it is only for the simplicity of expression that in this section we change

the spatial coordinate case by case so that the point under investigation is at the

location x = 0, while it is common to fix the coordinate when studying a particular

model.

Terminals

We call the end of a dendritc branch a terminal. It is assumed to be either open or

closed.

If a terminal is open, we have

V (0; t) = 0, (2.39)

which corresponds to the situation where the dendritic branch is cut off at x = 0

and thus there is no barrier for ions to move freely into or out from the neuron.

We mostly assume the terminal of a natural dendritic branch is closed, though, that

is, there are no axial currents at x = 0,

∂V

∂x
(0; t) = 0. (2.40)

Branching points

Assume there are N dendritic branches radiating from the point under investigation.

Two conditions are required for axial currents and membrane potentials, respectively

N∑
i=1

1

ra,i(0)

∂Vi
∂x

(0; t) = 0, (2.41)

Vi(0; t) = Vj(0; t), (2.42)

for i, j ∈ {1, 2, 3, . . . , N} indexing the different branches.
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Figure 2.11: A schematic of a network of two neurons connected by a gap junction.

Somata

A soma is treated is an isopotential sphere that is mathematically equivalent to the

model of a point neuron as in §2.2.1. Similarly we model its active properties as

threshold behaviors in §2.2.2, and therefore we use the resonant model, explicitly,

CS
∂VS
∂t

= gS(VS − El) +
N∑
i=1

1

ra,i(0)

∂Vi
∂x

(0; t)− IS , (2.43a)

LS
∂IS
∂t

= −rSIS + (VS − El), (2.43b)

where VS is the somatic membrane potential, IS the somatic resonant current, CS =

CsomaAsoma, gS = gsomaAsoma, LS = Lsoma/Asoma, rS = rsoma/Asoma the parameters

as in an LRC circuit of the soma, and Vi is the membrane potential of the dendritic

branch i radiating from the soma for i ∈ {1, 2, 3, . . . , N}.
In addition to the conservation of current, we again need the continuity of membrane

potentials, that is,

VS(t) = Vi(0; t). (2.44)
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Gap junctions

A gap junction is modelled by a resistor whose conductance is gGJ = R−1
GJ (see

§2.2.3), that is, it follows Ohm’s law,

1

ra,m

[
∂Vm−

∂x
(0; t) +

∂Vm+

∂x
(0; t)

]
= gGJ(Vm−(0; t)− Vn−(0; t)), (2.45a)

1

ra,n

[
∂Vn−

∂x
(0; t) +

∂Vn+

∂x
(0; t)

]
= gGJ(Vn−(0; t)− Vm−(0; t)), (2.45b)

where m− and m+ (n− and n+) are the two segments of dendritic branch m (branch

n) before and after the gap junction.

At the same time, the membrane potentials are continuous on the same branches,

that is,

Vm−(0; t) = Vm+(0; t), (2.46a)

Vn−(0; t) = Vn+(0; t). (2.46b)

2.3.3 Green’s functions

In order to obtain the solution of the cable equations, a classical approach is to

solve them with the input currents I0 as if they are boundary conditions. For

instance, Eq. (2.32) is simply a one-dimensional heat equation, which can be solved

analytically without I0 by separation of variables, and plugging I0 back into the

system afterwards.

Since the resonant cable equation with tapering (2.29) and its simplifications are all

diffusion equations, that are linear differential equations, the approach of Green’s

functions is taken as the kernel of a simple diffusion equation is known.

A Green’s function is defined as,

LG(x̄, ȳ) = δ(ȳ − x̄), (2.47)

where L is a linear differential operator and δ is the Dirac-delta function. It is thus

exploited to solve inhomogeneous linear differential equations of the form,

Lu(x̄) = f(x̄),

for x̄, ȳ ∈ Rn, because we can directly write down the solution as

u(x̄) =

∫
G(x̄, ȳ)f(ȳ)dȳ, (2.48)
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or simply,

u = G ∗ f, (2.49)

where ∗ represents the convolution of the two functions.

A chain of convolutions

Assume L = L1L2 and G1, G2 are the Green’s functions of L1, L2 respectively. By

applying Eq. (2.49) twice with respect to L1, L2 in order,

u = G2 ∗G1 ∗ f, (2.50)

and, if G is the Green’s function of L, we obtain

G = G2 ∗G1, (2.51)

or explicitly,

G(x̄, ȳ) =

∫
G2(x̄, z̄)G1(z̄, ȳ)dz̄. (2.52)

By mathematical induction, the corollary of a chain of convolution follows,

G = GN ∗GN−1 ∗ · · · ∗G2 ∗G1, (2.53)

if L = L1L2L3 . . . LN where G· is the Green’s function of the linear operator L·.

Linear time-invarient system

Eq. (2.29) is by definition a linear system and it is also easy to see that the system

is time-invariant because all coefficients in the differential equations are constant in

t. This property allows us to rewrite the Green’s function with respect to t in a

convenient way, that is,

G(t, t0) = G(t− t0). (2.54)

Therefore, it is a linear time-invarient (LTI) system and any LTI system can be

completely characterised by the Green’s function, since the output is simply the

convolution of the input with the Green’s function,

u(t) =

∫
G(t− t0)f(t0)dt0, (2.55)

which is essentially a special case of Eq. (2.48).

Due to Eq. (2.52), Eq. (2.54) can be extended to a series of time points t0, t1,
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t2, . . . , tN = t,

G(t, t0) = G(t, tN−1)G(tN−1, tN−2) . . . G(t2, t1)G(t1, t0). (2.56)

Laplace and Fourier transforms

The Laplace transform L of a function f(t) is defined as

F (ω) = L{f(t)} =

∫ ∞
0

f(t)e−ωtdt, (2.57)

where ω is the complex frequency.

By applying the Laplace transform operating on t on Eq. (2.29), we obtain

E(ω)V (ω) =
1

2Raρ(x)

∂

∂x

[
r2(x)

∂V (ω)

∂x

]
+ I0(ω) + J0(ω), (2.58)

where

E(ω) = Cmω + gl +
1

rres + Lresω
, (2.59)

J0(ω) = CmV (t = 0) +
LresIh(t = 0)

rres + Lresω
. (2.60)

As it is an LTI system, it is safe to assume zero initial data, that is, V (t = 0) =

Ih(t = 0) = 0, which gives J0 = 0. Since the Green’s function in the frequency

domain, also known as the transfer function, is one-to-one correspondent to the

Green’s function in the time domain, it completely charactersises the system as

well. Nonetheless, convolution in the time domain is equivalent to multiplicatioin

in the frequency domain, that is, instead of Eq. (2.55), we now have

u(ω) = G(ω)f(ω), (2.61)

which is easier to analyse and compute.

To recover the function in time domain, the inverse Laplace transfrom L−1 is used,

f(t) =
1

2πi

∫ c+i∞

c−i∞
F (ω)etωdω, (2.62)

for c an arbitrary real number that guarantees the coutour integration to be con-

vergent with respect to F (ω).

32

PREPRIN
T



At the same time, the Fourier transform is defined as

f̂(ω̄) =

∫ ∞
−∞

f(t)e−iω̄tdt. (2.63)

Whereas the Fourier frequency ω̄ is usually understood as a real number, it can be

in general treated as complex, in which cases the two transforms (2.57) and (2.63)

are indifferent, as long as f(t) = 0 for t < 0, which is assumed throughout this

thesis.

If we assume ω̄ real valued, the Fourier frequency is then merely the complex com-

ponent of the Laplace frequency, which characterises the periodic behaviours of the

system, while the real component is responsible for the transient behaviours.

In addition, the inverse Fourier transform which is defined as

f(t) =
1

2π

∫ ∞
−∞

f̂(ω̄)e−itω̄dω̄, (2.64)

is equivalent to the inverse Laplace transform (2.62), if c can be chosen as zero, that

is, if all singularities are in the left half-plane. Note this condition roughly implies

that there exists some F (ω), such that c cannot be set as zero, in which cases the

inverse Fourier transform will not converge.

Nonetheless, we are not to give any mathematical proof to show that the two trans-

forms are interchangeable for any Green’s function that we are to work with, because

it will be easy to check the convergence after obtaining explicit expressions.

Whereas the terminology for the Laplace transform will be utilised for consistency,

it is more convenient particularly in numerical simulations to use the Fourier trans-

form because the algorithm of the fast Fourier transform (and its inverse) is efficient

and accurate.

Additivity of multiple inputs

Whereas it has been long since the existence of non-linear interactions of synaptic

inputs on dendrites were discovered [Koch et al., 1983], it is widely accepted that, in

the presence of multiple inputs, the total output is the superposition of the outputs

of the individual inputs, roughly though.

In our idealised models, this property directly follows from the linearity of the

resonant equations, e.g. Eq. (2.58), in which the property can be easily checked.

Mathematically, we can write,

V (x,y;ω) = G(x,y;ω)I0
T (y;ω), (2.65)
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where y = (y1, y2, y3, . . . , yN ) is an array of N input locations, and G, I0 are arrays

of size N whose individual elements are successively defined by the correspondent

elements of y.

We can easily rewrite Eq. (2.65) into an integration form in y, by assuming the

points of y locate closely in a certain region and taking the limit so that these

points are continously distributed, that is,

V (x, y;ω) =

∫
G(x, y;ω)I0(y;ω)dy, (2.66)

with I0(y;ω) here a field of input that is a continuous density. This allows us to

calculate general inputs directly from our inputs that are assumed specifically to be

point processes, and in turn explains why we claim that the assumption is working

without loss of generity in Eq. (2.21), the first place the input current included

when we derive the cable equations.

Reciprocity between input and output

Since Eq. (2.58) is a second order linear ordinary differential equation, it can be

rewritten in the Sturm-Liouville form. At the same time, Eq. (2.58) is also a

Fokker-Planck equation which can be easily recast into the canonical form [Park

and Petrosian, 1995], whose differential operator is the Hamiltonian (see §4.3.2 for

the conversion).

Because a Green’s function is symmetric if a self-adjoint operator is acting on it

[Stakgold and Holst, 2011], and either the Sturm-Liouville operator or the Hamil-

tonian operator is self-adjoint, we are guaranteed to have

G(x, y) = G(y, x), (2.67)

which is known to be the reciprocity principle.
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Chapter 3

Method of Local Point

Matching
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3.1 Framework of sum-over-trips

In order to study the electro-physiology on a dendritic tree, we use the cable theory,

which describes the membrain potentials in the sub-threshold regime by Eq. (2.29)

with boundary conditions defined in §2.3.2. Since it is important to know the input-

output relationship, we naturally adopt Green’s functions as the solutions to the

cable equations (see §2.3.3). As a Green’s function of an input is equivalent to the

response to a Dirac-delta impulse at the same input location, the Green’s function

automatically satisfies all boundary conditions as well. However, an arbitrary den-

dritic tree generally rises many boundary conditions, and it is not trivial to obtain

the Green’s function.

An approach to bypass the non-trivial boundary condition problem was first estab-

lished in Abbott et al. [1991] for obtaining Green’s functions on a passive dendritic

tree by the path integral formulation of quantum mechanics, and was later termed

as sum-over-trips in Coombes et al. [2007] in which the approach is extended for

a resonant dendritic tree. It is recently generalised in Timofeeva et al. [2013] by

including the gap junction as a new boundary condition, so that the approach is

able to deal with a gap junction coupled neuronal network.

In this chapter, we only consider dendritic branches as if they are all cylindrical

segments, and the change of radius along a single branch can be treated as a chain

of cylinders with different radii. We will discuss a dendritic tree with continuous-

varying radius in Chapter 4.

3.1.1 On a passive dendritic tree

We can rewrite the passive cable equation with cylinder (2.33) in a dimensionless

form,
∂V

∂T
=
∂2V

∂X2
− V + Ic, (3.1)

where

Ic =
Iinjδ(x− y)

2πrcgl
, (3.2)

by absorbing the time and diffusion constants into the diffusion operator,

T =
t

τ
, (3.3)

X =
x

λ
, (3.4)

where τ and λ are defined in Eqs. (2.34) and (2.35) respectively.
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An infinite cable

To begin with, we consider a single cable of an infinite length, on which the Green’s

function is known to be Gaussian,

G0(X − Y ;T ) =
1

2
√
πT

exp

[
−(X − Y )2

4T

]
, (3.5)

which can be obtained by summing up all paths generated by random walks on the

cable, i.e. path integral. A path is defined as a configuration of a random walk that

starts from X, moves forwards or backwards by length (2t/N)1/2 along the cable

with equal probability p0 = 1/2 at each step, and stops after N steps in a total time

T , with the limit N →∞ [Abbott et al., 1991].

Heuristically, this purely mathematical description can be understood as individual

ions undergoing Brownian motion along the leaky dendritic branch.

A semi-infinite cable

Now consider a single cable of an infinite length but with an open or closed terminal

at X = 0, that is, G(0, Y ;T ) satisfies the boundary conditions (2.39) or (2.40)

respectively.

From the path integral point of view, the random walk is the same as on the infinite

cable except for the origin, where the probability of escaping from the cable (into

the extracellular environment) is 1 for the open terminal, and 0 for the closed.

On the infinite cable, for X,Y > 0,

G0(X − Y ) = P0 + P1, (3.6)

where P0 is the sum of all paths that touches the origin and P1 is the sum of all

other paths that do not (see Fig. 3.1). At the same time,

G0(X + Y ) = P0, (3.7)

because Y and −Y is symmetric to the origin and thus the reflection principle

applies. To be more specific, since all paths starting from X and terminating at −Y
must pass the origin, and by reversing only the direction of the random walks at

the origin, there is a one-to-one correspondence between the paths terminating at

−Y and Y , which guarantees that the two sums are equal as they are of the equal

probability to move in either the direction.

If the terminal is open, all paths touching the origin escape from the cable, that is,
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Figure 3.1: Partitions of random walks on an infinite cable starting from X. All the
random walks terminating at −Y must pass by the origin X = 0, namely P0. By
the reflection principle, there is an equal number of random walks reflecting at the
origin and terminating at Y . In addition, the other partition of the random walks
terminating at Y does not touch the origin, namely P1.

the sum only consists of paths that do not touch the origin,

Go(X,Y ) = P1 = G0(X − Y )−G0(X + Y ). (3.8)

If the terminal is closed, all paths touching the origin are forced to reverse direction,

that is, the paths terminating at −Y change their destination symmetrically to Y ,

which gives,

Gc(X,Y ) = 2P0 + P1 = G0(X − Y ) +G0(X + Y ). (3.9)

It can be easily checked that Eqs. (3.8) and (3.9) satisfy the boundary conditions

(2.39) and (2.40) respectively.

A branching node

Here we consider a branching node that connectsK semi-infinite cables. The Green’s

functions can be constructed by applying the same idea as in the previous case.

If X,Y locate on the same cable i,

Gii(X,Y ) = 2piP0 + P1, (3.10)

otherwise, if X,Y locate on the different branches, i.e. i 6= j,

Gij(X,Y ) = 2pjP0, (3.11)

where P0, P1 are defined as in the previous case, and pi is the probability that the

random walk moves into cable i when it stands at the branching node, that should
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be proportional to the axial conductance, and sum up to 1 over all i, which implies,

pj =
r

3/2
j∑
i r

3/2
i

, (3.12)

assuming the axial resistivity Ra the same for the entire dendritic tree.

To see why Eqs. (3.10) and (3.11) are correct, we can consider pj as the probability

that a closed terminal boundary condition applies at the origin (as pj = 1 in this

special case), and 1 − pj for an open terminal (as pj = 0). Eq. (3.10) is thus the

superposition of the open and closed terminals defined by Eqs. (2.39) and (2.40).

Eq. (3.11) simply follows because all paths have to pass the origin in this situation,

which implies the abscence of P1.

Therefore, by substituting the values of P0, P1, we obtain,

Gij(X,Y ) = δijG0(X − Y ) + (2pj − δij)G0(X + Y ), (3.13)

for i, j ∈ {1, 2, 3, . . . ,K}, where δij is the Kronecker delta.

It is not difficult to check that Eq. (3.13) satisfies the boundary conditions (2.41)

and (2.42), and that Eqs. (3.8) and (3.9) are special cases of Eq. (3.13).

An arbitrary tree

We now consider a passive dendritic tree with branching nodes, terminals and semi-

infinite ends in an arbitrary morphology. Recalling,

Gij(X,Y ;T ) = P(Y ∈ j|X ∈ i;T ), (3.14)

is a probability distribution from the construction of the random walks, which has

the Markovian property, that is, the movement along the dendritic tree is inde-

pendent of the past history. We can hence write down the Chapman-Kolmogorov

equation,

Gij(X,Y ;T ) =
∑
k

∫ Lk

0
Gik(X,Z; ε)Gkj(Z, Y ;T − ε)dZ, (3.15)

for k running over all dendritic segments. Since Gij(X,Y ;T ) is an LTI system, the

value of ε can be chosen arbitrarily and Eq. (3.15) is indeed well defined due to the

properties (2.52) and (2.56).

At a particular node on the dendritic tree with the limit ε ↓ 0, the paths forming

Gik(X,Z; ε) are not touching other nodes and thus no boundary conditions other
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than those at the node, i.e. Eqs. (2.41) and (2.42), have to be considered.

Therefore, although it is not trivial to contruct the Green’s function directly on an

arbitrary tree as in the previous cases due to the presence of multiple boundary

conditions, it is possible to decomposite the Green’s function similarly to Eq. (3.13)

locally at individual nodes. By such decompositions successively on all segments,

eventually the Green’s function is to be rewritten as the sum of Green’s functions

on an infinite cable G0.

However, it is more cumbersome than simply presenting and proving the rules for

sum-over-trips [Abbott et al., 1991]. We will list the rules in §3.1.2 as the rules

for a passive dendritic tree are similar to and essentially a subset of the rules for

a resonant tree, and a detailed proof for sum-over-trips with tapering, which is the

most recent generalisation, can be found in §4.2.

3.1.2 On a resonant dendritic tree

If we take the Laplace transform of Eq. (2.31), or equivalently consider r(x) = rc

as a constant in Eq. (2.58), we obtain the resonant cable equation in the frequency

domain, assuming initial zero data,

−∂
2V (ω)

∂x2
+ γ2(ω)V (ω) =

I0(ω)

CD
, (3.16)

where

γ2(ω) =
1

D

[
ω +

1

τ
+

1

C(rres + Lresω)

]
, (3.17)

D =
rc

2RaC
, (3.18)

I0 =
Iinj(y;ω)δ(x− y)

2πrc
. (3.19)

Introducing the scaled spatial variable

X = γ(ω)x, (3.20)

we obtain

(1− dXX)V = A, (3.21)

where

A(X;ω) =
I0(X/γ(ω);ω)

CDγ2(ω)
. (3.22)
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An infinite cable

Since the Green’s function on an infinite cable of the operator (1− dXX) is

H∞(X) =
1

2
e−|X|, (3.23)

the general solution to Eq. (3.21) is

V (X;ω) =

∫ ∞
0

H∞(X − Y )A(Y ;ω)dY, (3.24)

which, in the original coordinates, is

V (x;ω) =

∫ ∞
0

G∞(x− y;ω)Iinj(y;ω)dy, (3.25)

where

G∞(x;ω) =
ra
γ(ω)

H∞(γ(ω)x) =
ra

2γ(ω)
e−γ(ω)|x|. (3.26)

Note the definition of G∞(x;ω) is different by a constant scale from that in Coombes

et al. [2007] where it is convoluted with I0 instead of Iinj. The new definition of the

Green’s function by Eq. (3.25) is preferred because it separates the information of

the input and the system completely while in the original definition the strength of

I0 is dependent on the input location.

An arbitrary tree

Similarly, if the Green’s function on an arbitrary tree of the oparator (1 − dXX) is

Hij(X,Y ), we have

Vi(x;ω) =
∑
j

∫ lj

0
Gij(x, y;ω)Iinj(y;ω)dy, (3.27)

where

Gij(x, y;ω) =
1

zj(ω)
Hij(x, y;ω), (3.28)

zj(ω) =
γj(ω)

ra,j
, (3.29)

and Hij(x, y;ω) is contructed by the rules of sum-over-trips.
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Rules for trip construction

A trip is defined to be a highly restricted path that starts from x and terminates

y but can only change direction at nodes, while a typical path of the random walk

make frequent changes of direction [Abbott et al., 1991]. Explicitly, we define

Hij(x, y) =
∑
trip

AtripH∞(Ltrip(x, y)), (3.30)

where Atrip is called the trip coefficient, a product of all the node factors Anm along

the trip, and Ltrip(x, y) is the scaled length of the trip. A node factor Anm is

the factor contributed by the trip travelling locally from segment n to m, which is

determined by the boundary condition at the node.

As we have shown the local effect of boundary conditions in §3.1.1, the probability of

a path is the product of the transition probabilities at the boundary conditions and

the transition probability from x to y on a cable without touching any boundaries.

If we consider a family of paths that share the same boundary conditions, they

virtually live on an infinite cable.

The definition of a trip is based on this idea, since Atrip is the product of the node

factors Anm which encodes the local information of the nodes that the trip visits,

and H∞ characteristics the random walk on an infinite cable.

Note that the same argument works for the Green’s function of any linear differential

operator as long as the Markovian property is justified, and thus Eq. (3.30) is

the general form for both the Green’s functions in time and frequency domains.

Nonetheless, H∞ have different expression in the different domains and it is defined

as Eq. (3.23) in the Laplace domain.

Definitions of node factors

By applying Eq. (3.30) to a branching node with semi-infinite cables, we can find

that the relationship between the transition probabilities at boundaries and the

correspondent node factors are explicitly defined by Eq. (3.13).

They are therefore in the similar form but generally different in time and frequency

domains, except for terminals, where

Amm = −1, (3.31)

for an open terminal, and

Amm = 1, (3.32)
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for a closed one.

At a branching node,

Anm = 2pm − δnm, (3.33)

where the transition probability pk is defined as Eq. (3.12) in the time domain,

while, in the frequency domain,

pk(ω) =
zk(ω)∑
zk(ω)

. (3.34)

The node factor for a somatic node share the same expression as Eq. (3.33) but

pS,k(ω) =
zk(ω)

zS(ω) +
∑
zk(ω)

, (3.35)

where

zS(ω) = CSω +
1

RS
+

1

rS + LSω
, (3.36)

is the conductance of the somatic membrane.

At a gap junctional node,

Anm = pGJ,m, (3.37)

and

Amm = −pGJ,n, (3.38)

for reflecting at the gap junction, but

Amm = 1− pGJ,n, (3.39)

for passing the gap junction without changing direction, where

pGJ,m =
zm(ω)

zm(ω) + zm(ω) + 2RGJzm(ω)zn(ω)
. (3.40)

Now, it is not difficult to check that Eq. (3.30) with node factors defined as above

(summarised in Fig. 3.2) is the solution to Eq. (3.16) and satisfies all the boundary

conditions in §2.3.2.

The detailed proofs for the terminal, branching and somatic node factors can be

found in Coombes et al. [2007] and that for the gap junctional node factors in

Timofeeva et al. [2013]. A proof for the node factors in the generalised framework

of sum-over-trips with tapering, which follows similar protocols and generalises the

framework, can be found in §4.2.2.

43

PREPRIN
T



A
Branching node

B
Somatic node

C
GJ node

Figure 3.2: The node factors of different types of nodes defined by the sum-over-trip
rules. In addition to those in the figure, the node factor of an open terminal is −1
and that of a closed one is +1.

3.1.3 Summary of the sum-over-trips algorithm

In above sections, we have reviewed the development and reconstructed the rules

of the sum-over-trips framework. Although, for a resonant system, we implant the

rules first and then prove them satisfying corresponding boundary conditions (as

in Coombes et al. [2007]; Timofeeva et al. [2013]), instead of directly constructing

them from the path integral on a passive dendritic tree (as in Abbott et al. [1991]),

the path integral explanation works for the resonant systems. However, the proba-

bilities of individual paths become intuitive only in the frequency domain, and it is

not straightforward to construct such random walks in the time domain.

Nonetheless, the sum-over-tirps framework has been proven valid and here we sum-

marise the steps of the algorithm (for a resonant dendritic tree and see §3.1.2 for

the detailed rules):

1. compute the spatial scaling parameter γ for individual dendritic segments and

node factors Anm at all nodes;

2. construct all trips from the output location x to the input location y;

3. for each trip, compute the product of all node factors and H∞(Ltrip) where

Ltrip is the scaled length by local γ of the trip;

4. sum over all the trips by Eq. (3.30);

5. scale the sum by a predetermined constant to obtain the Green’s function

G(x, y;ω).

In order to retrieve the Green’s function in the time domain G(x, y; t), we need

to perform the inverse Laplace transform in the end. When an input Iinj(y; t) is
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considered, it is more convenient to transform it into the Laplace domain so that

we can compute the product of Iinj(y;ω) and G(x, y;ω), and then bring it back to

the time domain, instead of working with the convolution of Iinj(y; t) and G(x, y; t).

3.2 Method of local point matching

By the sum-over-trips framework, the Green’s function on an arbitrary dendritic

tree with resonant membranes follows,

Gij(x, y;ω) =
1

zj(ω)

∑
trip

Atrip(ω)H∞(Ltrip(x, y;ω)), (3.41)

which is simply obtained by substituting Eq. (3.30) into Eq. (3.28).

However, despite of the fact that the convergence of the summation in Eq. (3.41) is

guaranteed by the property of H∞ [Abbott, 1992], for an arbitrary tree in practice,

the summation generally consists of an infinite number of trips, and it is not a

simple task to rewrite it as a convergent series. In other words, it is non-trivial

to enumerate all trips in order. At the same time, for computational purpose in

practice, Step 4 in §3.1.3 has to be performed by an algorithm with finite terms.

Here we note that there exist two and only two classes of dendritic morphologies

that permits finite trips, an infinite cable and a semi-infinite star, that is, a single

node with semi-infinite cables radiating from it. There are no other classes because,

if the tree contains at least one finite segment, a trip can reflect at its two ends

infinitely many times, which immediately gives an infinite number of trips.

3.2.1 Convergence of sum-over-trips

It is possible to write the infinite summation in Eq. (3.41) as an infinite convergent

series for simple morphologies. For instance, if we have a model of a single dendritic

branch AB with a finite scaled length L, all trips can be sorted into four classes

based on four skeleton trips (see Fig. 3.3), as any other trip with more reflections

consists of one skeleton trip and multiple recurrences (yABy or yBAy).

Since the recurrences yABy and yBAy both gives the same factorR = AAABH∞(2L),

where AA and AB are the node factors for a trip reflecting at the two ends, the

Green’s function in this case can be written as

G(x, y;ω) =
1

zj

∞∑
n=0

Rn
4∑
i=1

Ci, (3.42)
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Figure 3.3: The four classes of trips on a single finite dendritic branch. Class 1: xy,
the most direct trip not touching two ends. Class 2: xAy, the trips reflecting at one
end without passing y. Class 3: xBy, the trip passing y and then reflecting at the
other end. Class 4: the trip reflecting at both the ends xABy.

where, with x = 0 at A and X,Y the scaled coordinates of x, y,

C1 = H∞(Y −X), (3.43a)

C2 = AAH∞(X + Y ), (3.43b)

C3 = ABH∞(2L−X − Y ), (3.43c)

C4 = AAABH∞(2L+X − Y ), (3.43d)

are the factors contributed by the four skeleton trips. As Eq. (3.42) is a geometric

series, it can be reduced to an algebraic form that does not contains infinite sum-

mation.

A model with two finite segments yields such compact solutions as well. Timofeeva

et al. [2013] considers an example in which the two finite segments are connected

by a gap junction and the system is solved by introducing the method of ‘words’.

This method names each trip with a word consisting of letters that corresponds to

its successive movements. It then identifies four shortest words which is essentially

the same as the four skeleton trips in the previous case (see Fig. 3.3), and proves

any other trips can be constructed by inserting fixed letter pairs into the shortest

words. The compact solution is found by combinatorics and appears to be a geo-

metric series again.

However, these methods cannot be generalised to an arbitrary tree. Numerical ap-

proximations are thus necessary in computing the infinite summation. Cao and
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Abbott [1993] offers an algorithm based on finding the shortest trip, and Caudron

et al. [2012] proposes a method with four main trips, plus local recurrences. The

four main trips are essentially constructed with the same idea as in Fig. 3.3, and

the algorithm is named as the four-classes algorithm.

Caudron et al. [2012] further introduces the length-priority algorithm and com-

pares its convergent errors with the four-classes algorithm on different dendritic

morphologies (see Fig. 3.4). Other approaches, e.g. the Monte-Carlo method, are

also investigated in the paper, and a more comprehensive study of these numerical

methods can be found in Caudron [2012].

We can see from Fig. 3.4 that the approximations converge better on the binary tree,

a simple morphology, while considerably worse on realistic dendritic trees. These

methods are thus not efficient and effective in the sense of computation, comparing

to existing simulation environments, e.g. NEURON [Carnevale and Hines, 2006],

which gives accurate solutions.

3.2.2 Deriviation of local point matching

To overcome the problems in the computational convergence of the sum-over-trips

approach, Yihe and Timofeeva [2016] develops the method of local point matching,

which is theoretically rooted in the sum-over-trips framework, but avoids the infinite

summation and always yields compact solutions in algebraic forms.

To derive the method, we start by introducing the function,

Jij(x, y;ω) = 2zjGij(x, y;ω), (3.44)

which can be rewritten as

Jij(x, y;ω) =
∑
trip

Atrip(ω)f(Ltrip(x, y;ω)), (3.45)

by Eq. (3.41), where

f(x) = 2H∞(x) = e−x. (3.46)

We assume that there are two points vj and wj placed on the segment j infinites-

imally close to either of its ends and that the point y which is not at a node (i.e.

0 < y < Lj) is between vj and wj . Jij(x, y;ω) can thus be found as the sum of two

47

PREPRIN
T



Figure 3.4: Convergence of the four-classes and length-priority algorithms on differ-
ent dendritic morhpologies. The relative error of the approximation of the Green’s
function is plotted as a function of the number of trips generated according to either
the algorithm in each case [Caudron et al., 2012].
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Figure 3.5: Construction of Jy by separating the trips into two groups represented
by the functions Jvj and Jwj . Dashed lines indicate all possible trips on a network.

groups of trips,

Jij(x, y) =
∑
trip

Avjf(Ltrip(x, y)) +
∑
trip

Awjf(Ltrip(x, y)) (3.47a)

= f(vj − y)
∑
trip

Avjf(Ltrip(x, v→yj )) + f(wj − y)
∑
trip

Awjf(Ltrip(x,w→yj )).

(3.47b)

Note that ω is omitted for compactness from this point.

The two separated groups of trips in Eq. (3.47a) are those that are passing by vj

just before reaching y and those that are passing by wj just before reaching y (see

Fig. 3.5). In Eq. (3.47b), we introduce Ltrip(x, v→yj ) which defines the length of a

trip that moves in the direction of y and ends at vj before reaching y, and, similarly,

Ltrip(x,w→yj ) defines the length of a trip that moves in the direction of y and ends at

wj before reaching y (shown in red in Fig. 3.5). Avj and Awj are the trip coefficients

corresponding to the trips to vj and wj .

As vj is placed infinitesimally close to one end of the segment, we have Ltrip(x, vj) =

Ltrip(x, v→yj ), and therefore we introduce

Jij(x, vj) =
∑
trip

Avjf(Ltrip(x, v→yj )), (3.48)

and, similarly, for wj infinitesimally close to the other end of the segment,

Jij(x,wj) =
∑
trip

Awjf(Ltrip(x,w→yj )). (3.49)
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Now we simplify the notations as Jij(x, y) = Jy, Jij(x, vj) = Jvj and Jij(x,wj) = Jwj
and rewrite Eq. (3.47b) as

Jy = f(vj − y)Jvj + f(wj − y)Jwj . (3.50)

Since both the points vj and wj are placed infinitesimally close to the individual

ends of the segment j of length Lj , without loss of generality, we consider that vj = 0

and wj = Lj , and therefore Eq. (3.50) becomes

Jy = f(y)Jvj + f(Lj − y)Jwj . (3.51)

If the point y is located on a semi-infinite branch and wj is placed on the side to-

wards infinity, then |wj − y| → ∞, implying f(wj − y)Jwj = 0.

Following similar steps, by placing two points vk and wk on each segment k in-

finitesimally close to either end, we can define functions Jvk and Jwk which can be

written in terms of functions Jvn and Jwn associated with points vn and wn from all

branches connected to a single node. For example, given a node with K segments

and K pairs of points (vk, wk) (see Fig. 3.6), the function Jvk for k = 1, 2, 3, . . . ,K

can be found as

Jvk =
K∑
n=1

∑
trip

Awnf(Ltrip(x,wn))ankf(Ln)

=

K∑
n=1

Ankf(Ln)
∑
trip

Awnf(Ltrip(x,wn))

=
K∑
n=1

Ankf(Ln)Jwn ,

(3.52)

where Ln is the scaled length of branch n.

Eq. (3.52) can be constructed for any node branches of which do not include point

x. If x is located on branch i connected to a node in consideration (0 < x < Li), an

additional term representing a direct trip from the starting point x to vk needs to

be added,

Jvk =

K∑
n=1

Ankf(Ln)Jwn +Aikf(x). (3.53)

Therefore, summarising Eqs. (3.52) and (3.53), in general we have

Jvk =
K∑
n=1

Ankf(Ln)Jwn + δikAikf(x). (3.54)
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branch i

length

Figure 3.6: Part of a network with the placed pairs of points (vk, wk) and the
corresponding functions Jvk and Jwk .

Note that Jwk takes exactly the same form as in Eq. (3.54) with different values of

node factors and lengths.

Since an unknown Jvk is linearly dependent on other unknown Jvn that are on the

locally connected segments, by writting down all Jv and Jw using Eq. (3.54) we

obtain a system of linear equations.

For a fixed network the number of Jv and Jw is equal to the degree sum of the

corresponding graph. It is possible to show that the system of equations is linearly

independent and therefore has a unique solution. By solving the linear system we

can find Jvj and Jwj and obtain Jy = Jij(x, y) from Eq. (3.51). If both x and y

are located on the same segment, the direct trip from x to y is added because Eq.

(3.51) only considers trips from the two ends of the segment, that is,

Jy = f(y)Jvj + f(Lj − y)Jwj + f(x− y). (3.55)

The Green’s function Gij(x, y) can then be calculated from Eq. (3.44) as

Gij(x, y) =
1

2zj
Jy. (3.56)

Note that the coefficient before Jy is different from that in Yihe and Timofeeva

[2016], because the original definition of the Green’s funtion Eq. (3.26) is modified

as explained in §3.1.2.

3.2.3 Summary of the local point matching algorithm

In above sections, we have reviewd several techniques for computing the Green’s

function obtained by the sum-over-trips approach. The methods introduced in §3.2.1
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are generally based on truncation of the infinite summmation and thus yield approx-

imated numerical results only, whose error is strongly dependent on the complexity

of the dendritic morphology, while the method of local point matching derived in

§3.2.2 is analytically exact and computationally cheaper.

Here we summarise the steps of the algorithm for the local point matching method:

1. compute the spatial scaling parameter γ for individual dendritic segments and

node factors Anm at all nodes;

2. construct the linear system of Jv and Jw by Eq. (3.54) based on the local

connectivity;

3. solve the linear system by matrix inversion;

4. compute Jy and scale it by a predetermined constant to obtain the Green’s

function G(x, y;ω).

Note that the first and last steps are the same as in §3.1.3, but the intermediate

steps are different, as the method essentially avoids recursive computation for the

infinite summation and instead requires only solving a linear system, i.e. matrix

inversion.

3.3 Results on arbitrary dendritic trees

Applying the method of local point matching in the framework of sum-over-trips,

we can obtain the following theoretical results without specifying the dendritic mor-

phology.

3.3.1 Properties of Green’s functions

Here we study some nice properties of a Green’s function on an arbitary resonant

neuronal network. Since a Green’s function is the response function to a Dirac-delta

impulse, properties of the Green’s function can automatically be extended to any

response functions given the input is predetermined.

The input-output reciprocity

If we assume that the original trip has trip coefficient to be,

Atrip = Aik1Ak1k2Ak2k3 . . . Akn−1knAknj , (3.57)
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we immediately have the trip coefficient for the reversal trip, namely ’pirt’,

Apirt = AjknAknkn−1Akn−1kn−2 . . . Ak2k1Ak1i, (3.58)

as the reversal trip exactly travels in the opposite direction. Note that the node

factors are equal if m = n, while any pair of Anm, Amn share the same denominator

and

Anm ∝ zm, (3.59)

if m 6= n. Hence,
Atrip

Apirt
=
zj
zi
, (3.60)

which gives ∑
AtripH∞(Ltrip)∑
ApirtH∞(Lpirt)

=
zj
zi
, (3.61)

because for any trip from x to y, its reversal trip has exactly the same (scaled)

length, i.e. Ltrip(x, y) = Lpirt(y, x).

Therefore, by Eq. (3.41), we can conclude that,

Gij(x, y;ω) = Gji(y, x;ω), (3.62)

and similarly for the Green’s function in the time domain. Recall the reciprocity

principal (2.67) is discussed for general systems in §2.3.3, and here we have proven

it working in our models with complex boundary conditions.

We also note that Eq. (3.62) is the reciprocity identity mentioned in Abbott et al.

[1991] and Coombes et al. [2007], but since they define the Green’s function dif-

ferently from ours (up to a constant scale dependent on the input location), there

are constant coefficients (depenedent on the locations of input and output) in their

reciprocity equations.

Continuity in input locations

In practice, experimentalists can inject current into a node, e.g. a soma. However,

it is assumed that the input location y does not locate at any nodes in §3.2.2 where

the method of local point matching is derived.

In the original framework of sum-over-trips, locating the input at a node is well

defined, since the continuity of the Green’s function in the input (or output) location

is guaranteed essentially by the path integral formulation. A path starting from (or

termiating at) a point infinitesimally close to a node is probabilitically equivalent to
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the path starting from (or terminating at) that node, since the transition probability

between the two points is asymptotically 1.

By the method of local point matching, we claim that the Green’s function is still

continuous in the input location. To prove it, we recall that the continuity in x

are among the boundary conditions considered in §2.3.2. Since we have proven the

input-output reciprocity in the previous section, it immediate yields the continuity

in y.

3.3.2 Features of local morphology

Here we consider some interesting features of a part of a dendritic tree by applying

the sum-over-trips framework.

Loops in neuronal networks

A single dendritic tree has no loops but a neuronal network has and is commonly

highly recurrent, in particular locally. Although the sum-over-trips approach cannot

deal with active properties directly, the inclusion of gap junctions into the framework

by Timofeeva et al. [2013] has generalised it from single neurons to neuronal networks

coupled by gap junctions, and thus loops can be presented.

It is noted firstly in Abbott et al. [1991] that the sum-over-trips approach works

on graphs with loops, not only on trees. This can also be clearly seen from the

method of local point matching that, when Eq. (3.54) is written down, only pairwise

connectivity is useful, and the presence of any loop is not considered.

Conditions for equivalent cylinders

Here we consider a local branching morphology of n+1 dendritic branches of length

li, i ∈ {0, 1, 2, . . . , n}, of which segment 0 is eventually connected to the soma and

all the rest segments have a closed terminal (see Fig. 3.7).

By the method of local point matching, we can write down

ai = bifi(2pi − 1) +

n∑
i 6=j=1

bjfj2pi + a0f02pi, (3.63a)

bi = aifi, (3.63b)

which gives

ai =
2pi

1 + f2
i

a0f0 +

n∑
j=1

ajf
2
j

 , (3.64)
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A0

A1 A2

AnB0

B1
B2

Bn

Figure 3.7: Schematic of a branching node in an arbitrary dendritic tree. The node
connects n terminal segments, index from 1 to n, and segment 0 that eventually
links this branching node to the soma (on the left).

for fi = f(li) and ai = JAi , bi = JBi being the local trips towards the terminals and

the soma, respectively, on segment i ∈ {1, 2, 3, . . . , n}.
By introducing new variables,

A =
n∑
j=1

ajf
2
j , (3.65)

B =
n∑
i=1

2pif
2
i

1 + f2
i

, (3.66)

Eq. (3.64) gives

A =
a0f0B

1−B
, (3.67)

and hence,

b0 = a0f0(2p0 − 1) +
∑

bifi2p0

= a0f0(2p0 − 1) + 2p0A

= a0f0

[
2p0

1−B
− 1

]
,

(3.68)

where

p0 =
z0

z0 +
∑
zi
. (3.69)

Assume the output x does not locate on the local segments under investigation,

and that there exists an equivalent cylinder for segments 1, 2, 3, . . . , n that keep the

Green’s function invariant if they are replaced by it. By the same steps, we have

b∗0 = a∗0f0

[
2p∗0

1−B∗
− 1

]
, (3.70)
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where

p∗0 =
z0

z0 + z∗1
, (3.71)

B∗ =
2p∗1f

∗
1

2

1 + f∗1
2 . (3.72)

Note that all variables in the equivalent model are denoted by the superscript ∗.

In order to show the equivalence, we want to show a0, b0 are unchanged given the

replacement. Since the morphology from the soma to segment 0 is arbitrary but

fixed, it is necessary that a∗0 = a0, b
∗
0 = b0, which implies

p∗0
1−B∗

=
p0

1−B
, (3.73)

since the two conditions a∗0 = a0 and b∗0 = b0 are sufficient and necessary to each

other.

Comparing Eqs. (3.66) to (3.72) and (3.69) to (3.71), we have to further assume

fi = f∗1 , B = B∗, which implies

γ∗1 l
∗
1 = γili, for i = 1, 2, 3, . . . , n, (3.74)

z∗1 =
n∑
i=1

zi. (3.75)

It is now straightforward to see that if the input y does not locate on segment

i = 1, 2, 3, . . . , n, the Green’s functions of the original branching model and the

equivalent cylindrical model are indifferent. If the input does locate on any of

segment i = 1, 2, 3, . . . , n, with a distance of ly away from the branching node, we

have

Jy = aifi(ly) + bifi(li − ly), (3.76)

which is proportional to ai, pi and thus zi. Due to Eq. (3.56), the Green’s functions

are also the same.

Furthermore, due to the reciprocity (3.62), we have shown a cylinder is equivalent to

a local branching morphology if the conditions (3.74) and (3.75) are satisfied. In the

ideal situations, branching structures can be replaced by such equivalent cylinders

successively from the terminals to the root (usually the soma) of the dendritic tree.

Additionally, a loop can also be equivalent to such a cylinder if the same conditions

are valid.

Note the conditions are exactly the famous 3/2 branching rule, as Eq. (3.74) requires
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identical electronic lengths while Eq. (3.75) can be written equivalent as

r∗1
3/2 =

n∑
i=1

r
3/2
i , (3.77)

where r is the corresponding radius.

3.3.3 Responses at steady states

A typical neuron in vivo is constantly receiving thousands of inputs, but here we

only consider a single input, as we can sum up the responses due to multiple inputs

by the additivity of Green’s functions (see §2.3.3). Steady states of the responses

are discussed in theory in this section, and we will study the transient behaviours

in Chapter 5 by numerical simulations.

Step input

By injecting a step current into the neuron, we are expecting the entire system

finally reaches some equilibrium. In order to obtain such equilibria, we can use the

final value theorem for the Laplace transform, which states that,

limt→∞ f(t) = limω→0 ωF (ω), if all poles of ωF (ω) are in the left half-plane.

Since we have

V (x, y; t) = G(x, y; t) ∗ Iinj(t) = L−1{G(x, y;ω)Iinj(ω)}, (3.78)

where Iinj = Istep(t) is the step input of strength A0 occuring at time t0, which is

the special case of a rectangle input (2.36). Its Laplace transform can be found as,

Istep(y;ω) =
A0

ω
e−t0ω, (3.79)

and we can thus apply the theorem and obtain

lim
t→∞

V (x, y; t) = lim
ω→0

ω

[
G(x, y;ω)

A0

ω
e−t0ω

]
= A0G(x, y;ω = 0). (3.80)

Note that, for a passive system G(x, x;ω = 0) is by definition the input resistance

at x, because A0 in the strength of the injected current and limt→∞ V (x, x; t) is

the steady-state voltage. However, the measure cannot fully characterise a resonant

neuron, as overshoots and undershoots are to be observed before the system settling

down to its equilibrium.
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Sinusoidal input

In order to account for the resonant properties of a neuron, we can apply a sinusoidal

signal of the form,

Isin = A0 sin(ω0t). (3.81)

The system will settle on the following steady state,

VSS(x, y; t) = B0 sin(ω0t+ φK), (3.82)

where the amplitude,

B0 = A0|K(x, y; ω̄)|, (3.83)

and the phase shift,

φK = arg(K(x, y; ω̄)), (3.84)

can be found with G(x, y; iω0) [DeCarlo and Lin, 1995].

Therefore, the steady-state responses to sinusoidal inputs with all frequencies fully

characterise the Green’s function (or the transfer function in LTI systems introduced

in §2.3.3). Koch [1984] terms K(x, y; ω̄) = G(x, y;ω) for ω̄ = iω as the frequency-

dependent transfer impedance, and in particular K(x, x; ω̄) = G(x, x;ω) is the input

impedance, which is a straightforward generalisation of G(x, x;ω = 0).

Recall that we have introduced the implication of chirp inputs in §2.3.1. Since the

frequencies are instanteously varying, the system on principle never reaches any

steady state (3.82), which is the reason why the envelope of the oscillating response

can only roughly capture the shape of the Green’s function.
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Chapter 4

Sum-Over-Trips with Tapering
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4.1 Tapering cable equations with analytical solutions

In Chapter 3, a comprehensive review of the sum-over-trips framework is present.

On an arbitrary resonant dendritic tree with cylindrical segments, the framework

permits analytic Green’s functions. However, the radius of a realistic dendritic

branch could vary from location to location. Such phenomena are mostly noticeable

in the distal segments where the dendritic branches taper and terminate.

In this chapter, we are aiming at extending the sum-over-trips framework to den-

dritic trees with non-cylindrical segments.

4.1.1 Simplification of tapering cable equations

Poznanski [1991] considers the passive tapered cable described by Eq. (2.30) and

shows the possibility of obtain analytical solutions given certain constraints. Here

we follow the same steps but work on the resonant cable equation with tapering Eq.

(2.29) instead.

We first rescale the temporal variable in Eq. (2.29) by

T =
t

τ
, (4.1)

where τ is defined in Eq. (2.34), that is,

∂V

∂T
= −V +

1

2glRaρ(x)

∂

∂x

[
r2(x)

∂V

∂x

]
+
I0 − Ih
gl

, (4.2a)

L

τ

∂Ih
∂T

= −rresIh + V. (4.2b)

We then reparameterise the spatial variable by

Z =

∫ x

0

1

λ(s)
ds, (4.3)

where

λ(x) =

[
Rm
2Ra

]1/2

[r(x)]1/2
[
1 +

[
r′(x)

]2]−1/4
, (4.4)

and Eq. (4.2a) becomes

∂V

∂T
= −V +

∂2V

∂Z2
+ λ

∂

∂x

(
ln r2(x)λ−1

) ∂V
∂Z

+
I0 − Ih
gl

, (4.5)

or simply,
∂V

∂T
=
∂2V

∂Z2
− V +

d lnF

dZ

∂V

∂Z
+
I0 − Ih
gl

, (4.6)
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by defining the geometric ratio,

F (Z(x)) = F0
r2(x)

λ(x)
. (4.7)

Note that the value of the constant F0 is fixed but arbitrary if only a single dendritic

branch is considered, and thus Poznanski [1991] implicitly chooses F0 so that F (0) =

1. We will follow this convention when study a single branch due to its simplicity.

However, when we are to deal with an arbitrary tree that has multiple dendritic

segments, we prefer F0 = 1 to be a global constant (not dependent on the local

segment), so that we have less parameters to concern.

Now introducing a new dependent variable V ∗(Z;T ) by

V (Z;T ) = V ∗(Z;T )φ(Z), (4.8)

where

φ(Z) =

[
F (0)

F (Z)

] 1
2

, (4.9)

we can further rewrite Eq. (4.6) as

∂V ∗

∂T
=
∂2V ∗

∂Z2
− β(Z)V ∗ +

I0 − Ih
glφ(Z)

, (4.10)

where

β(Z) = 1 +
ξ2

4
+
ξ′

2
, (4.11)

ξ(Z) =
d lnF

dZ
=

1

F

dF

dZ
. (4.12)

At the same time, Eq. (4.2b) simply becomes

L

τ

∂Ih
∂T

= −rresIh + V ∗φ(Z). (4.13)

If we now perform the Laplace transform operating on T to Eqs. (4.10) and (4.13),

we obtain

ΩV ∗ − V ∗(t = 0) =
∂2V ∗

∂Z2
− β(Z)V ∗ +

I0 − Ih
glφ(Z)

, (4.14a)

L

τ
[ΩIh − Ih(t = 0)] = −rresIh + V ∗φ(Z), (4.14b)
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Type of tapering F (Z) Constraint Domain

Exponential exp(2KZ) K < 0 0 ≤ Z

Hyperbolic sine sinh2K(Z−α)

sinh2Kα
K2 > 0 0 ≤ Z ≤ α

Hyperbolic coinse cosh2K(Z−α)

cosh2Kα
K2 > 0 0 ≤ Z ≤ α

Sinuosoidal cos2 |K|(Z−α)
cos2 |K|α K2 < 0 0 ≤ Z ≤ π/|2K|+ α

Trigonometric cos2 |K|Z K2 < 0 0 ≤ Z ≤ π/|K|
Quadratic (1− Z/α)2 α > 0 0 ≤ Z ≤ α

Table 4.1: Six geometric types that permits analytic solutions for a tapering den-
drite. α is a positive constant, while the constant K could be a complex number in
certain cases. Modified from Poznanski [1991].

which, by assuming zero initial data and carrying out substitutions and rearrange-

ments, can be reduced to

γ2V ∗ =
∂2V ∗

∂Z2
+

I0

glφ(Z)
, (4.15)

where

γ2 = Ω + β(Z) +
Rm

rres + LΩ/τ
= τω + β(Z) +

Rm
rres + Lω

. (4.16)

Note that Eq. (4.15) is in the same form as Eq. (3.16) and we can thus solve it

analytically if γ is a constant in Z. Otherwise, Eq. (4.15) is non-linear, and mostly

solvable via numerical approaches only.

With the assumption that all electrical parameters Rm, rres, L, τ are independent of

location, we further need β(Z) to be a constant, which, as Poznanski [1991] points

out, is equivalently to solve a Ricatti equation and there exist six types of tapering

defined by the geometric ratio factor F (Z) that satisfy the condition (see Table 4.1

and Fig. 4.1).

It can be checked by substituting the six types of F (Z) into Eq. (4.11) that, β =

1 + K2 for the first three types, β = 1 for the last, and β = 1 − |K|2 for the rest

two types, are indeed all constants.

4.1.2 Real shapes of tapered dendrites

Amongst the six types that Eq. (4.15) can be solved analytically, Poznanski [1991]

studies the difference in voltage transfers on a cylindrical cable and a tapered branch

of the Quadratic type, only in the reparameterised dimensionless coordinate (Z;T ).

However, it seems more interesting if we can investigate relevant problems in the
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Figure 4.1: Blue curves are tapered cables in the coordinate of F (Z) derived from
Table 4.1 with parameters (taken the same as in Poznanski [1991]): α = 1.5 and
K = −π/3, except for the sinusoidal cable where α = 0.15 and K = −π/2.7. Red
curves are the same cables but in the coordinate of r(x). Note that all functions in
this figure are rescaled so that their starting radii equal 1.
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original physical coordinate (x; t) instead.

Given r(x), it is straightforward to find F (Z) by Eqs. (4.3), (4.4) and (4.7). How-

ever, it is generally only possible to find r(x) from F (Z) by numerical methods,

because r(x) is implicitly defined by F (Z), and these six types are not exceptions.

This non-trivial reversal problem prevents us from understanding easily the real

shapes in the coordinate of r(x) of the six geometric types.

Nonetheless, as the change of dendritic radius is considered small in most situations,

that is, [r′(x)]2 � 1, Eq. (4.4) reduces to

λ(x) = λ∗[r(x)]1/2, (4.17)

where

λ∗ =

[
Rm
2Ra

]1/2

, (4.18)

which, by Eq. (4.7), gives

F (Z(x)) =
λ3(x)

λ4
∗
, (4.19)

and thus we obtain

x(Z) = λ
3/4
∗

∫ Z

0
[F (S)]1/3dS, (4.20)

r(Z) = [λ∗F (Z)]2/3, (4.21)

which construct a one-to-one map from x to r.

We therefore obtain r(x) from F (Z) (see Fig. 4.1 for particularly the six types), and

it is also noted in Poznanski [1991] that Eq. (4.21) indeed describes the relationship

between the radii and the geometric ratios for all the six types.

However, the radius of a real dendritic branch could be less smooth than the nice

functions in theory (see Fig. 4.2). Dendritic tapered structures may be different

for various types of neurons, or in different locations of a single cell. Additionally,

considering constant change of dendritic shapes and imperfect reconstructions by

neuron tracing, a conclusion on how realistic dendrties taper or which theoretic

type of tapering is the best model has yet not been drawn.

Nonetheless, realistic dendrites are found typically to exhibit initial rapid decay in

radius [Bartlett and Banker, 1984; Clements and Redman, 1989; Wilson and Call-

away, 2000; Kubota et al., 2011]. Hence, in theoretical works, tapered structures that

described by exponential decays, or computationally, decreasing radii of successive

compartments by a common factor [Wilson and Callaway, 2000; Lowe, 2002], and
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Figure 4.2: An example of the non-trivial continuously varying radius of one terminal
dendritic branch (of index 34) in the reconstructed rat pyramidal cell as in Fig. 2.4.
The blue circles are the dendritic radius from the reconstructed sample data, and the
solid red curve is interpolation of them (by the MATLAB function interp1 with the
method of pchip). Their values are measured in μm, and their distances are physical
distances, that are in μm as well. The red dashed curve is the normalised radius
and the blue dashed curve is the normalised geometric ratio. Both of the dashed
curves start with 1 and have no units for their values. In addition, although they
appear to be in the same length, the geometric ratio is measured in the electronic
distance, which has no unit either.

power laws [Cuntz et al., 2007; Romero and Trenado, 2015], are the most favoured

models, because they give the seemingly realistic shapes and have simple expres-

sions. Models with (piece-wise) linear tapering is also commonly used [Strain and

Brockman, 1975; Lowe, 2002; Walker et al., 2017], which is on principle a special

case of power laws, but usually treated as a different type.

Note that the power laws and the exponential decays mentioned in the last para-

graph are descripitions of r(x), which are generally convex, except for the special

case of linear tapering. We can thus see from Fig. 4.1 that Sinusoidal, Trigometric,

and Quadratic types are relatively unrealistic, as they are concave in r(x).
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4.1.3 Reasons for favouring Exponential type

Amongst the three tapering types that give more realistic convex shapes, we prefer

the Exponential type to the other two Hyperbolic types, and therefore in Chapter

5 where we conduct simulations, we always consider the Exponential type for the

tapering structures. Here we explain the reasons.

Equivalence to quadratic tapering

It was long before the existence of the term, geometric ratio, that analytic solutions

of F (Z) were obtained for the Exponential type [Rall, 1962]. Later Goldstein and

Rall [1974] studies the properties of dendrites following this type of tapering by

comparing with cylindrical cables. It is also noted in this work that the Exponential

type of F (Z) is approximately the quadratic tapering in r(x), given the assumption

[r′(x)]2 � 1.

Here we prove this equivalence in the opposite direction, starting by assuming the

dendritic segment is tapered quadratically in the physical coordinate, that is,

r(x) = r0

[
l − x
l

]2

. (4.22)

Since [r′(x)]2 � 1, by Eqs. (4.17) and (4.19),

λ(x) = λ∗
l − x
l

, (4.23)

F (Z(x)) =
1

λ∗

[
l − x
l

]3

. (4.24)

At the same time, Eq. (4.3) gives

Z(x) = − l

λ∗
ln
l − x
l

. (4.25)

Combining Eqs. (4.24) and (4.25), we obtain

F (Z) = r
3/2
0 exp

[
−3λ0

l
Z

]
, (4.26)

where

λ0 = λ∗r
1/2
0 . (4.27)
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We can therefore conclude the equivalence between the quadratic tapering and the

Exponential type by identifying in Eq. (4.26) that

K = −3λ0

2l
. (4.28)

Note that K is a small number because r0/l � 1 which can be obtained by differ-

entiating Eq. (4.22) and applying the assumption [r′(x)]2 � 1.

Fig. 4.3 shows that the fit between the quadratic tapering by the Exponential type

is extremely good.
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Figure 4.3: Comparison of the original model of quadratic tapering defined by Eq.
(4.22) in red and the approximation of the Exponential type defined by Eq. (4.26)
in blue dots, transformed back from F (Z) to r(x) by Eq. (4.21), where l = 50, r0 =
1, λ0 = 1.

Optimality of quadratic tapering

It is not only due to its simplicity and representativeness that the quadratic ta-

pering is favoured, but also due to its optimality in current tranfer. Cuntz et al.

[2007] suggests that dendritic segments tapered quadratically would optimise cur-

rent transfers from distal inputs by computational simulation, and later Bird and

Cuntz [2016] mathematically proves that the conjecture is valid on a single passive

cable that follows quadratic tapering.

The proof starts with the assumption of r′(x)� ∂V (x; t)/∂x and negligible reflective
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currents at the distal end where the radius is small, and maximises the functional,

J =

∫ l

0
V (0, x)dx, (4.29)

given the dendritic length l, the distal radius r(l) and the total volume.

The first assumption is almost equivalent to [r′(x)]2 � 1, and the second one is

justified by the ending radius r(l) being small, as ra is to be huge near x = l, which

makes axial currents difficult to propagate in the region, and even harder to reflect

at the terminal and propagate back. We can also explain it by the path integral

formulation that, there are only a tiny number of paths which touch the end and

travel back, because near the end, the transition probability towards the end is con-

siderably small while it is large in the opposite direction.

Bird and Cuntz [2016] also investigates how realistic the model of quadratic ta-

pering is on a dendritic tree and finds that, even though the model cannot match

morphologies of all types of neurons, it fits nicely with a stereotypic morphology (see

Fig. 4.4), of which the neurons are known to obey the 3/2-branching rule [Desmond

and Levy, 1984] and undergo replacement constantly throughout life [Cameron and

Mckay, 2001].

Figure 4.4: Scatter plots of the dendritic radius measured in experiments against
the optimal quadratic tapering and the correlation coefficients for different classes
of neurons [Bird and Cuntz, 2016].
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We therefore prefer the Exponential type to the other five types as it is equivalent

to the quadratic tapering, which is optimal in theory and meaningful in practice.

Equivalence to Hyperbolic types

Numerically, one could actually find a good fit of the quadratic tapering by the two

Hyperbolic types, but we prefer the Exponential types, because it is characterised

by only the parameter K, while the two Hyperbolic types are additionally tuned by

α, which set an upper limit for Z (see Table 4.1). However, the limit is enforced by

mathematical deductions, rather than biological reality.

To remove this constraint, we could assume α→ +∞. Now we can write down the

geometric ratios of the two Hyperbolic types as

F (Z) =

[
eK(Z−α) ± e−K(Z−α)

eKα ± e−Kα

]2

=

[
eKZ ± e−K(Z−2α)

e2Kα ± 1

]2

. (4.30)

The denominator inside the brackets reduces to ±1 because Kα→ −∞, and by the

same limit we obtain

F (Z) =
[
eKZ

(
1± e2K(α−Z)

)]2
= e2KZ , (4.31)

which is essentially in the same form as the Exponential type.

Therefore, the Exponential type are more representative than the two Hyperbolic

types in practice.

4.2 Sum-over-trips with Poznanski’s tapering

If each tapered dendritic branch in our models can be described by one of the six

types of geometric ratios, the local γ of the segment is constant in Z, which implies

that we can reduce Eq. (4.15) to the form of Eq. (3.21) as we have done for Eq.

(3.16). Therefore, it directly follows the application of the sum-over-trips framework,

but in the transformed coordinate of V ∗(Z; Ω).

Note that a trip length is now measured based on Z instead of x and that node

factors have to be modified, because the reparameterised dependent variable V ∗

has to satisfy potentially different boundary conditions, even though the boundary

conditions for V are unchanged. In addition, it is more convenient for computational

purpose that the algorithm is performed in the original coordinate of V (x;ω).

Here we derive the extended framework of the sum-over-tirps approach with the six

tapering shapes discussed by Poznanski [1991].
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4.2.1 The Green’s function

Since γ is a constant in Z, we can rescale the spatial variable by z̄ = γZ, which

would reduce Eq. (4.15) to

−V ∗z̄z̄ + V ∗ = A, (4.32)

where

A(x̄;ω) =
I0(x̄/γ;ω)

γ2glφ(x̄)
. (4.33)

Recall that the Green’s function of the operator (1−dz̄z̄) is H∞(x) = e−z̄/2, we can

write the general solution to Eq. (4.32) as

V ∗i (x̄;ω) =
∑
j

∫ l̄j

0
dȳHij(x̄, ȳ)Aj(ȳ, ω), (4.34)

where Hij(x̄, ȳ) satisfies

(1− dx̄x̄)Hij(x̄, ȳ) = δijδ(x̄− ȳ), (4.35)

and is to be determined by the sum-over-trips framework.

We may rewrite the solution in the original coordinate as

V ∗i (x;ω) =
∑
j

∫ Lj

0
dyG∗ij(x, y)Iinj(y, ω), (4.36)

where

G∗ij(x, y) =
ra,j(y)λj(y)

γjφj(y)
Hij(X(x), Y (y)), (4.37)

Hij(X,Y ) =
∑
trip

Atrip(ω)H∞(Ltrip), (4.38)

and X,Y are the transformed spatial parameters from x, y by Eq. (4.3), respectively.

If we rescale everything back to the original coordinate,

Gij(x, y;ω) = κj(y;ω)φi(x)
∑
trip

Atrip(ω)H∞(Ltrip(x, y;ω)), (4.39)
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where

κj(y;ω) =
1

zj(y;ω)φj(y)
, (4.40)

zj(y;ω) =
γj(ω)

λj(y)ra,j(y)
. (4.41)

Note the coefficient before Hij here is different from that in Eq. (3.28). In §4.2.3, it

is to be shown that Eq. (4.39) can be reduced to Eq. (3.28) in the case of cylindrical

dendrites.

4.2.2 Tapering node factors

As in cylindrical cases, the node factors in the framework of sum-over-trips with

tapering also encodes the information of boundary conditions at all nodes at on an

arbitrary dendritic tree.

The boundary conditions for V are the same as in §2.3.2, but we are now working

with the new dependent variable V ∗, and in general each dendritic branch could

have different φ that reparameterise V into V ∗. Thus, here we derive the new node

factors.

The deriviation will be conducted as if semi-infinite cables are attached to the node

under investigation, because the node factors have only local effects as explained in

§3.1.1.

For simplicity, we always consider the node under investigation to locate at the

origin of the coordinate, i.e. X(x = 0) = 0, in this section, while we note it is more

usual in practical computation to fix the coordinate globally.

Terminal nodes

For a terminal, we have

G(X(x), Y (y)) = κ(y)φ(X) [H∞(γY − γX) + αkH∞(γY + γX)] , (4.42)

where αk, k ∈ {o, c} is the node factor for open and closed terminals, respectively.

The boundary condition for an open end is given by Eq. (2.39), equivalently,

G(0, y) = 0. (4.43)

By Eqs. (4.42) and (4.43), we have

κ(y)φ(0)(1 + αo)H∞(γY ) = 0,
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which simply gives

αo = −1. (4.44)

The boundary condtion for a closed end is given by Eq. (2.40), which implies,

0 =
∂G

∂x

∣∣∣∣
(0,y)

=
∂G

∂X

dX

dx

∣∣∣∣
(0,Y )

=
1

λ(0)

∂G

∂X
(0, Y ). (4.45)

Since

∂φ(X)

∂X
= −1

2
ξ(X)φ(X), (4.46)

∂H(γX)

∂X
= −γH(γX), (4.47)

by differentiating both sides of Eq. (4.42) we have

∂G

∂X
= κ(y)φ(X)

([
γ − 1

2
ξ(X)

]
H∞(γY − γX)− αc

[
γ +

1

2
ξ(X)

]
H∞(γY + γX)

)
,

which can be substituted in Eq. (4.45) and give

0 =
∂G

∂X
(0, Y ) = κ(y)φ(0)

([
γ − 1

2
ξ(0)

]
− αc

[
γ +

1

2
ξ(0)

])
H∞(γY ).

Solving for αc, we obtain

αc =
γ − ξ(0)/2

γ + ξ(0)/2
=

2γ

γ + ξ(0)/2
− 1. (4.48)

Branching nodes

Assume that a branching node is attached by N cables and that the input y locates

on branch 1. There are generally two cases, the output is also on branch 1, or the

output is on a different branch k 6= 1. Let αk, k ∈ {1, 2, 3, . . . , N} be the node

factors, we have

G1(x1, y) = κ1(y)φ1(X) [H∞(γ1Y − γ1X) + α1H∞(γ1Y + γ1X)] , (4.49a)

Gk(xk, y) = κ1(y)φk(X)αkH∞(γ1Y + γkX), for k 6= 1. (4.49b)

The continuity of voltage boundary condition Eq. (2.42) requires

G1(0, y) = Gk(0, y), (4.50)
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that is,

φ1(0)(1 + α1) = φk(0)αk, for k 6= 1. (4.51)

At the same time, the conservation of currents boundary condition Eq. (2.41)

requires

0 =
∑
k

1

ra,k(0)

∂Gk
∂x

(0, y) =
∑
k

1

ra,k(0)λk(0)

∂Gk
∂X

(0, Y ).

where

∂G1

∂X
(0, Y ) = κ1(y)φ1(0)

([
γ1 −

1

2
ξ1(0)

]
− α1

[
γ1 +

1

2
ξ1(0)

])
H∞(γ1Y ),

∂Gk
∂X

(0, Y ) = κ1(y)φk(0)

(
−αk

[
γk +

1

2
ξk(0)

])
H∞(γ1Y ), for k 6= 1.

Thus, cancelling out the common factors κ1(y)H∞(γ1Y ), we have

φ1(0)

ra,1(0)λ1(0)

[
γ1 −

1

2
ξ1(0)

]
=
∑
k

φk(0)αk
ra,k(0)λk(0)

[
γk +

1

2
ξk(0)

]
,

which can be reduced by Eq. (4.51), that is,

2γ1

λ1(0)ra,1(0)
= (α1 + 1)

∑
k

γk + ξk(0)/2

λk(0)ra,k(0)
.

We can therefore solve for α1, and then obtain αk for k 6= 1 by Eq. (4.51), which

gives,

α1 =
2z1(0)∑
k z
∗
k(0)

− 1, (4.53a)

αk =
φ1(0)

φk(0)

2z1(0)∑
k z
∗
k(0)

, for k 6= 1, (4.53b)

where

z∗k(x) =
γk + ξk(x)/2

λk(x)ra,k(x)
. (4.54)

Somatic nodes

Here we assume the same structure as in the last section but for a soma at the

centre. We immediately obtain the expression of Gk, the same as Eq. (4.49), and

Eq. (4.51) is also valid as the continuity of voltage Eq. (4.50) holds. However, the

soma has its own current leakage, which requires a new boundary condition, that
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is, Eq. (2.43), or equivalently in the Laplace domain,

zSGk(0, y) =
∑
k

1

ra,k(0)

∂Gk
∂x

(0, y), (4.55)

whose left hand side, by Eq. (4.50), is

zSGk(0, y) = zSG1(0, y) = zSκ1(y)φ1(0)(1 + α1)H∞(γ1Y ),

and whose right hand side can be rewritten as

zSGk(0, y) = κ1(y)φ1(0)H∞(γ1Y )

[
2γ1

λ1(0)ra,1(0)
− (α1 + 1)

∑
k

γk + ξk(0)/2

λk(0)ra,k(0)

]
.

We therefore obtain

2γ1

λ1(0)ra,1(0)
− (α1 + 1)

∑
k

γk + ξk(0)/2

λk(0)ra,k(0)
= zS(1 + α1),

which gives

α1 =
2z1(0)

zS +
∑

k z
∗
k(0)

− 1, (4.56a)

αk =
φ1(0)

φk(0)

2z1(0)

zS +
∑

k z
∗
k(0)

, for k 6= 1. (4.56b)

Gap junctional nodes

At a gap junction that connects dendritic branch m and n, if we assume that the

input y is locating on segment m−, i.e. the segment on branch m before the gap

junction, we have

Gk(xk, y) = κm(y)φk(xk) [δkm−H∞(γmY − γmX) + αkH∞(γmY + γkX)] , (4.57)

for k ∈ {m−,m+, n−, n+}.
The continuity of voltage boundary condition Eq. (2.46) requires

Gm−(0, y) = Gm+(0, y),

Gm−(0, y) = Gm+(0, y),
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which gives,

1 + αm− = αm+ , (4.59a)

αn− = αn+ . (4.59b)

Note that φm−(0) = φm+(0) = φm(0) and φn−(0) = φn+(0) = φn(0) because φk is

continuous on segment k.

At the same time, the conservation of currents boundary condition Eq. (2.45)

requires

1

ra,m(0)

[
∂Gm−

∂x
(0, y) +

∂Gm+

∂x
(0, y)

]
= gGJ(Gm−(0, y)−Gn−(0, y)),

1

ra,n(0)

[
∂Gn−

∂x
(0, y) +

∂Gn+

∂x
(0, y)

]
= gGJ(Gn−(0, y)−Gm−(0, y)),

that is,

1

ra,m(0)λm(0)

[
∂Gm−

∂X
(0, Y ) +

∂Gm+

∂X
(0, Y )

]
= gGJ(Gm−(0, Y )−Gn−(0, Y )),

(4.60a)

1

ra,n(0)λn(0)

[
∂Gn−

∂X
(0, Y ) +

∂Gn+

∂X
(0, Y )

]
= gGJ(Gn−(0, Y )−Gm−(0, Y )).

(4.60b)

Since

Gk(0, Y ) = κm(y)φk(0)(δkm− + αk)H∞(γmY ),

∂Gk
∂X

(0, Y ) = κm(y)φk(0)

(
δkm−

[
γm −

1

2
ξm(0)

]
− αk

[
γk +

1

2
ξk(0)

])
H∞(γmY ),

Eq. (4.60) can be rewritten as

gGJ [φm(0)(1 + αm−)− φn(0)αn− ]

=
φm(0)

ra,m(0)λm(0)

([
γm −

1

2
ξm(0)

]
− (αm− + αm+)

[
γm +

1

2
ξm(0)

])
=

φn(0)

ra,n(0)λn(0)
(αn− + αn+)

[
γn +

1

2
ξn(0)

]
,
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or equivalently, by Eq. (4.59),

gGJ [φm(0)αm+ − φn(0)αn+ ]

=
φm(0)

ra,m(0)λm(0)

(
2γm − 2αm+

[
γm +

1

2
ξm(0)

])
=

φn(0)

ra,n(0)λn(0)
2αn+

[
γn +

1

2
ξn(0)

]
.

Solving for αm+ , αn+ and then substituting the solutions in Eq. (4.59), we obtain

1 + αm− = αm+ =
zm(0) (1 + 2RGJz

∗
n(0))

z∗m(0) + z∗n(0) + 2RGJz∗m(0)z∗n(0)
, (4.61a)

αn− = αn+ =

φm(0)
φn(0) zm(0)

z∗m(0) + z∗n(0) + 2RGJz∗m(0)z∗n(0)
. (4.61b)

4.2.3 Summary and discussion

To summarise, the tapering node factors are

Amm = −1, for an open terminal, (4.62a)

Amm =
2zm
z∗m
− 1, for a closed terminal, (4.62b)

Anm = 2pmΦnm − δnm, for a branching node, (4.62c)

Anm = 2pS,mΦnm − δnm, for a somatic node, (4.62d)

Anm = pGJ,mΦnm, for passing through a gap junctional node, (4.62e)

Amm = −pGJ,n − qm, for reflecting at a gap junctional node, (4.62f)

Amm = 1− pGJ,n − qm, for passing by a gap junctional node, (4.62g)

in which

Φnm =
φm
φn

, (4.63)

pk =
zk∑
k z
∗
k

, (4.64)

pS,k =
zk

zS +
∑

k z
∗
k

, (4.65)

pGJ,k =
zk

z∗m + z∗n + 2RGJz∗mz
∗
n

, (4.66)

qm =
(1 + 2RGJz

∗
n)ξm/2

z∗m + z∗n + 2RGJz∗mz
∗
n

, (4.67)
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where all values are taken at the node under investigation.

At the same time, the tapering Green’s function Eq. (4.39) can be rewritten as

Gij(x, y;ω) =
Φji(y, x)

zj(y;ω)

∑
trip

Atrip(ω)H∞(Ltrip(x, y;ω)), (4.68)

where

Φji(y, x) =
φi(x)

φj(y)
=

[
rj(y)

ri(x)

] 3
4

[
1 + [r′j(y)]2

1 + [r′i(x)]2

] 1
8

, (4.69)

is the general formula of Φnm (whose numerator and denominator are always eval-

uated at the same point, i.e. the node that connects segment m,n).

Despite of the spatial reparameterisation different from that in the cylindrical cases,

we can apply the method of local point matching on the rescaled coordinate and

therefore the algorithm follows exactly the same steps as in §3.2.3. Once Jy is obtain,

we can write down the Green’s function as

Gij(x, y;ω) =
Φji(y, x)

2zj(y;ω)
Jy. (4.70)

Note that individual segments can have different shapes as long as they belong to

the six types of tapering or they are simply cylindrical.

Reduced to cylindrical cases

In order to check the identity between Eqs. (3.41) and (4.68) in the cylindrical

cases, we first note that all the newly derived tapering node factors summarised in

Eq. (4.62) which are reflective at the node, i.e. Amm, are simply reduced to those

defined in §3.1.2 if we return to the cylindrical cases, by recognising ξk = 0,Φnm = 1

for all cylinders, which implies z∗k = zk, qk = 0.

However, for m 6= n, Atnm = AcnmΦnm because ξk = 0 but Φnm 6= 1. Recall Eq.

(3.57) writes a trip coefficient in the cylindrical cases as,

Actrip = Acik1A
c
k1k2A

c
k2k3 . . . A

c
kn−1knA

c
knj , (4.71)

while in the tapering framework, it becomes

Attrip = Atik1A
t
k1k2A

t
k2k3 . . . A

t
kn−1knA

t
knj

= Acik1Φik1A
c
k1k2Φk1k2A

c
k2k3Φk2k3 . . . A

c
kn−1knΦkn−1knA

c
knjΦknj ,

(4.72)
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assuming all node factors are not reflective. Hence, the ratio is

Attrip
Actrip

= Φik1Φk1k2Φk2k3 . . .Φkn−1knΦknj =
φj
φi
. (4.73)

Note that φk here is not dependent on the specific location x but only on the segment

index k, and that the ratio is consistent for all trips from x to y including those

have reflections, as all reflective node factors are pairwise the same and cancel each

other. We therefore obtain ∑
AttripH∞(Ltrip)∑
ActripH∞(Ltrip)

=
φj
φi
, (4.74)

which yields the new term Φji(y, x) in Eq. (4.68) that is not in Eq. (3.41).

Similar results as in cylindrical cases

Many results for the cylindrical Green’s function in §3.3 are directly valid for the

tapering Green’s function as well. For instance, the framework permits the existence

of loops and yields similar results at steady states.

Here we study the reciprocity identity (3.62) as it is not straightforward to obtain.

For a trip and its reversal configuration, ‘pirt’, we can write down the trip coefficients

in the same forms as Eqs. (3.57) and (3.58) and find the ratio

Atrip

Apirt
=

Aik1Ak1k2Ak2k3 . . . Akn−1knAknj

AjknAknkn−1Akn−1kn−2 . . . Ak2k1Ak1i
, (4.75)

assuming all reflective node factors have cancelled each other.

Let the node connecting segment km, km+1 indexed by ηm and i = k0, j = kn, we

have
Akmkm+1

Akm+1km

=
zkm+1(ηm)

zkm(ηm)
Φ2
kmkm+1

(ηm) =
γkm+1

γkm
, (4.76)

for m = 0, 1, 2, . . . , n, which gives∑
AtripH∞(Ltrip)∑
ApirtH∞(Lpirt)

=
γj
γi
. (4.77)

Therefore, by Eq. (4.68), we obtain

Gij(x, y)

Gji(y, x)
=
zi(x)

zj(y)
Φ2
ji(y, x)

γj
γi

= 1. (4.78)

We then immediately obtain the continuity in input locations as well.
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4.3 Sum-over-trips with general morphology

Although we have extended the originial sum-over-trips framework which works on

a cylindrical dendritic tree so that the generalised framework can now deal with ta-

pered dendritic branches, the types of the shapes are still limited, because otherwise

we cannot solve Eq. (4.15) analytically and do not have a known kernel if γ there

is dependent on Z.

Nonetheless, as it is explained in §3.1.2 when we initially derive the sum-over-trips

framework from the path integral formulation, the same argument works for all

Green’s functions other than the heat kernel. Since the resonant cable equation

(2.29) is a diffusion equation (that is linear), it always permits a Green’s function

and can be interpreted as a Fokker-Planck equation constructed from path integral.

Therefore, on principle, any linear cable equation on an arbitary dendritic tree could

be fit into the sum-over-trips framework.

4.3.1 Finite element method: a generalisation

To solve computationally a cable equation, particularly a non-linear one is commonly

conducted by discretising the cable into small segments and solving all of them

simultaneously via numerial approaches, i.e. the finite element method.

For numerical results, we can apply this method and treat individual segments

as cylinders, and thereby the framework of sum-over-trips without tapering (see

Chapter 3) can be used to solve for Green’s functions on a dendritic tree with

tapering.

Here we use the finite element method from a theoretical perspective by taking the

partition to the limit of infinite compartments.

Infinite partition

We first consider a resonant cable of length l with both electrical and spatial pa-

rameters that are dependent on locations. The cable is then discretised into N

compartments which are small enough so that, approximately, all individual com-

parments are cylinders with constant local parameters.

By the method of local point matching, we can write down

Jai = Jai−1fi(li)
2zi+1

zi + zi+1
+ Jbi+1

fi+1(li+1)

(
2zi+1

zi + zi+1
− 1

)
, (4.79a)

Jbi = Jai−1fi(li)

(
2zi

zi + zi+1
− 1

)
+ Jbi+1

fi+1(li+1)
2zi

zi + zi+1
, (4.79b)
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Figure 4.5: A schematic of a general tapered dendrite with finite partition. Since
each segment is cylindrical, we can apply the sum-over-trips framework for cylinders.
Note the points ai, bi are on the left and right of the right end of segment i.

where Jai and Jbi are unknowns defined recursively at the point i = 1, 2, 3, . . . , N−1,

which is also the index of segment (i − 1, i) (see Fig. 4.5). Note Jai is only rooted

at point i and pointing in the direction of segment i+ 1. At the two ends, we have

Ja0 = JA, (4.80)

JbN = JB, (4.81)

where JA and JB will be dependent only on each other and all other unknowns

from other cables, exactly the same as in the method of local point matching for

cylindrical cases.

We may rewrite Eq. (4.79) as

αi(2zi + ∆zi) = (αi −∆αi−1)fi(∆xi−1)(2zi + 2∆zi) + (βi + ∆βi)fi+1(∆xi)∆zi,

(4.82a)

βi(2zi + ∆zi) = (αi −∆αi−1)fi(∆xi−1)(−∆zi) + (βi + ∆βi)fi+1(∆xi)2zi, (4.82b)

by renaming αi = Jai , βi = Jbifi and use ∆ for any variable which defines the

difference from step i+ 1 to i, e.g. ∆zi = zi+1 − zi.
Since the Taylor expansion of fi(x) = e−γix at x = 0 is

fi(x) = 1− γix+ . . . ,
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we have the following first order expansions,

fi(∆xi−1) = 1− γi∆xi−1 + . . . ,

fi+1(∆xi) = 1− γi+1∆xi + · · · = 1− γi∆xi + . . . ,

as γi+1 = γi + ∆γi.

By taking the limit N →∞, that is, all ∆xi → 0 and assuming Ja, Jb, γ, z smooth,

Eq. (4.82) becomes a pair of differential equations,

2αzγ = (α+ β)z′ − 2zα′, (4.83a)

−2βzγ = (α+ β)z′ − 2zβ′. (4.83b)

Note from now on we abuse all notations as they are the corresponding continuous

variables. However, we have to pay attention to the boundary, as Ja0 , JbN are not

defined in Eq. (4.82) but are involved in the definition of Ja1 , Jb1 , JaN−1, , JbN−1
.

When we take the limit, Ja1 almost becomes Ja0 and similarly for JbN . Since the

variables are now continuous in x, we may write the boundary conditions as

α(0) = JA, (4.84)

β(l) = JB. (4.85)

At the same time, the root of Jb1 goes very close to the left end of the cable; we

can treat it as the left-forward trip ending at this point. The similar and symmetric

description fits for JaN−1 , which gives the other pair of boundary conditions,

β(0) = J→A, (4.86)

α(l) = J→B. (4.87)

These two J ’s are substantial when applying the method of local point matching,

as the cable of the neighbourhood attached to the current segment will ask for this

information.

Analytic solutions

By addition and subtraction of Eqs. (4.83a) and (4.83b), we obtain

m′ + γn =
z′

z
m, (4.88a)

n′ + γm = 0, (4.88b)
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where

m = α+ β,

n = α− β,

which gives

m′′ −
[
γ′

γ
+
z′

z

]
m′ −

[
γ2 + γ

(
z′

zγ

)′]
m = 0, (4.89a)

n′′ −
[
γ′

γ
+
z′

z

]
n′ − γ2n = 0. (4.89b)

Hence, instead of the coupled equations, we can solve Eq. (4.89b) for n first with

the boundary condition,

n(0) = JA − J→A, (4.90a)

n(l) = J→B − JB, (4.90b)

and obtain m by Eq. (4.88b).

Note that, by the method of local point matching, in the case when the input is on

the cable under investigation while the output is not, we have

G(x, y;ω) =
1

2z(y)
[α(y) + β(y)] =

m(y)

2z(y)
. (4.91)

Recalling the definitions of γ, E in Eqs. (3.17) and (2.59), we have

γ2(x;ω) =
2Ra
r

(
1

Rm
+ Cmω +

1

rres + ωLres

)
=

2Ra(x)E(x;ω)

r(x)
, (4.92)

where in general all paramters can be location-dependent. Eq. (4.89b) thereby

becomes

n′′ − [ln Er]′n′ − 2RaE
r

n = 0. (4.93)

If the coefficients in Eq. (4.93) are constants, or Eq. (4.93) is a Cauchy-Euler

equation, we can obtain analytic solutions.

In the first case,

E = C1r, (4.94)

where C1 6= 0 is an arbitary constant. Note that Ra is assumed to be a global

constant, because it is not realistic to assume the axial resistivity varying along the

cable.
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At the same time,

[ln Er]′ = 2[ln r]′, (4.95)

is also a constant (in x), which implies

r = eC2x+C3 , (4.96)

where C2, C3 are arbitrary constants. If C2 = 0, r and thus E are constants, which

recovers the most trivial cases that the cable is not tapered and has homogeneous

electrical properties.

Otherwise, the cable is tapered exponentially, which, by Eq. (4.94), gives

E = C4e
C2x, (4.97)

where C4 = C1e
C3 and C2, C4 6= 0.

In the other case when Eq. (4.93) is a Cauchy-Euler equation, we have

[ln Er]′ = C5

x+ C0
, (4.98)

E
r

=
C6

(x+ C0)2
, (4.99)

where C0, C5, C6 are arbitrary constants. Eq. (4.98) gives,

Er = eC7(x+ C0)C5 , (4.100)

for arbitrary C7. Combining Eqs. (4.99) and (4.100), we obtain

E = C8(x+ C0)C5/2−1, (4.101)

r = C9(x+ C0)C6/5+1, (4.102)

where

C8 = C6
1/2eC7/2,

C9 = C6
−1/2eC7/2.

Note that C6 = 2 recovers the special case of the quadratic tapering with homoge-

neous electrical properties discussed in §4.1.3.

In summary, we can acquire analytic solutions if either Eqs. (4.96) and (4.97) or

(4.101) and (4.102) are satisfied for r, E , respectively. The framework of sum-over-

trips is thereby extended for a larger family of tapered dendrites.
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4.3.2 Conformal quantum mechanics: a complementary

In §3.1.2 where we construct the framework of sum-over-trips, it is stated that a

dendritic tree whose electro-physiology is described by a linear cable equation can

be solved via the same approach, as long as the kernel, i.e. the Green’s function on

an infinite cable, is known.

Here we consider the dendritic radius following a power law, similar to Eq. (4.102),

but for simplicity, we define

r(x) = r0

[
l − x
l

]ν
= r0(1 + ax)ν , (4.103)

where ν and a = −l−1 are arbitrary constants that charaterise the tapered structure.

Note that ν = 0, 2 recover the cylindrical and parabolic cables, respectively.

On passive cables

Romero and Trenado [2015] proves that, for a passive dendritic branch whose mor-

phology can be described by the power law Eq. (4.103), the passive cable equation

with tapering is invariant under the conformal transformation. Hence, by introduc-

ing new variables,

ζ =
(1 + ax)1−ν/2

a(1− ν/2)
, (4.104)

V (ζ; t) = ζ
− 3ν

4(1−ν/2) e−t/τΨ(ζ; t), (4.105)

Eq. (2.30) can be rewritten as

−∂Ψ(ζ; t)

∂t
= ĤΨ(ζ; t), (4.106)

given the assumption [r′(x)]2 � 1.

Note Eq. (4.106) appears to be in the same form as a time-dependent one-dimensional

Schrödinger equation for a non-relativistic free particle, where the Hamiltonian is

defined to be

Ĥ = −D0
∂2

∂ζ2
+

3ν(5ν − 4)

4(2− ν)2

D0

ζ2
. (4.107)

where

D0 =
λ2

0

τ
. (4.108)

Although the transformation is not well defined for ν = 2, we have discussed the

case of quadratic tapering in §4.1.3, and Romero and Trenado [2015] studies this
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Figure 4.6: A tapered dendrite in a conical shape. The radius is defined by Eq.
(4.103) with ν = 4/5.

case separately with a different spatial reparameterisation which is essentially the

same as Eq. (4.25).

Other than ν = 0 which recovers the cylindrical cases that we have discussed,

ν = 4/5 which represents a conical tapering (see Fig. 4.6) also reduces Eq. (4.106)

to a heat equation.

For ν 6= 0, 4/5, 2, Eq. (4.106) can be solved by separation of variables [Romero and

Trenado, 2015], that is, by taking

Ψ(ζ; t) = e−Etψ(ζ), (4.109)

we obtain

Eψ(ζ) = Ĥψ(ζ), (4.110)

which appears to be in the same form as a time-independent Schrödinger equation.

On resonant cables

By assuming zero initial data and [r′(x)]2 � 1, the resonant cable equation with

tapering in the Laplace frequency domain (2.58) is now reduced to

E(ω)V (ω) =
1

2Rar(x)

∂

∂x

[
r2(x)

∂V (ω)

∂x

]
+ I0(ω), (4.111)
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which, by change of variable Eq. (4.104), becomes

EV =
r0

2Ra

[
∂2V

∂ζ2
+

3ν

2(1− ν/2)

1

ζ

∂V

∂ζ

]
+ I0. (4.112)

Since we are now working in the frequency domain, instead of Ψ defined in Eq.

(4.105), we introduce the new variable Ψ∗ by

V (ζ; t) = φζΨ
∗(ζ; t), (4.113)

where

φζ = ζ
− 3ν

4(1−ν/2) , (4.114)

or, equivalently, Ψ∗ = e−t/τΨ, which reduces Eq. (4.112) to[
2Ra
r0
E +

3ν(5ν − 4)

4(2− ν)2

1

ζ2
− ∂2

∂ζ2

]
Ψ∗ =

I0

φζ
. (4.115)

Note that the operator has the simliar structure to Ĥ in Eq. (4.107) and thus we

have extended the method of Romero and Trenado [2015] from passive cables to

resonant ones.

Additionally, we point out that the reparameterisations, ζ,Ψ∗, conducted here are

essentially special cases of Z, V ∗ (up to a scale) introduced by Poznanski [1991],

since the dendrtic radius is assumed to follow Eq. (4.103). It could also be checked

that φζ is indifferent from φ(Z) defined in Eq. (4.9). Therefore, we can directly

incorporate the new case of ν = 4/5 into the framework of sum-over-trips with

tapering.

4.3.3 General Green’s functions: a summary

For various versions of cable equations, passive or resonant, cylindrical or tapered,

we have consistently used the heat kernel, because after local coordinate tranforma-

tions, all the cable equations (2.29) - (2.33), with the certain constraints, reduce to

the form of Eq. (3.21) or (4.32) and hence the reparameterised variables share the

same underlying Green’s function, which is simply an elementary function. There-

fore, even though the cable equations can potentially be different from segment to

segment, they can be integrated into the framework of sum-over-trips.
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Location-dependent electrical properties

In order to obtain analytical solutions to Eqs. (3.16) and (4.15), we enforce the

constraints that both γ take values independent of location,

γ2
c (x;ω) =

1

D

[
ω +

1

τ
+

1

C(rres + Lresω)

]
=

2Ra
rc
E , (4.116a)

γ2
t (Z;ω) = τω + β +

Rm
rres + Lresω

= Rm[E + (β − 1)gl]. (4.116b)

Note the difference between their definitions, and that we can recover the cylindrical

γc by recognising β(Z) = 1 in γt and some rescaling, and that Eq. (4.115) reduces

to the same structure as Eq. (4.116a) if ν = 0, 4/5.

Recall that in §4.3 we have obtain several analytical solutions with E varying

in x by the Cauchy-Euler equation. By the same approach, we could require

γc, γt ∝ x−1. However, the leaky and axial resistivities Rm = 1/gl, Ra are not

likely to vary along a dendritic branch, the cylindrical radius rc is also a constant,

and E = Cω+gl+(rres+Lresω)−1 involves these constants as well (C the capacitance

per area is also a constant). Therefore, it is quite unrealistic for the Cauchy-Euler

equation to hold.

Nonetheless, E can be location-dependent in both the cases as it encodes information

of resonant channels, which could have a heterogeneous distribution. It has been

found in some pyramidal neurons that the density of Ih channels is varying linearly

along the dendrites [].

Assume all the individual channels are identical, and that they are linearly dis-

tributed along a cylindrical cable for x ≥ 0 where a soma (or a closed terminal) is at

x = 0, that is, gh = r−1
res = ρg(x− x0), ph = L−1

res = ρp(x− x0), for constants x0 ≤ 0

and ρg, ρp > 0, we thereby have, for Eq. (4.116a),

E(x;ω) = Cω + gl +
ρg(x− x0)

1 + ωρg/ρp
, (4.117)

which reduces Eq. (3.16) to the form of an Airy function [] whose Green’s function

can be found in terms of elementary and Airy functions [Vallée and Soares, 2010].

Mathematically, we can take the same approach for Eq. (4.116b) with E(Z;ω) and

obtain analytical Green’s functions by Airy functions. However, as E(Z;ω) is linear

in Z, it is not linear in x unless we go back to the cylindrical cases.
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General morphology and resonance

Given a homogeneous distribution of resonant channels, we can obtain analytical

solutions only if the geometric ratio F (Z) is one of the six types in Table 4.1, or

the dendritic radius r(x) = r0(1 + ax)4/5. If ν 6= 0, 4/5, 2 in Eq. (4.115), or more

generally, if E is location-dependent, we cannot apply the heat kernel.

Nonetheless, as is stated in §3.1.2, any linear differential equation has Green’s func-

tions. For an arbitrary resonant cable equation with tapering, by the Laplace trans-

form and assuming zero initial data, we can write Eq. (2.58) as

E(x)V =
1

2Rar(x)
√

1 + (r′(x))2

∂

∂x

[
r2(x)

∂V

∂x

]
+ I0(ω), (4.118)

where both the morphological parameter r and the electrical paramter E are gener-

ally dependent on location x. Differentiating the terms in the bracket, we obtain

E(x)V = a(x)

[
2r′(x)

∂V

∂x
+ r(x)

∂2V

∂x2

]
+ I0(ω), (4.119)

where

a(x) =
1

2Ra
√

1 + (r′(x))2
, (4.120)

which can be reduced to

[Eφv − 2ar′φ′v − rφ′′v ]v = arφv
∂2v

∂x2
+ I0, (4.121)

by introducing change of variable,

V (x;ω) = φv(x)v(x;ω), (4.122)

and defining

φv(x) =
C

r(x)
, (4.123)

where C is an arbitrary constant.

Equivalently, Eq. (4.121) can be rewritten as

Hv = u, (4.124)
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where

H =
Er + 2ar′ − 2

ar2
− ∂2

∂x2
, (4.125)

u(x;ω) =
I0

C0a
. (4.126)

The Green’s function thus satisfies,

HGv(x, y) = δ(y − x), (4.127)

and can be explicitly found by

Gv(x, y) =
∞∑
n=0

ḡn(x)gn(y)

µn
, (4.128)

where gn(x) are a set of eigenfunctions admitted by the linear operator H, whose

complex conjugates are ḡn(x), and µn are the corresponding eigenvalues.

However, in order to find gn, µn, it is necessary to solve

Hgn = µngn, (4.129)

for all n, which can be recognised as a Schrödinger equation. Note that the Hamil-

tonian,

Ĥ =
p̂2

2m
+ V (x; t). (4.130)

is the sum of the kinetic energy, i.e. the differential operator, and the potential

energy V (x; t). Since V is arbitrary due to Eq. (4.125), in general it does not admit

analytic solutions.

Nonetheless, several special cases have been thoroughly studied in quantum me-

chanics, and the Green’s functions are available for V (x; t) being linear [Brown and

Zhang, 1994; Tsaur and Wang, 2006], harmonic [Tsaur and Wang, 2006; Rother,

2017], centrifugal [Tsaur and Wang, 2006], or somehow more generally, conservative

[Rother, 2017].

Whereas we could obtain Green’s function for any linear cable equations, they ad-

mit either too complicated or implicit solutions that are not practically useful if no

constraints are applied. Besides, their Green’s functions are different, which means

they cannot fit into the framework of sum-over-trips together, even though they can

fit into the framework individually. In other words, for a dendritic tree with gen-

eral tapering and resonance, the appraoch of sum-over-trips would work, only if the
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cable equations on all branches are indifferent, which is apparently an unrealistic

assumption.

Nevertheless, such models are applicable if the entire dendritic tree can be reduced

to an equivalent single dendrite that is equipped with location dependent properties.
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Chapter 5

Application and Discussion
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5.1 Preparations for computer simulations

In this chapter, we will take computational approaches based on the theoretical

results discussed in all the previous chapters. All simulations are conducted with

MATLAB. Here we first present the standard models, methods and measurements

to be considered in this chapter.

5.1.1 Model

In order to study the funtions of different neuronal morphologies, structures and

parameters of dendritic trees could be different from case to case. Nonetheless, we

will only consider cylindrical and parabolic dendritic branches.

It has been discussed in §4.1.3 why the quadratic tapering, i.e. the Exponential

type, but not other tapering structures is preferred. The shape of the parabolic

dendrite is defined by Eq. (4.22) as

r(x) = r0

[
l − x
l

]2

, (5.1)

for x ∈ [0, l0], where l0 ≤ l is the dendritic length, and r0 is the initial dendritic

radius. The choice of l0 instead of l allows us to freely control the dendritic length

when necessary.

We can thereby easily find the terminal radius r1 by inserting l0 in Eq. (5.1),

r1 = r(l0) =

[
l − l0
l

]2

. (5.2)

If l0 = l, the dendritic terminal radius is zero. Otherwise, the terminal radius is

finite.

In practice, however, it is more straightforward to define a parabolic dendrite by

specifying its length l0 and intial and terminal radii r0, r1. We hence identify, from

Eq. (5.2),

l =
l0

1−
√
r1/r0

, (5.3)

which together with r0 fully charaterises the parabola, and determines the geometric

ratio.

In addition, we keep the values of other membrane parameters the same in different

examples, unless otherwise specified.
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5.1.2 Method

To calculate the response voltage profile in time, we first find the Fourier transform

of the input Iinj(t), and construct the Green’s function G(x, y; iω) by the method

of local point matching, multiply them, and and finally take the inverse Fourier

transform to obtain V (x, y; t) (see §2.3.3).

Input currents

Whereas we can only find the Fourier transform of a general input by numerical

approaches (e.g. the chirp current in Fig. 2.10 is obtained by the fast Fourier

transform, the fft function in MATLAB), some idealised models of inputs can

be transformed analytically, or by simply refering to a table of Laplace tranforms

[Abramowitz and Stegun, 1964].

For instance, a step function in time domain,

Istep(t) = A0H(t− t0), (5.4)

appears exponential in the Laplace frequency domain,

Istep(ω) =
A0

ω
e−t0ω, (5.5)

and the EPSC (2.15) becomes

IEPSP(ω) =
A0

(ω +B0)2
. (5.6)

Green’s functions

For an arbitrary dendritic tree, we can find the Green’s function in algebraic expres-

sion by the method of local point matching following the steps in §3.2.3 and then

substitute in numerical values. If all branches are cylindrical, the node factors are

to be found in §3.1.2, and the spatial scaling parameter γc is defined by Eq. (3.17)

as

γ2
c (ω) =

1

D

[
ω +

1

τ
+

1

C(rres + Lresω)

]
. (5.7)

If some of the dendritic segments are parabolic, the node factors are to be found in

§4.2.3, and all spatial parameters are firtsly transformed by Eq. (4.25) as

Z(x) =
3

2K
ln
l − x
l

, (5.8)
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and then scaled by γp which is defined in Eq. (4.16) as

γ2
p(ω) = τω + β(Z) +

Rm
rres + Lresω

. (5.9)

For the rest dendrites which are cylindrical, instead of Eq. (5.8), we directly use the

definition (4.3), which gives

Z(x) =
x

λ
. (5.10)

Note we can also use the framework for tapering for a dendritic tree with all cylin-

drical segments, but we prefer the original framework of sum-over-trips, because the

cylindrical node factors are simpler than the tapering ones.

The steps to obtain the Green’s function will be presented explicitly in the first

example (see §5.2.1), while the detailed calculations will be similar for the other

examples and thus omitted.

Whereas we can obtain G(x, y;ω) for all possible combinations of input and out-

put locations, we will mainly consider somatic responses G(x = xsoma, y;ω) and

responses at the input location G(x = y, y;ω).

5.1.3 Measurements

Other than directly showing plots of Green’s functions and response profiles, the

main measurements to be investigated are the voltage equilibria and the resonant

frequencies. Given the Green’s funtion, the voltage equilibrium can be easily found

by Eq. (3.80). This measurement is mainly meaningful for passive neurons with

step inputs, but it relates directly to the current transfer from input to output and

thus characterises the strength of a response, even for a resonant system.

The resonant dynamics can be characterised by the two resonant frequencies, the

preferred frequency Ω∗ and the natural frequency Ω̄∗, because the real part of the

(complex) frequency in the Laplace domain characterises the transient behaviours,

and the imaginary part characterises the periodic behaviours of a resonant system.

The two frequencies can be both understood roughly as the frequencies where the

Green’s function reaches its largest amplitude. Ω∗ is defined on the real frequency

axis of the Laplace domain, which can be obtained as a solution of the implicit

equation, for ω ≥ 0,
∂G(x, y;ω)

∂ω
= 0, (5.11)

while the natural frequency Ω̄∗ is defined on the imaginary axis of the Laplace

domain, i.e. the real axis of the Fourier domain, which maximises the modulus of
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Soma

Figure 5.1: A schematic of a neuron with a soma and a single dendrite. Terms of Eq.
(5.13a) are shown by blue arrows, terms of Eq. (5.13b) are shown by red arrows.

the Green’s function, that is, for ω ≥ 0.

∂|G(x, y; iω)|
∂ω

= 0. (5.12)

5.2 Results of simplified models

5.2.1 Single neuron with a single dendritic cable

Here we consider a model of a single dendritic branch, whose left end (x = 0) is

attached to a lumped soma, and whose right end (x = l0) is a closed terminal (see

Fig. 5.1).

Cylindrical dendrite

In this case, by the method of local point matching, a system of linear equations for

Jv and Jw corresponding to a pair of points (v, w) takes the following form,

Jv = [Jwf(γcl0) + f(γcx)](2pS,c − 1), (5.13a)

Jw = Jvf(γcl0) + f(γc(l0 − x)), (5.13b)

where pS can be found from Eq. (4.65).

Solving the linear system (5.13) we can find that

Jv =
(2pS,c − 1)[f(γc(2l0 − x)) + f(γcx)]

1− (2pS,c − 1)f(2γcl0)
, (5.14a)

Jw =
(2pS,c − 1)f(γc(l0 + x)) + f(γc(l0 − x))

1− (2pS,c − 1)f(2γcl0)
, (5.14b)

and by

Jy = Jvf(γcy) + Jwf(γc(l − y)) + f(γc|x− y|), (5.15)
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we can obtain the Green’s function in the Laplace domain by Eq. (3.56).

It can be checked that the solution is equivalent to that in the form of an infi-

nite series obtained by directly applying the sum-over-trips method [Timofeeva and

Coombes, 2014].

Parabolic dendrite

By the method of local point matching, the linear system can be found as

Jv = [Jwf(γpZ(l0)) + f(γpZ(x))](2pS,p − 1), (5.16a)

Jw = [Jvf(γpZ(l0)) + f(γpZ(l0 − x))](2pC,p − 1), (5.16b)

which is similar to the system (5.13) but with several modifications.

Solving the system (5.16) we obtain,

Jv =

(2pS,p − 1)

[(
l−l0+x

l
l−l0
l

)−3γp/2K
(2pC,p − 1) +

(
l−x
l

)−3γp/2K
]

1− (2pS,p − 1)(2pC,p − 1)
(
l−l0
l

)−3γp/K
, (5.17a)

Jw =

(2pC,p − 1)

[(
l−x
l
l−l0
l

)−3γp/2K
(2pS,p − 1) +

(
l−l0+x

l

)−3γp/2K
]

1− (2pS,p − 1)(2pC,p − 1)
(
l−l0
l

)−3γp/K
, (5.17b)

and by

Jy = Jvf(γpZ(y)) + Jwf(γpZ(l0 − y)) + f(γpZ(|x− y|)), (5.18)

we can obtain the Green’s function in the Laplace domain by Eq. (4.70).

Somatic response

If the output is measured at the soma, i.e. x = 0, the Green’s functions can be

found as

Gc(0, y) =
pS,c[exp(−γcy) + exp(γcy − 2γcl0)]

zc[1− (2pS − 1) exp(−2γcl0)]
, (5.19a)

Gp(0, y) =

pS,p

[(
l−y
l

)−3γp/2K
+ (2pC,p − 1)

(
l−l0
l

l−l0+y
l

)−3γp/2K
]

zp(y)

[
1− (2pS,p − 1)(2pC,p − 1)

(
l−l0
l

)−3γp/K
] (

l − y
l

)3/2

.

(5.19b)
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For comparison between the cylindrical and parabolic cases, we simplify the parabolic

model by assuming l0 = l, which gives,

Gc(0, y;ω) =
1

zc tanh γcl + zS

cosh γc(l − y)

cosh γcl
, (5.20a)

Gp(0, y;ω) =
pS,p

zp(y)

[
l − y
l

]3/2−3γp/2K

. (5.20b)

We can then easily obtain the Green’s functions in the case of semi-infinite dendritic

cables from Eq. (5.19), that is,

lim
l→∞

Gp(0, y;ω) = lim
l→∞

Gc(0, y;ω) =
2pS,c

zc
exp(−γcy), (5.21)

given that all electrical parameters, the somatic radii and the starting radii of the

dendritic cables are identical in both the cylindrical and parabolic models. Note

that the limit of Gp(0, y;ω) in Eq. (5.21) can be checked algebraically, but it is

more heuristic to consider that the parabola asymptotically becomes a cylinder as

K → 0.

In the opposite case when the dendritic length is extremely short, it is straightfor-

ward to see that

lim
l→0

Gp(0, 0;ω) = lim
l→0

Gc(0, 0;ω) =
1

zS
, (5.22)

which is exactly the system of a single soma.

For intermediate dendritic length which varies in the realistic range, we plot the

resonant frequencies as functions of dendritic length according to the somatic input

impedance for the two models in Fig. 5.2. The two curves are considerably close

when the dendritic length is either small or large, so the two models are to behave

similarly, as predicted by the two limits of l in Eqs. (5.21) and (5.22).

However, the two pairs of curves are quite away from each other around l = 150 μm,

which implies the two models behave differently; as we can see from the somatic

voltage profiles in response to the same chirp stimulus in Fig. 5.3, the tapering

structure does not only affect the strength of the signal, but also the arrival time of

the peak, i.e. the phase of signal.

Now we consider a more realistic input modelled by the idealised EPSC defined by

Eq. (2.15). It can be clearly see from Fig. 5.4A that the difference between two

models are minor when the dendritic length is either small or large, and there is a

noticeable gap in the peak amplitudes for l = 150 μm.

The peaks arrival times of the two models seem not distinguishable in the case of a

single EPSC, but if we apply a train of EPSCs with succesive time gap of 10 ms, such
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Figure 5.2: Resonant frequencies vary with respect to the dendritic lengths in the
cylindrical (red) and parabolic (blue) models, for (A) preferred frequencies Ω∗ and
(B) natural frequencies Ω̄∗, nested in which (a) and (b) are the differences between
the two models. Dendritic parameters: r = 1 μm for the cylindrical model while
r0 = 1 μm and r1 = 0 μm for the tapering model; in addition, Cm = 1 μF·cm−2,
Rm = 2000 Ω·cm2, Ra = 100 Ω·cm, rres = 1000 Ω·cm2 and Lres = 5 H·cm2 are the
same for both the models. Somatic parameters: rS = 12.5 μm, Csoma = 1 μF·cm−2,
Rsoma = 2000 Ω·cm2, rsoma = 100 Ω·cm2, Lsoma = 5 H·cm2.

difference in peak arrivals (due to the different phases) could cause the two models

to reach global maxima at two peaks (see Fig. 5.4B). In the case that the difference

occurs near the threshold of any nonlinear behaviour, e.g. an IF model (see §2.2.2),

such small differences could lead to entirely different neuronal computation and,

furthermore, different emergent network behaviours.

Input impedance

The input impedance can be found for x = y,

Gc(y, y) =
[1 + (2pS,c − 1) exp(−2γcy)][1 + exp(−2γc(l − y))]

2zc[1− (2pS,c − 1) exp(−2γcl)]
, (5.23a)

Gp(y, y) =
(2pS,p − 1)

(
l−y
l

)3γp/K
+ (2pC,p − 1)

(y
l

)3γp/K + 1

2zp(y)
, (5.23b)

with the assumption l0 = l again which reduces the parabolic model with the zero

ending radius.
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Figure 5.3: Somatic voltage response to a chirp input at soma with ωchirp = 0.0003
kHz and Achirp = 0.2 nA, for the case l = 150 μm about where the differences
between the two resonant frequencies are the largest.

Voltage attenuation

The voltage attenuation from an injected location to the soma is defined by Koch

[1984] as

AV (y;ω) =

∣∣∣∣G(0, y;ω)

G(y, y;ω)

∣∣∣∣ , (5.24)

by which we obtain

AV,c(y) =
2pS,c

exp(γcy) + (2pS,c − 1) exp(−γcy)
, (5.25a)

AV,p(y) =
2pS,p

(
l−y
l

)3/2−3γp/2K

(2pS,p − 1)
(
l−y
l

)3γp/K
+ (2pC,p − 1)

(y
l

)3γp/K + 1

. (5.25b)

5.2.2 Single neuron with a compartmental dendrite

Here we consider a model of a single neuron similar to that in §5.2.1, but its den-

dritic branch is fixed in length and compartmentalised into N successive cylinders
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Figure 5.4: Somatic voltage responses to EPSCs at soma. A. Voltage profiles on the
three models with dendritic lengths of 15, 150 and 1500 μm, respectively, to a single
EPSC. B. Voltage profiles on the model with dendritic length of 150 μm to a train
of four EPSCs with successive time gap of 10 ms.

whose lengths are the same but radii are different. Such compartmentalisation can

be commonly seen in computational works considering tapering [Cuntz et al., 2007].

In order to compare with the parabolic model in §5.2.1, we assume the compart-

mental model shares the same electrical parameters as in the parabolic one. At the

same time, the radii of the successive cylinders are chosen to be

rc(i) =
rm(i) + rM (i) +

√
rm(i)rM (i)

3
, (5.26)

where

rm(i) = r

(
min
x∈∆i

(x)

)
, (5.27a)

rM (i) = r

(
max
x∈∆i

(x)

)
, (5.27b)

and ∆i is the segment of compartment i ∈ {1, 2, 3, . . . , N}.
Eq. (5.26) ensures the total membrane areas in the two models are exactly the same,

and the cylinders approximately tracks the dendritic shape of the quadratic tapering

with a succesive decrease in their radii (see Fig. 5.5A). This compartmental model

is motivated by the fact that the dendritic membrane plays an important role in

signal filtration. Note the model is reduced to the cylindrical model when N = 1,

but its radius it not chosen to be the same as the starting radius as the parabolic

model as in §5.2.1.
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Figure 5.5: (A) Schematic shapes of the compartmental models with N = 1 (red), 2
(black), 4 (green), and the parabolic model (blue). All the models are purely passive
here, i.e. rres = rsoma → ∞. Other paramters and morphology are the same as the
parabolic model in Figure 5.2 except for l = 100 μm and Ra = 1000 Ω·cm. (B & C)
Somatic response at equilibrium as a function of input location, where r1 = 0 μm
in (B) but r1 = 0.01 μm in (C).
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Dendrite with zero terminal radius

In Figure 5.5B, we plot the somatic responses at equilibrium (t → ∞) of a purely

passive neuron by a step input at different locations. When N = 1, we can clearly

see a large range that the parabolic model yields a higher voltage equilibrium than

the cylindrical model, as is proven by Bird and Cuntz [2016] for a single dendritic

branch.

When N > 1, we can further observe the same phenomena on each local segment, as

the compartmental curve are convex piece-wisely on individual compartments, and

the voltages at the both ends of the segments are equal to those on the parabolic

concave curve. Therefore, the property of optimal current transfer of quadratic ta-

pering is seemingly a local property and thus works on individual tapered dendritic

segments regardless of the global morphology.

We have also verified that when N is large (e.g. N = 100), the compartmental model

becomes indistinguishable from the parabolic one. However, considering computa-

tional expenses, a tapered dendrite is usually partitioned into only a few segments

(N < 10) Cuntz et al. [2007]. Hence, with a small number of compartments, the

cylindrical model badly approximates the parabolic model as it is believed.

Note in Fig. 5.5B the voltage of the parabolic model reaches 0 when y = l, which

can be easily seen from Eq. (5.20b), while that of the cylindrical model never does

(unless N → ∞). This phenomena can be easily understood as we have assumed

zero radius at the terminal, which leads to infinitely large input resistence. We must

point out that, in such models with realistic parameters, the point where the voltage

of the parabolic model becomes smaller than that of the cylindrical model always

occurs when the dendritic radius is considerably small (at the scale of nm in Fig.

5.5B), which is thinner than cell membrane. This is apparently unrealistic and is

considered merely a mathematical result.

Nonetheless, moving the input away from the terminal, we can still observe a large

range (y > 50 μm) of the voltage attenuation ratio (5.25) of the parabolic model

staying at almost zero (see Fig. 5.6), while the voltage responses of the parabolic

model are larger than those of the cylindrical one (see Fig. 5.5B). Therefore, we can

conclude that the somatic response of the cylindrical model will be greater given the

same size of EPSPs at the same input location, while that of the quadratic model

will be larger due to same strength of EPSCs.

By the definition of the voltage attenuation ratio (5.25), we can additionally infer

that the input resistence is higher in the region close to the terminal end than the

region close to the somatic end. The results are consistent with the simulations on

neurons with real morphology [Kubota et al., 2011].
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Figure 5.6: Voltage attenuation as a function of input location. All the parameters
are the same as in Fig. 5.5B.

Dendrite with finite terminal radius

Here we consider a more realistic parabolic model with r1 = 0.01 μm, and plot Fig.

5.5C. The voltage of the parabolic model exhibits no more drastic slump near the

terminal and remains larger than that of the compartmental models.

However, we can still observe differences between the parabolic model and the com-

partmental models with small N . If we approximate the parabolic model by the

compartmental model with fixed N , the error is ignorable in the thicker segments,

but noticeable in the thinner segments, which suggests that it is more economic for

computational works to discretise a tapered branch more dense near its terminal.

5.2.3 Single neuron with a ‘Y’-shaped dendritic tree

Here we consider two neuronal models of a simple ‘Y’-shape, whose dendritic tree

consists of one primary dendrite and two identical branched dendrites. The dendrites

are connected at the branching point (where we assume x = 0) and at the other end

of the primary dendrite the same lumped soma are attached (see Fig. ??). The two

branched dendrites are modelled by either two identical parabolas, or two identical
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cylinders, so that we can see the effects of the global morphology more clearly. The

primary dendrite is a cylinder with rc = r0 in either the model.

Identify the node factors by the rules of sum-over-trips

Firstly, at the soma, we have

AS00 = 2pS0 − 1, (5.28)

where

pS0 =
γ0θ

S
0

ΓS0 θ
S
0 + zS

, (5.29)

with

θS0 =
1

λS0 r
S
a,0

, (5.30a)

ΓS0 = γ0 +K0. (5.30b)

Secondly, at the branching point, we have

Ab00 = 2pb0 − 1, (5.31a)

Ab11 = Ab22 = 2pb1 − 1, (5.31b)

Ab01 = Ab02 = 2pb1Φ01, (5.31c)

Ab10 = Ab20 = 2pb0Φ10, (5.31d)

Ab21 = Ab12 = 2pb1, (5.31e)

where

Φ10 = Φ−1
01 =

φb0
φb1

=

[
λb0
λb1

] 1
2

, (5.32)

and

pb0 =
γ0θ

b
0

Γb0θ
b
0 + 2Γb1θ

b
1

, (5.33a)

pb1 =
γ1θ

b
1

Γb0θ
b
0 + 2Γb1θ

b
1

, (5.33b)

in which θb0, θ
b
1 are similarly defined as θS0 in Eq. (5.30a) with their local parameters,

and

Γb0 = γ0 −K0, (5.34a)

Γb1 = γ1 +K1, (5.34b)
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Finally, at the two closed terminals in the end of the branched dendrites, we have

Ac11 =
2γ1

Γ1
− 1, (5.35)

where

Γ1 = γ1 −K1. (5.36)

Find the Green’s function by the method of local point matching

With the output x = −L0 locating at the soma and closed terminals, we have

Ja = Jbf(L0)AS00 + f(0)AS00, (5.37a)

Jb = Jaf(L0)Ab00 + f(L0)Ab00 + Jdf(L1)Ab10 + Jef(L2)Ab20, (5.37b)

Jc = Jaf(L0)Ab01 + f(L0)Ab01 + Jdf(L1)Ab11 + Jff(L2)Ab21, (5.37c)

Jd = Jcf(L1)Ac11, (5.37d)

and Je, Jf are omitted since identical branches are assumed, for L0 = γ0Z0(l0), L1 =

γ1Z1(l1).

Equivalently, the linear system (5.37) can be rewritten in the matrix form as,
−1 f(L0)AS00 0 0

f(L0)Ab00 −1 0 2f(L1)Ab10

f(L0)Ab01 0 −1 f(L1)[Ab11 +Ab21]

0 0 f(L1)Ac11 −1



Ja + 1

Jb

Jc

Jd

 =


−(AS00 + 1)

0

0

0

 .
(5.38)

We can thus solve for J ’s by matrix inversion and compute Jy by

Jy =

[Ja + 1]f(Ly) + Jbf(L0 − Ly), for 0 ≤ y ≤ l0,

Jcf(Ly−l0) + Jdf(L1 − Ly−l0), for l0 < y ≤ l0 + l1.
(5.39)

where Ly = γ0Z0(x0), Ly−l0 = γ1Z1(y − l0), which then gives the Green’s function.

Somatic responses

In Fig. 5.7A, we plot the somatic responses at equilibrium with different lengths of

the primary dendrite, based on the calculation in the previous sections. We can see

that, despite of the voltage change in different cases, the signals are locally larger

in the parabolas than in the cylinders for a wide range.

We can also set the primary dendrite to be parabolic but the branched dendrites
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Figure 5.7: Somatic response at equilibrium as a funtion of input location on a
‘Y’-shaped dendritic tree. (A) The two identical branched segments are exactly
the same as in Figure 5.5B in either the parabolic or the cylindrical case, but they
are now attached to a cylindrical primary dendrite with the other end attached
to the soma. The radius of the primary dendrite is r0 = 1 μm and the length
is 0, 20, 40, 60, 80 and 100 μm, respectively in the six different cases. The soma is
attached at the other root of the primary dendrite. All other parameters are the
same as in Fig. 5.5B. (B) All segments are parabolic. r0 = 1 μm and r1 = 0.01 μm
are fixed, while the radius at the branching node rb = 1 (solid), 0.5 (dotted) and
0.01 (dashed). Other parameters are unchanged from (A). (B-a & B-b) Zoomed-in
plots of (B) for (a) on the primary dendrite and (b) on the branched dendrits.
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Cell 1 Cell 2

Figure 5.8: A schematic of a two-cell simplified network coupled by a gap junction.

cylindrical, which yields opposite results that such neuron amplifies proximal signals

(see dashed curves in Fig. 5.7B).

In fact, by fixing r0 = 1 μm (the initial dendritic radius at x = −100 μm) and

r1 = 0.01 μm (the terminal dendritic radius at x = 100 μm) and varying rb (the

dendritic radius at the branching node at x = 0 μm) in the range between r0, r1,

we observe the blue curve deforming from convex for rb ∼ r0 (the primary dendrite

is almost a cylinder), eventually to concave for rb ∼ r1 (the branched dendrites are

almost cylinders). We can therefore confidently conclude that the optimal current

transfer property of the quadratic tapering is quite local a property, whereas Bird

and Cuntz [2016] has only proven it for a single branch of dendrite.

It is also interesting to mention that, with intermediate values of rb (e.g. the dotted

line in Fig. 5.7B), both the primary and the branched dendrites are quite tapered,

which leads to larger signals in either the proximal or the distal dendrites, comparing

to the cylindrical model.

5.2.4 Two simplified neurons coupled by a gap junction

Here we consider a simplified two-cell network. The two neurons are coupled by a

dendro-dendritic gap junction (see Fig. 5.8). For simplicity, all dendritic branches

are considered cylindrical and semi-infinite.
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Identical neurons

We start by considering a model of two identical cells, either of which consists of

a soma and N dendritic branches. We assume that the biophysical properties of

all dendritic segments are the same and that the physical lengths are scaled by the

characteristic function γ(ω). The gap junction is located at some distance LGJ away

from the somata. We assume that this network can receive stimuli in four different

locations mimicking distal (y1 and y2) and proximal (y3 and y4) inputs. Points of

output x1 (for neuron 1) and x2 (for neuron 2) are located between either the soma

and the gap junction.

By the method of local point matching we can construct a linear system of algebraic

equations for the functions Ja, Jb, Jy and Jw in the case of placing output at x2 (see

Fig. 5.8),

Ja = Jbf(LGJ)(2pS − 1) + f(x2)(2pS − 1), (5.40a)

Jb = Jyf(LGJ)pGJ + Jaf(LGJ)(−pGJ) + f(LGJ − x2)(−pGJ), (5.40b)

Jy = Jwf(LGJ)(2pS − 1), (5.40c)

Jw = Jyf(LGJ)(−pGJ) + Jaf(LGJ)pGJ + f(LGJ − x2)pGJ. (5.40d)

This system of equations can be solved algebraically by hand [Yihe and Timofeeva,

2016]. The Green’s functions for four individual inputs for neuron 2 are

G2(x2, y1) =
1

2z

pGJ + pGJa0

q0
F̄ (x2, y1), (5.41a)

G2(x2, y2) =
1

2z

1− pGJ + pGJa0

q0
F̄ (x2, y2), (5.41b)

G2(x2, y3) =
1

2z

pGJf(2LGJ)

q0
F̄ (x2, 0)F̄ (y3, 0), (5.41c)

G2(x2, y4) =


1
2z

[
F̄ (x2, y4)− pGJf(2LGJ)

q0
F̄ (x2, 0)F̄ (y4, 0)

]
, if x2 < y4,

1
2z

[
F̄ (y4, x2)− pGJf(2LGJ)

q0
F̄ (x2, 0)F̄ (y4, 0)

]
, if x2 > y4.

(5.41d)

where

a0 = (2pS − 1)f(2LGJ), (5.42)

q0 = 1 + 2pGJa0, (5.43)

F̄ (x, y) = f(x+ y)(2pS − 1) +
f(y)

f(x)
. (5.44)
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Figure 5.9: The somatic Green’s function in the Laplace domain when input is
placed at y3 = 0, for (A) Cell 1 and (B) Cell 2. Biophysical parameters of the cells’
membrane are the same as in Fig. 5.2. Gap-junctional parameters: LGJ = 50µm,
RGJ = 100 MΩ.

Since the neurons are identical, the corresponding Green’s functions for neuron 1

can be easily obtained from Eq. (5.41) by the symmetry of the input locations.

In Fig. 5.9 we plot the Green’s functions at the soma of each cell (x1 = 0 and

x2 = 0) in response to a stimulus y3 = 0 applied to Cell 1. Note that Eqs. (5.41a)

and (5.41b) are equivalent to the solutions for the Green’s functions in the form of

an infinite series found using the ‘method of words’ in Timofeeva et al. [2013].

Symmetric inputs

If two distal inputs y1 and y2 are applied at equal distances from each soma (y1 =

y2 > LGJ), the Green’s function for each soma is identical. We obtain

G1(0, y1) +G1(0, y2) = G2(0, y1) +G2(0, y2) =
F̄ (0, y1)

2z
=
pSf(y1)

z
. (5.45)

Similarly, for the case of two proximal inputs y3 and y4 placed at the same distance

away from each soma (y3 = y4 < LGJ), the somatic Green’s function for each cell

has the same form:

G1(0, y3) +G1(0, y4) = G2(0, y3) +G2(0, y4) =
F̄ (0, y3)

2z
=
pSf(y3)

z
. (5.46)

Both the solutions are independent of gGJ and LGJ and share the same form as

Eq. (5.21) for the single neuron with single dendrite model. This result can also be

inferred directly from the equivalent cylinders (see §3.3.2).
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Different neurons

Now we consider the network consisting of two different neurons. Following the

same steps as for the previous case, we obtain the somatic Green’s functions for

neuron 1,

G1(0, y2) =
pS1

z2
f(L1 + y2 − L2)

pGJ,2 + pGJ,2a2

q12
, (5.47a)

G1(0, y1) =
pS1

z1
f(y1)

1− pGJ,2 + pGJ,1a2

q12
, (5.47b)

G1(0, y4) =
pS1

z2

pGJ,2

q12
F̄2(y4,L1 + L2), (5.47c)

G1(0, y3) =
pS1

z1

[
f(y3)−

pGJ,2

q12
F̄1(y3, 2L1)

]
, (5.47d)

and, symmetrically for neuron 2,

G2(0, y1) =
pS2

z1
f(L2 + y1 − L1)

pGJ,1 + pGJ,1a1

q12
, (5.48a)

G2(0, y2) =
pS2

z2
f(y2)

1− pGJ,1 + pGJ,2a1

q12
, (5.48b)

G2(0, y3) =
pS2

z1

pGJ,1

q12
F̄1(y3,L1 + L2), (5.48c)

G2(0, y4) =
pS2

z2

[
f(y4)−

pGJ,1

q12
F̄2(y4, 2L2)

]
, (5.48d)

where, for k = 1, 2,

ak = (2pSk − 1)f(2Lk), (5.49)

q12 = 1 + pGJ,2a1 + pGJ,1a2, (5.50)

F̄k(x, y) = f(x+ y)(2pSk − 1) +
f(y)

f(x)
, (5.51)

pSk =
γk/ra,k

Nγk/ra,k + CSkω +R−1
Sk

+ (rSk + LSkω)−1
, (5.52)

γk = γk(ω) is the characteristic function of the membrane of Cell k, and Lk is the

distance between the gap junction and the soma of Cell k.

Gap junction

Using Eqs. (5.47) and (5.48) we can investigate how the strength and location of

the gap junction affect the dynamics of the two-cell model. Here, we consider that
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Figure 5.10: The preferred frequencies Ω∗1 and Ω∗2 in the soma of Cell 1 (A) and
of Cell 2 (B). The dendritic parameters of Cell 1 as in Fig. 5.9, except r1 =
100 Ω · cm2. The dendritic parameters of Cell 2: a2 = 0.4µm, C2 = 1µF · cm−2,
R2 = 20000 Ω·cm2, Ra,2 = 150 Ω·cm, and r2 →∞ (i.e. passive dendritic membrane).
Both somas are passive.

a stimulus is applied to the soma of Cell 1 and construct a map

Ψ : (LGJ, gGJ)→ (Ω∗1,Ω
∗
2) (5.53)

for the preferred frequencies Ω∗1 and Ω∗2 in the soma of Cell 1 and Cell 2 respectively.

This map is shown in Fig. 5.10. In this case Cell 2 is assumed to be purely passive,

and Cell 1 has a passive soma with resonant dendrites. The map indicates that the

location of a gap junction plays a significant role in the dynamics of the network,

unless the coupling is weak. Moreover, the initially passive soma of Cell 2 starts to

demonstrate a resonant behaviour imposed by Cell 1 even for weak coupling.

Often it is difficult to measure experimentally locations and strengths of gap junc-

tions in real neuronal networks. Knowledge of the inverse map

Ψ−1 : (Ω∗1,Ω
∗
2)→ (LGJ, gGJ) (5.54)

from a pair of preferred frequencies (obtained from somatic sub-threshold stimula-

tions) to (LGJ, gGJ) might provide estimates for gap-junctional parameters. How-

ever, the map Ψ is neither surjective nor injective (see, for example, Fig. 5.11 for a

network of two resonant cells showing that the system may demonstrate the same

resonant behaviour for two different gap-junctional locations, proximal and distal,

and identical coupling strengths) making it mathematically impractical to obtain

Ψ−1. At the same time, if a constraint on locations of gap junctions is imposed
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Figure 5.11: The preferred frequency Ω∗1 in Soma 1. All parameters are the same as
in Fig. 5.10, except r2 = 300 Ω · cm2.

(e.g., proximal or distal), this may lead to a one-to-one correspondence between

(LGJ, gGJ) and (Ω∗1,Ω
∗
2) and therefore assists in the estimation of gap-junctional

parameters just from the somatic stimulations.

5.2.5 Two tufted neurons coupled by gap junctions

Now we consider a more realistic neuronal network consisting of two identical tufted

or mitral cells. Each neuron has a soma attached to N dendritic branches, one of

which is the primary dendrite with the tuft spanning from its end. The two cells

are coupled in their tufts by dendro-dendritic gap junctions (see Fig. 5.12A). As

in the previous model, we assume that the biophysical properties of all dendritic

segments are the same and that the physical lengths are scaled by the characteristic

function γ(ω). We consider that each cell has nT segments in its tuft, and nGJ of

them possess identical single gap-junctional points located l0 away from the end of

the primary dendrite. The primary dendrite of each cell has the length L, while the

other branches are semi-infinite. For simplicity, we consider that the membrane of

both cells is purely passive (i.e. γ2(ω) = (τ−1 +ω)/D), however it is straightforward
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Cell 2Cell 1
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Figure 5.12: A: A full two-cell tufted network model. B: An equivalent reduced
model.

to generalise it for the resonant case.

Model reduction

Although it is possible to use the method of local point matching to construct the

Green’s functions for this tufted network, it is more convenient to reduce the model

by equivalent cylinders (see §3.3.2), which gives the simplified structure shown in

Fig. 5.12B. Note that the simplified morphology is the ‘Y’-shape neuron we have

investigated in §5.2.3.

To be specific, if the input and output are not located in the tufts, the tufted

segments for either the neuron are to merge into two equivalent cylinders, with an

equivalent gap junction located on one of them, or explicitly,

z∗T,GJ = nGJzT, (5.55a)

R∗GJ = RGJ/nGJ, (5.55b)

where zT is the impedance of the individual tufted segments, z∗T,GJ is that of the

equivalent cylinder with the gap junction, and RGJ, R
∗
GJ are the gap junctional re-

sistances in the original and simplified models, respectively.
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If the input is in the tuft but the output is not, it is easy to check that the con-

straints (5.55) would give the same Jy, but due to Eq. (3.56), Green’s functions are

dependent on the input impedance zj(y). We therefore have

G(x0, yk) =
1

nT − nGJ
G∗(x0, y1), (5.56)

for the input yk applied to the branch without a gap junction, and

G(x0, yk) =
1

nGJ
G∗(x0, y2), (5.57)

for the input yk applied to the branch with a gap junction. Here the reduced model

is constructed in such a way that the stimuli in the full and reduced models are

located at the same distance away from the primary dendrites, i.e. y1 = yk and

y2 = yk. The point x0 (0 ≤ x0 ≤ L) is located on the primary dendrite of either of

the cells.

If the output is in the tufts but the input is not, we can use the reciprocity identity

(??) as we have derived the opposite case. If both the input and output are in the

tufts, the symmetry amongst the tufted segments are broken, and thus the model

reduction fails. Fortunately, such cases are not of important interests.

By the method of local point matching, the somatic Green’s functions to the somatic

input in soma 1 can be found as

G2(0, 0) =
p2

Sc
2
0g0t0f(L)

z(1 + 2g0(c0s0t0 + 2nGJpT − 1))
, (5.58a)

G1(0, 0) =
pS

2z
(1 + d0f(L))c0 −G2(0, 0), (5.58b)

where s0 = f(L)(2pS− 1), d0 = f(L)(2pD− 1), g0 = pGJf(2l0), t0 = 2nGJpTpDf(L)

and c0 = 2/(1 − d0s0), with pD contributing to the node factors of travelling into

the primary dendrite.

Note that the proof of the model reduction and the derivation of the Green’s func-

tions are quite tedious and thus omitted here. All the details can be found in the

appendices in Yihe and Timofeeva [2016].
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Figure 5.13: Coupling ratio as a function of gap-junctional conductances and dis-
tances from the branch point with the primary dendrite. Both cells are identical
and passive. Dendritic parameters: a = 0.4µm, C = 1µF · cm−2, R = 2000 Ω · cm2,
Ra = 150 Ω · cm. Somatic parameters: aS = 25µm, CSoma = 1µF · cm−2,
RSoma = 2000 Ω · cm2. The length of the primary dendrite is L = 350µm.

Gap junction

For investigating the effect of gap junctions from the tufted regions of the cells on

the model’s behaviour we define a coupling ratio (CR) as

CR =
maxt InvLT{G2(0, 0;ω)}(t)
maxt InvLT{G1(0, 0;ω)}(t)

. (5.59)

Using the Green’s functions (5.58), we compute and plot in Fig. 5.13 a map of

CR for various values of conductance gGJ and location l0 of the gap junctions in

the tuft. This map can be compared with the CR map obtained earlier in Migliore

et al. [2005] for two mitral cells coupled by distal gap junctions. Note that the

map in Migliore et al. [2005] is obtained by brute-force numerical simulations of

a computational model with a similar, but not identical, structure to our two-cell

model.

115

PREPRIN
T



Chapter 6

Conclusion
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6.1 Summary

In this thesis, we have thorougly studied the dendritic cable theory, which provides

us a fundamental framework of understanding the effects on dendritic functions of

its structures.

Due to the complex morphology of dendrites, it is non-trivial to find the input-

output relationship, even though we simplify the electro-physiological model and

assume all cable equations linear. We thus introduce the sum-over-trips framework

in Chapter 3, which allows us to write the solutions as the Green’s functions in the

form of infinite sums. In Chapter 4, we further generalise the original framework

from cylindrical dendrites to tapered ones.

The sum-over-trips framework is useful in theory. Without specifying the morphol-

ogy, we are able to show some general properties of the input-output relationship on

dendritic trees, e.g. the reciprocity identity, the condition for equivalent cylinder.

However, the computational results do not converge nicely in practice. To overcome

this problem, the method of local point matching is developed, by which we can

calculate the compact algebraic expressions for any Green’s functions.

Finally, we conduct simulations in Chapter 5, and explicitly investigate different

dendritic morphologies. Whereas the structures of the models are simplified, with

equivalent cylinders, they are representative for a few classes of neurons.

We have shown that the tapered dendritic strutures are better at tranfering cur-

rents from distal to proximal locations than the non-tapered, and the signals are

also different in their phases, which could potential cause the two neurons firing

at different times and rates. In addition, this property is quite local, that is, the

global morphology has little effect (only quantative) on the dendritic segment under

investigation.

Since gap junctions allow subthreshold signals to transmit directly between adjacent

cells, we can directly investigate its properties in the sum-over-trips framework. A

network of two identical neurons and a network of two different neurons are studied.

It has been shown possible for us to infer the parameters of a gap junction (mainly

its strength and location) by simply stimulating and recording the somata. This is

useful because the gap junctions are often so small that their parameters cannot be

measured directly in experiments.
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6.2 Further works

It has been shown in this thesis that the framework of sum-over-trips and the method

of local point matching are powerful tools in analysing and computing responses on

morphologically realistic neurons. However, we have explore little into the research

field of dendritic physiology (other than electro-physiology), and many important

aspects of neuroscience have yet not been considered. Here we point out the natural

directions of further work.

Realistic morphology from neuron reconstructions

The framework of sum-over-trips was desgined for realistic morphorlogy [Abbott

et al., 1991], but has not become useful in practice, because its solutions are in form

of infinite sums and the computational errors cannot be well controlled due to its

‘bad’ convergence. Nonetheless, the method of local point matching has made accu-

rate and efficient computation possible on complex dendritic morphologies. It will

be convenient if a software could be coded up that would read data of neuron re-

constructions and automatically compute the Green’s functions symbolically. Later

simulations will then be able to use these results directly by simply substituting in

numerical values of the paramters.

Implications of stochastic cable theory

In reality, randomness can be seen everywhere in the nervous system. Whereas the

dendritic morphologies are relatively static in the time scale we are working with,

the input and output signals are commonly modelled as stochastic processes. Here

we point out the framework of sum-over-trips is perfectly and straightforwardly

compatible with the stochastic cable theory [Tuckwell, 2005], because the (deter-

ministic) Green’s function obtained by sum-over-trips will be the mean behaviour

of the stochastic Green’s function, and its variance can be written down directly as

well accordingly, if the input as a white noise.

Threshold and non-linear neuronal activities

Threshold behaviours can be conveniently incorporated into the work, because

Green’s functions are linearly additive. After computing the Green’s function, it

is trivial to check for some active points if or not their voltages are above the

thresholds. Response profiles after the occurance of threshold behaviours have to

be updated succesively, but such computational procedure still saves computational
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cost as no real computation is required for voltage variations between two threshold

behaviours. If the threshold behaviour is a spike that induces changes in synaptic

strengths, the processes of learning can be also included in the model.

An alternative approach to deal with active behaviours is to consider the non-linear

system directly, e.g. the Hodgkin-Huxley model. Green’s functions are originally

defined for linear systems and thus they appear not to be useful in neuroscience,

where non-linear properties are playing an important role. Nonetheless, it is possible

to generalise the the Green’s function formalism, and to understand a Green’s func-

tion as a description of input-output relationship. To extend Green’s function for

non-linear systems, we may want to use the Lippmann-Schwinger equation, which

allows us to derive Green’s functions functions via an iterative approach [Rother,

2017].

Emergent behaviours of neural networks

Finally, it is always much more challenging but interesting if we study a network

of neurons, especially when the number of the neurons are huge. We would be

able to simulate a network of morphological realistic resonant neurons at a lower

computational expense for now, and if the results of above further works can also

be incorporated, the model can be more realistic in electro-physiology as well as in

morphology.
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