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The inverse problem in collective animal behaviour consists in finding the forces that govern the
motion, given the observed trajectories. Here, correlations between dynamical variables and the
associated forces are measured using Information Theory, by means of an entropy definition. The
entropy values are used in two ways. Firstly, for recognizing important variables used later in a
regression method; and secondly, as a function independent parameter estimation method. The
approach is successfully tested by reconstructing the equations of motion given data generated with

simulations.

I. INTRODUCTION

Groups of animals often exhibit fascinating features.
Motion could be either coordinated or display abrupt
changes in direction. Under pressure, like the presence
of a predator, the same group may swirl as a fluid [1].

In Physics and Chemistry, fundamental laws can guide
the modeling process. The motion of living organisms,
however, lacks such fundamental laws. That is why it is
of great importance inferring the underlying dynamics
from observations. This is known as the inverse problem.

Models of self-propelled particles that self-organize
under pairwise interactions have been proposed |[2]
[3]. However, fitting those models to real data has
not yet been successful. Force Matching methods
have been used [4] for aligning forces with additively
separable terms, proportional to f(ri2)ris, and wvia,
where 715 is the vector between two individuals and vq2
is the difference of its velocities. Here, more general
functions of combinations of those variables are explored.

Any modeling approach that involves regression
assumes that we know, beforehand, the arguments of
the functions to fit. Let us assume first, for the sake of
simplicity, that the system is purely mechanical. For N
individuals interacting in a d-dimensional configuration
space, the upper limit for the number of independent
variables is 2dN. A polynomial fit of degree m would
require coeflicients for the m terms of each variable,
plus coefficients for all the mixed, or interaction terms.
Therefore, this brute-force approach is useless in prac-
tice, unless we have extremely large sets of data.

Information theory provides powerful tools for
analysing correlations between data, and the study of
correlations between effects and their possible causes
sounds like a good starting point for the inverse prob-
lem. Entropy, in this formalism, can be thought of as
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the external information required to represent a system,
if we use a suitable definition. Hence, with the entropy
of the rule that assigns the magnitude to infer to the de-
pendent variables that we are considering, we can mea-
sure how random the system looks under those particular
variables, or description. The lower the randomness, the
better the description of that system. In this context,
correlations mean predictability. Information theory will
be used to measure how relevant are certain sets of vari-
ables to the dynamics. These measures will have the
property of being independent of the function to fit.

Traditional curve fitting methods are based on
polynomial fitting. In many interesting cases, the
arguments of the function to fit are itself functions of
the dynamical variables and parameters. If we simply
perform polynomial fitting, the parameters will be mixed
with the coefficients of the fitting, making difficult any
information extraction. A function independent method
has two main advantages. It allows us to test educated
guesses about the form of the arguments. And finally, it
helps us discovering parameters in a cleaner way.

As I discuss below, under an incomplete set of vari-
ables, the system will display higher entropy than under
the complete set. The entropy remaining when the
system is observed under the complete set of variables
—or an equivalent one— is a measure of the noise in the
system. In the context of collective animal behaviour,
noise has been proposed as the control parameter that
drives the system into a critical state [5], in which corre-
lation length increases dramatically. Hence, it is useful
to have a noise measure that is function independent.

The whole procedure used here starts by obtaining the
trajectories. Then, by numerical differentiation all the
required dyanmical variables can be calculated. After
that, I use the entropy for finding the relevant variables
and the parameters. Finally, the system is separated in
different regimes, in order to recover the equations of
motion by regression.



II. THEORY

Let D = {Dy,Ds,...,D;} be a set of r independent
variables of a discrete (or discretised) dynamical system,
consisting of N individuals in a configuration space
of dimension d. The system can be either stochastic
or deterministic. At every time step ¢, the state of
the individual X; is X! = (X}4,...,X}.). Define the
neighbourhood (dependent on d) of individual i at time
t of extension b, as the set of b closest individuals to X;
to be o} , = o(X};b).

Consider a space of outcomes O = {01, Oq, ..
be predicted, and the probabilistic description

- Om} to
P(Oj|of,b)

O for instance could be the next state of a Cellular
Automata if o represents the previous neighbouring
states, or the force exerted on a particle if o are the sur-
rounding particles. P can be constructed by observing
the system, or it can be known a priori if we are working
with a model. If this is the case, we will say that we
know the true probabilities of the system, and that we
have the correct description of the system.

At time t, we define the entropy production of the
prediction using the description D as

. 1
§4(X,0) = lim Z P(ot,) > P(Oj]ot,)log -

; (Os]oi4)

By definition, S measures how stochastic is the system
under the description D, and hence, the stochastic
component plus our possible lack of information about
the description. It measures on average how multivalued
is the outcome of a dynamical state.

By construction, S can be considered a tool for
characterising the best description D, as the smallest
set of independent variables that minimises S. How-
ever, for it to be considered a definition, it must be
proven that if a correct set D exists, then (i) and (ii) hold:

(i) For every ¢ and b, if D; C D = S*(D1) > S*(D)

(ii) For every ¢t and b, if D C Dy = SY(D) = S%(D>)
if the added degrees of freedom are non-trivial and
with statistically enough information.

Those statements can be proven easily, if we know the
dynamics, i.e. D and the true probabilities P(Oj|af7b).

It is intuitive if we consider that ignoring variables pro-
duces less narrow probability distributions for the out-
come given an income, and therefore entropy increases.
Adding variables produces more states, but if the num-
ber of points is large, the probability distributions will
not change, because the added variables are independent
and hence not taken into account for assigning the out-
come.

III. MODEL

The approach discussed in the previous section was
tested with a very simple model of fish in 2D that
exhibits swirling and boundary behaviour similar to real
systems. The aim is to construct a full model and then
recover the equations of motion from the trajectories
only.

In this model, for each pair of animals, the following
value is computed

n= \/(rz + TAvg)? + (ry + TAv,)?

Where 7 is the vector between the animals, Awv is
the difference in their velocity and T is a reference
time. Therefore, n measures how will the distance
between both animals be after a time T if they keep
their velocities constant. If L is a reference distance, a
force proportional to an odd power p of n — L is then
exerted on the fish. The direction of the force is in that
of the maximum growth of ¢ = n — L, if ¢ is positive,
and in the perpendicular direction if o is negative.
This is a very simple instance of how a living organism
can modulate its velocity in a group, keeping a certain
distance from the others while copying their speed, and
running away if they are too close. It sounds plausible
that an animal acts in advance, choosing a behaviour
depending on the distance that will separate both after
some time, rather than the current distance. Beyond
certain distance called the interaction range, the animals
do not interact.

For each animal, there is also a self-propelling force
and a dragging force as in [3]. The self-propelling force
is proportional to the velocity v of the animal, and the
dragging force is proportional to v2v.

The boundary is considered a potential well. The
effect due to the boundary is proportional to the product
of the well and the projection of the velocity on the
outward normal of the surface. As the points near the
boundary will be disregarded, the form of the force
due to the boundary is not important. However, the
presence of a boundary is important for a reason. After
removing the points near the boundary, a simulation as
well as a real run are both equivalent to several runs



with different initial conditions.

In this model, interactions are pairwise and noise is
present in the form of a force x. Where x is normally
distributed, with mean zero and variance constant in
time.

The total force is then, for points away from the bound-
ary, with o > 0 and within the interaction range:

_ L)
F= (a—bv2)’u—|—(nn)ﬁ+x
Conversely, if ¢ < 0
_ L)
F= (a—va)v+(7777>ﬁJ‘+x

This model, although biologically simple, presents
challenging features for the inverse problem.

IV. IMPLEMENTATION

Let us suppose we do not know the dynamics. The
original equations of motion can be recovered from
observations provided we make some assumptions and
we have a set of measurements. The data required
is the trajectory of each fish parametrized by time.
After numerical differentiation, all required dynamical
variables can be computed from this set. Not all the
assumptions I will make are restrictive, some of them are
on the contrary, including possible features that usually
mechanical systems do not exhibit.

The assumptions I will make are:

1. Interactions are pairwise so the forces are additive.
Hence, all the dynamical information is contained
in the trajectories of two animals.

2. The noise component is drawn from a distribution
constant in time.

3. There can be a repulsive and an attractive zone,
that are possible to estimate from measurements,
as in [6]. Here, a less general way of knowing this
regions will be used.

4. The part of the force due to the interaction of the
animals is a general function of a linear combina-
tion p = ¢17r12+cAw of the distance between them
and the difference of their velocities. A reasonable
assumption given the observed tendency of the an-
imals to stay together and align their velocity.

5. The form of the force in the repulsive region may
change in both, direction and magnitude, respect
to the form of the force in the attractive region.

6. The effect of the boundary away from it is negligi-
ble.

7. There is a self-propelling force and a dragging force
along the direction of the own velocity, and depen-
dent on the own speed only.

8. Beyond a distance called the interaction range, an-
imals do not interact. This range can be estimated
from observations. This is not necessary for the
method to succeed. However, if the interaction
drops dramatically after some distance, taking this
into account leads to a faster convergence.

There is another useful assumption, although not en-
tirely necessary. In an isotropic medium, the relevant
part of p is its norm p. We can test the assumption
by measuring the entropy of the system under the an-
gular part of p, or by evaluating the final fit. In brief,
for an isotropic medium, considering all the previous as-
sumptions, the following force is being proposed for the
attractive regime

F=fwv+g(pRp)+x=Fo+F,+x (1)

And for the repulsive regime

F = f(v)v+ ga(p)Ra(p) + x

Where R and Rs are rotation operators that depend
on whether we are in the attractive or in the repulsive
regime. Although it is more general to include these op-
erators, they might be constant and g = g5 if g itself has
an attractive-repulsive nature. Although the variable p is
a linear combination of 715 and Aw, it is a step further in
generalization to consider arbitrary functions of its norm.

Observing real systems with different behaviour can
lead to different assumptions. As the possibility of
testing all the assumptions exists, the procedure can
be easily extended if observations suggest otherwise.
Observations will actually shape the assumptions. Some
of these changes could lead to excessive computational
or information requirements, while others will not.

If we suspect that any other variable is important for
the dynamics, we can check whether the entropy of the
outcome is reduced or not with this variable, compared
to the entropy obtained by using the other variables.
Depending on the situation, it is useful to consider the
entropy under groups of variables, or the entropy under
single variables.

A system comprised of two fish is far from being sta-
tistically significant. Nevertheless, if noise distribution is
constant in time, we can perform time averages instead
of spatial averages. The entropy equation is then reduced
to



S(1,0)=>"P(1;) Y P(O;|I) log P(OIM

t J

Where I; is an n-dimensional point whose coordinates
are the n dynamical variables to consider, at time t.
O; is the projection of the total force due to one of the
animals along a particular direction, at time t.

S can be used to know if our set of variables is com-
plete, by comparing the entropy of the system with the
entropy under the full set, but that would be computa-
tionally expensive. A more important feature is that it
can be used as a function independent parameter esti-
mator. By function independent it should be understood
that, for instance, if F' is the magnitude of the force cor-
responding to one of the individuals, for p as defined
above

S[E(p), Fl = Sp, F]

For any function £, in particular £ = g. Hence, we can
find ¢; and c¢o by minimizing S[p, F] in the parameter
space of p.

With only two parameters in this particular case, and
because of this function independence:

Slllerriz + 20l F] = S[lrio + 2 A0, F] - (2)

And therefore, we only need to find one parameter.
A later regression will multiply this term by a proper
constant so that ¢; and ¢ are both known.

V. RESULTS AND DISCUSSION

In order to find ¢; and co, I searched for the value of
22 that minimized equation (2).

In figure 1, S[p(r12, Av; E—’;‘), F] is plotted as a function
of Z—f for a system in which the true value is z—f =0.1

For finding f, the same procedure can be performed on
powers of the speed. f can be found as well by regression
if we already know p and there is no rotation operator,
or if we know the operator beforehand. In order to find
it by regression, we also need to be sure that the force
only depends on v and p. Conversely, the Information
Theory approach does not require the knowledge of p
or the rotation operator if it exists, but it needs to be
carried out on a projection of the force in any direction,
given that for the total force associated to the velocity

S[F,, F] = S[f(v)v, F] = S[v, F)

Entropy as a function of the parameter

FIG. 1. In this plot, Z—f, the parameter of p, was varied until
the value that minimized S was found. The true value of was
0.1

Therefore, all the sets of parameters yield similar entropy
estimates.

After knowing f and p, up to a multiplicative con-
stant, we proceed to find the rotation operator, if any.
First we need to remove the points near the boundary,
for a cleaner procedure. By knowing f, as we can
compute from the trajectories v and F', we can calculate
F, from (1).

Figure 2 shows a plot of the cosine of the angle be-
tween p and F,. The plot is noisy but we can observe
that for p > 2 the force is parallel (attractive regime) and
for p < 2 the force is perpendicular (repulsive regime).
The absence of a rotation operator would produce a con-
tinuous value. If the direction of the force were not a
function of p, it would be also observed in this plot.

Likewise, a plot of ri2 vs F), allows us to decide
whether there is an interaction range or not.

Finally we are in conditions of making a regression for
finding g. We need a second filtering. Now we need to
keep either the points in the attractive regime, or the
points in the repulsive regime. Figure 3 shows an added
variable plot of the multivariate regression:

FmO(frUm+Zpipz
A

In the attractive regime. The dispersion is due to the
noise. Points are scattered symmetrically, suggesting
a successful regression. A mnon-considered force would
appear in this plot as a different trend. If the angular
component of p were important, here it will be evident.

With the coefficients of this fit, it is straightforward to
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FIG. 2. The cosine of the angle between p and F),.
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FIG. 3. Adjusted variable plot for the multivariate regresion
of the force in the direction of Z.

reconstruct the equations of motion, as we can know the
true values of F, and F,. The repulsive regime can be
treated alike.

VI. SCOPES, LIMITATIONS AND NUMERICAL
CONSIDERATIONS

It is a rather remarkable feature that the parameter es-
timation did not require filtering data or separating the
system into different regimes. For instance, even know-
ing that F, = (a — bv?)v, an attempt to find a and b
by regression without knowing F),, would be unsuccess-
ful, while it was possible with the Information Theory
approach. This fundamental difference, perhaps, is due
to the fact that regression works when the unknown or
ignored part is certain kind of noise. The Information
Theory approach, on the other hand, still works if the
unknown or ignored part is not strongly correlated to
the part we are analysing.

One must be careful while proceeding this way. If we
want to estimate S[p, F], formally, we need to consider
S[(p,I), F] where I is the remaining dynamical infor-
mation. However, we have assumed that F = F(p,v),
and as p is a function of the velocity differences, v is
not strongly correlated to p. When one variable appears
explicitly in other, we need to be careful while choosing
the arguments of S. Clearly, the number of states
grows exponentially with the number of dimensions
considered, therefore, when possible, it is convenient to
find a description with non-overlapping variables, or at
least with not strongly correlated variables. In figure 1
the true value of the parameter is 0.1, we can observe
a small deviation towards the left because we are not
using information about the other variables. A small
trade-off for avoiding the explosion in the number of
states when we include more dimensions.

As in any numerical method, the size of the bins is
important. A much faster convergence is achieved by
considering bins with equal number of points, rather than
bins of equal size. This is straightforward to implement
when the argument of S is one-dimensional. For higher
dimension, something useful and easy to implement is to
divide each dimension in pieces of equal number of points
and perform the average only with those n-dimensional
bins whose number of points is greater than a threshold.

As a reference, figure 1 has 115 points, each of them is
an evaluation of S. The system is the trajectory of two
individuals, having 100000 points each one. The number
of bins used to estimate S was 200. The total run time
in a regular computer was 109 seconds.
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