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Abstract

The study of environmental effects in metapopulations provides essential informa-
tion for conservation ecology. Fragmented or patchy populations are more robust to
surviving stochastic fluctuations that could otherwise cause extinction of the popu-
lation. Migration between patches can save a patch from extinction and also allows
for recolonization of a unoccupied patches. Individual-based, stochastic metapopu-
lation models provide a theoretical framework for studying a wide range populations.
The stochasticity included in these models introduces interesting questions regard-
ing the extinction risk of a population, both empirically and theoretically We ask
the question: how does environmental stochasticity on a global spatial scale affect a
metapopulation? A stochastic, discrete-generation Ricker model is used to study the
environmental fluctuations affecting a metapopulation, using numerical simulations.
This model is extensively tested for different types of stochasticity, especially local
environmental stochasticity. Examining the simulations for global environmental
stochasticity we find that patch population sizes become correlated in size, as they
all experience the same environmental conditions. Comparing the strength of the
rescue effect for local and global fluctuations we find the rate of local extinction to be
almost similar. Further analysis shows that the rescue effect is still present, although
overshadowed by stochasticity when the patch population size is low. Continuing
on this study one could investigate different probability distributions for including
global environmental stochasticity in the birth rate. Also of interest is the analyti-
cal analysis for a metapopulation subjected to global environmental stochasticity, if
possible.
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1. INTRODUCTION

The study of metapopulation dynamics has undergone various transformations since
its formalized introduction by Levins [1]. We discuss the essence of a metapopu-
lation and how the study thereof has evolved to the current state of the art. Our
study, specifically, encorporates the fluctuating enironmnetal conditions affecting
populations, hence referred to as stochasticity. The concept of global, as opposed
to local, environmental stochasticity is discussed in this section together with the
range of other stochastic effects that can be experienced by a population.

1.1. Metapopulations

The study of metapopulations provides valuable insight into the persistence of pop-
ulations under stress from habitat destruction or fragmentation [2]. Organisms
subjected to empirical and theoretical studies range from bacteria to animal species,
proving the applicability of metapopulation models. Metapopulations are commonly
represented as a set of spatially separated populations, interacting through immi-
gration between populations. Each individual population is alternatively referred to
as a patch. In the classical Levins model a patch is observed as either occupied or
unoccupied. This model is well studied, both theoretically [3, 4, 5] and empirically
[6, 7]. The equation has a constant patch colonization rate c, a constant patch ex-
tinction rate e and N number of occupied patches. During a time dt an unoccupied
patch might become occupied with rate cNdt, or an occupied patch might become
extinct with rate eNdt. Together the change in the number of occupied patches
during time dt is

dN
dt = cN(1−N)− eN (1.1)

Since the first introduction of the Levins model, it has become increasingly clear
that the local, within patch dynamics could not be discounted [8, 9]. The stochastic
fluctuations of individual patch populations could lead to sporadic local extinction,
which in turn could lead to the extinction of the whole metapopulation. The analysis
of local dynamics incorporated the study of the so called ’rescue effect’. The rescue
effect was introduced by Brown & Kodric-Brown [10] and further developed by
Hastings [11, 12]. Immigration of individuals into a patch on the brink of extinction
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Chapter 1 INTRODUCTION

(a) (b)

Figure 1.1.: Illustrating the significant difference between the classical Levins
model (a), where a patch is either occupied or unoccupied, and the individual
stochastic models (b). Each spot represents a population and all the populations
together collates to a metapopulation

can save that patch from extinction, providing a buffering effect termed the ’rescue
effect’. This effect serves as a counteracting mechanism for the adverse periods of
stochasticity experienced by local populations.

In order to model local patch dynamics, Lande et al. [13] introduced a diffusion
approximation as a way to analytically analyze metapopulations. They described
metapopulation dynamics as consecutive, isolated, extinction and recolonization
events. This method had the limitation of relying on low immigration rates, but
introduced a better understanding of local patch dynamics. The advantage of explic-
itly modelling the number of individuals in a patch through birth, death-processes
and, subsequently, emigration and immigration on the metapopulation scale was
demonstrated by, among others, Drechsler and Wissel [14] and Newman et al. [15].
Population dynamics can thusly be studied on the brink of extinction [16], allowing
us to determine the most likely route to extinction and in due course implement
counter-measures. Four central processes govern the dynamics of explicit models,
namely: birth, death, emigration and immigration. The corresponding equations
differ depending on implementation.

Although we will not address ’extinction risk’ specifically, the definition is still of
importance. Higgins [17] clarifies extinction risk as the probability of all patch popu-
lations becoming extinct. No recovery is possible from this state. When stochasticity
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1.2 Local Stochastic Dynamics

is introduced in metapopulation dynamics, a metapopulation with a finite number
of patches may achieve a quasi-steady state, but a series of chance events must
eventually lead to metapopulation extinction [16]. As we will see, for the case of
infinite number of patches, the dynamics become deterministic again nullifying the
probability of complete extinction.

1.2. Local Stochastic Dynamics

Stochasticity is critical in metapopulations models. Feller already demonstrated in
1939 [18], that where population models under the influence of stochastic fluctu-
ations might go extinct, similar deterministic models predict indefinite survival .
Stochasticity is modelled in the local dynamics, allowing for variance in the popula-
tion growth. Demographic stochasticity and environmental stochasticity are the two
most commonly defined sources of fluctuations [19]. The first simulates the random
birth, death-event of an individual. This captures the difference in chance events,
offspring production and death [20]. The second accounts for exogenous factors, such
as rainfall and temperature fluctuations, causing patch-wide devastation. Environ-
mental stochasticity poses a risk for even large population to go extinct. A further
stochastic effect included in the models presented by Melbourne and Hastings [21]
is demographic heterogeneity. Contrary to demographic stochasticity, which cap-
tures chance events, demographic heterogeneity accounts for the variation in birth
and death rates between individuals [22]. In our model when we refer to demo-
graphic stochasticity, we refer to both the stochasticity of demography as well as
demographic heterogeneity, following the convention of [23]. Together these three
sources of variation are included in our models providing a complete assessment of
the survival capabilities of a population.

1.2.1. Global versus to Local Stochasticity

A question we want to answer is, how would global environmental stochasticity
affect the survival of a population, compared to current implementations of local
environmental stochasticity [17, 21, 23]? Global environmental stochasticity can be
interpreted as a sequence of environmental fluctuations, favorable or unfavorable,
affecting all patch populations simultaneously and equally. Contrary to local envi-
ronmental stochasticity, where each patch is affected individually and differently by
environmental fluctuations. We regard the study of global environmental stochas-
ticity to be of importance, especially for microscopic species, since we expect to see
a much higher extinction rate in the case of global fluctuations. All populations
have to endure unfavorable conditions together. A metapopulation currently endur-
ing an unfavorable state would be unable to effectively recolonize patches which are
extinct, as all populations are simultaneously under stress.
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2. The Model

The discrete Ricker model provides the underlying structure for our metapopula-
tion simulations. In this section we explore and expand the model to incorporate
metapopulation dynamics subject to global environmental stochasticity. This in-
cludes defining the probabilistic transition structure for a metapopulation in the
current generation to evolve into the next generation. The rescue effect measure-
ment that will be used to comparatively study the global environmental stochasticity
versus local environmental stochasticity is also discussed in this section.

2.1. Metapopulation model

Modelling an individual-based stochastic metapopulation can be achieved in several
ways. Our model follows the formulation done by Eriksson et al. [16]. The local
dynamics is derived from the deterministic Ricker population model [24],

E[Nt+1] = RNtexp(−αNt) (2.1)

and includes stochasticity factors according to the expanded model in [21]. In (2.1)
Nt is the population size in generation t, R the density independent per-capita
growth rate and α incorporates the density dependent effects.
For a metapopulation study the effects of stochasticity are included by randomly
modifying the growth rate R. This stochastic, discrete, metapopulation model was
compared to a lab population of Tribolium castaneum by [21], and for the inclusion of
demographic and environmental stochasticity an acceptable regression fit was found.
This study also provides us with a range of realistic applicable parameters for which
we can analyze our model. For comparison to the discrete dynamics, Appendix A.1
briefly presents the continuous time, individual-based, stochastic analytical model.
In our model the metapopulation consists of N population patches connected by
dispersal. We focus on a large number of patches and hope this results in univer-
sal, simple, conclusions. The patch populations evolve in discrete, non-overlapping
generations. Each generation consists of two phases. The first being recruitment,
the production of progeny by adults, followed in the second phase by dispersal
of progeny to other patches. All adults are removed after producing progeny, com-
pletely replaced by their offspring and thus the definition of discrete non-overlapping
generations. We expect the metapopulation to achieve a quasi steady-state where
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Chapter 2 The Model

the metapopulation will persist until a sequence of stochastic events must drive it
extinct.
A very effective method for evaluating the evolution of a metapopulation is to de-
scribe the current generation (denoted as t) of patch population sizes in the from of
a frequency vector fi(t), where i is the patch population size [23]. This vector can
be evaluated at the different phases of a generation as well as between generations.

2.1.1. Recruitment Phase

During recruitment, adults have a Poisson distributed number of progeny with rate
Ri for individual i. The Poisson-distributed parameter accounts for the natural
fluctuations of the birth-death process. To include demographic and environmental
stochasticity, Ri must itself be a random process. In order to determine Ri for each
individual i during the reproduction phase of a generation, we start with modifying
the rate, R. As in [17], R is defined to be the mean per-capita growth rate in absence
of other stochastic factors.
When simulating a metapopulation, environmental stochasticity modifies the growth
rate first, as its effects has the broadest scope. From R it determines a mean re-
cruitment rate RE based on environmental fluctuations. RE is in our case gamma-
distributed with mean R and shape parameter kE. RE is either applied to the whole
metapopulation (global environmental stochasticity) or patch-wise (local environ-
mental stochasticity). Thereafter, individual recruitment rates Ri are determined
independently by a gamma-distributed variable with mean RE and shape parameter
kD, accounting for demographic stochasticity. Higgins [17] argues gamma distribu-
tions are biologically realistic for modifying the Poisson recruitment rates [25, 26].
Finally, density dependent survival for offspring to adulthood is independent prob-
abilistic exp(−αn), where n is the number of adults in a population patch and α
regulates the strength of density dependence. Density dependent survival is similar
to the carrying capacity in alternative metapopulation models [17]. Taking it all
together we can analytically define the transition probability of j adults producing i
offspring for local environmental stochasticity, the same as found in Melbourne and
Hastings, Supplementary Table 1 [21]:

Pij =
∞̂

0

kE
RΓ(kE)

(
kERE

R

)kE−1

e
−kERE

R

(
i+ kDj − 1
kDj − 1

)

×
(

REe−αj
kD +REe−aj

)i (
kD

kD +REe−αj

)kDj

dRE (2.2)

While the equation defines the transition probability for the local environmental
model, the global environmental model requires the integration of Langevin equa-
tion, since the dynamics are no longer contained within patches and instead spans
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2.1 Metapopulation model

all patches in the metapopulation. We will rather use the full stochastic simulation
to generate offspring in populations affected by global fluctuations.
At the end of the recruitment phase, we can describe the metapopulation in terms
of an intermediate frequency vector fRi (t) after recruitment and density dependent
survival. It describes the number of offspring produced:

fRi (t) =
∞∑
j=0

Pijfj(t) (2.3)

Now offspring are ready for the dispersal phase.

2.1.2. Dispersal Phase

Figure 2.1.: The dispersal process for individual-based, stochastic metapopula-
tions. Each individual has probability m to leave patch n (patch of size i),
n = 1, ..., N . The emigrant joins the pool of M migrants. From the pool of
migrants an individual immigrates into a random patch, a patch thus has prob-
ability M

N
of receiving any one immigrant. The whole migration process happens

sequentially after progeny production and during the same generation. Similar to
Figure 1 in [16]

The dispersal process is adapted from [5] by [16] for the case of individual-based,
stochastic metapopulation models and is illustrated in Fig. 2.1. In our model we
make three assumptions. First, there is no mortality during the dispersal phase.
Secondly, there is no time separation during dispersal. An individual leaves a patch
and arrives at the random destination patch in the same generation t. Lastly, as
we focus on a large number of patches, we will have a common dispersal pool with
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Chapter 2 The Model

no spatial influence. The assumption of a spatially implicit model is tested in [23]
concluding that the analytical model agrees well with the simulated results.
Each individual in a patch has probability m to disperse (emigrate) from a patch
and join the pool of M migrants. The analytical fraction of emigrants fDi (t) is

fDi (t) =
∞∑
j=1

(
j

j − 1

)
(1−m)imj−1fRj (t). (2.4)

A migrant can immigrate into any random patch. For a large number of patches the
distribution of migrants arriving to each patch is Poisson-distributed. The expected
number of individuals arriving to a patch is written as

I(t) =
∞∑
i=0

mifRi (t). (2.5)

Taking Eqs. (2.2), (2.3), (2.4) and (2.5) together, we can write the frequency distri-
bution for the next generation

fi(t+ 1) =
i∑

j=0

I(t)j
j! e−I(t)fDi−j(t). (2.6)

2.2. Full Stochastic Simulation

The structure in section 2.1 explains the proceedings of a metapopulation while Eqs.
(2.2)-(2.6) define the analytical form. As found in [27] there is little variability in
the (mean) population size for N very large. In the limit N → ∞, the dynamics
become deterministic and the equations can be successfully applied in this case.
This allows us to compare our full stochastic simulations, for large values of N to
the deterministic case, verifying our stochastic models. Full stochastic simulations
involve random number generation from the probability distributions describing
each of the stochastic processes. As indicated previously, to measure the effects
of global environmental fluctuations we must analyze stochastic simulations, since
the analytical equations are not accessible. Pseudo code for the simulations are
found in Appendix B.1.
For the recruitment phase we can describe the process similar to transition proba-
bility in Eq. 2.2. First the description the probability distributions used in progeny
production,

Poisson
Ri = Gamma

kD, Gamma(kE, RkE
)

kD

 . (2.7)
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2.2 Full Stochastic Simulation

Then following with the density dependent survival through random number gener-
ation:

r ∼ U[0,1]<e−αn (2.8)

In Eq. (2.8) r is uniformly distributed random variable, which, if smaller than the
survival probability, indicates that a specific individual survives to adulthood.
During the dispersal phase we adapt Eq. (2.4) to determine which individuals
emigrate. An individual emigrates if

r ∼ U[0, 1] < m, (2.9)

where r is again a uniformly distributed random variable. A migrant can then select
any of the N patches uniformly random to immigrate into.
Comparing the full stochastic simulation to the deterministic approximation, Fig. 2.2,
as expected we see the numerical simulations matching the analytical equations.
While individual patch populations sizes fluctuate randomly around the mean, the
mean of all patch populations is identical to the deterministic approximation. In the
quasi steady-state the frequency distribution of population sizes is almost Gaussian
as concluded by [17]. Further analysis of the transition probabilities is performed in
Appendix B.2
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Chapter 2 The Model

Figure 2.2.: The smooth time (generations) evolution of a metapopulation simu-
lation for the local environmental model. A quasi-steady state is achieved and
frequency distribution in the top figures shows the presence of a Gaussian-like
distribution in the steady state. Individual populations are constantly fluctua-
tion (thin gray lines) while the mean of stochastic simulation (white dots in top
graphs) compares well with the deterministic case (solid, thick line). Similar to
Fig. 1 in [23]. Parameters R = 1.5, α = 0.01, m = 0.02, kD = 1, kE = 10 and
stochastic simulations have N = 10000 patches
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3. Global Environmental
Stochasticity

Through stochastic simulations we can compare the local environmental fluctuations
to global fluctuations. We vary only the parameter determining the strength of the
environmental stochasticitykE. To provide for a specific and clear comparison the
recruitment rateR, density dependent survival α, migration ratem and demographic
stochasticity strength kD is kept constant .

3.1. Weak Environmental Stochasticity

To create an initial feeling for global environmental stochasticity we present a sim-
ulation with weak environmental fluctuations, Fig. 3.1. Starting from an initial
population size of unity for all patches, we found the mean population size evolves
similarly for both global and local fluctuations. The trend for global stochasticity
does not evolve smoothly and although it achieves a quasi stead-state it continuously
fluctuates with no clear mean. This is already an indication that global fluctuations
affects populations more intensely.
Using frequency distributions of patch population sizes we can compare the evo-
lution of the population over generations. The distributions for global vs the local
environmental model is quite similar, the only large deviations found are unoccupied
and small population sizes. In the case of global environmental fluctuations there is
more patches with a low number of inhabitants. This trend continues throughout,
compare Fig. 3.2, and will form a central part of our analysis.
To support that there is no clear mean population size for global environmental
model, we look at two different generations, generation 75 and 98. The mean local
population size is almost exactly the same, but in Fig. 3.1 top right the frequency dis-
tributions still differ (dots versus black line). For local environmental stochasticity
the frequency distributions compared between different generations will be identical
in the steady-state, this is not the case for global environmental stochasticity.
For weak environmental stochasticity the proportion of occupied patches is almost
the same in the quasi steady-state, Fig. 3.2. In the case of global environmental
fluctuations the metapopulation takes longer to achieve the quasi steady-state. A
metapopulation enduring global fluctuations will thus recover more slowly from a
disaster, leaving these metapopulations more at risk to extinction.
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Chapter 3 Global Environmental Stochasticity

Figure 3.1.: The evolution of metapopulation dynamics over time for local (thick
gray line) and global environmental stochasticity (thin black line). The metapop-
ulation subject to global fluctuations follows the same evolution trend although
no clear mean is achieved. The frequency distributions of population sizes are also
similar, although there is always more patches in an unoccupied state for the case
of global fluctuations. Top right figure includes a second frequency distribution
(circles) of global environmental fluctuations from a comparable, yet different,
generation. Parameters R = 1.5, α = 0.01, m = 0.02, kD = 1, kE = 10 and
stochastic simulations have N = 10000 patches with metapopulations realizations
averaged 50 times.

3.2. Strong Environmental Stochasticity

For strong environmental fluctuations the effects of global stochasticity can be even
more severe. In Fig. 3.3 we can see the metapopulation subjected to global envi-
ronmental stochasticity stabilizes in a region of lower average local population size.
Again we witness that the fraction of occupied patches is lower.

The high number of unoccupied patches can be the reason behind the substantially
lower average population size. Fig. 3.4 depicts exactly the difference in the occu-
pation proportion. It will be important to see how the rescue effect will work in
a metapopulation where the occupation rate is a critical factor and if indeed the
difference is substantial.
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3.3 Observing Patch Populations

Figure 3.2.: The evolution of the proportion of patches in the metapopulation that
is occupied. The local environmental stochastic metapopulation (thick gray line)
recovers more quickly from an initial per patch population of unity than the
metapopulation enduring global environmental stochasticity (black line). Param-
eters R = 1.5, α = 0.01, m = 0.02, kD = 1, kE = 10 and stochastic simulations
have N = 10000 patches with metapopulations realizations averaged 50 times.

3.3. Observing Patch Populations

One important realization is how individual patch population react differently un-
der global environmental stochasticity. In Fig. 3.5 we present two instances of patch
populations for the local environmental model. The size of the patch populations
fluctuate wildly as it is subjected to the whims of stochasticity. Once the metapop-
ulation is in the quasi stead-state there is relatively little chance of a patch going
extinct and if it does, it is quickly recolonized.
The same cannot be applied to a metapopulation subject to global environmental
stochasticity. While the mean size of all patches fluctuates wildly, we can see the
reason why. Global fluctuations affect all patch populations equally and simultane-
ously. This causes a correlation between patch size fluctuations. In Fig. 3.6 the patch
sizes become more aligned once the simulation has achieved the quasi steady-state.
We can interpret that if a metapopulation is currently enduring an adverse environ-
ment, a single patch that went extinct will have little chance of being recolonized by
other patches in the population. All patches are enduring the stressful environment,
and need to recover before they can send migrants to unoccupied patches.
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Chapter 3 Global Environmental Stochasticity

Figure 3.3.: For strong environmental stochasticity we observe the evolution of
a metapopulation over time starting from all initial patch populations of unity.
The metapopulation experiencing local environmental stochasticity still evolves
smoothly over time into a quasi steady-state, whereas the metapopulation experi-
encing global fluctuations does not achieve a stead-state in the same region as that
of local environmental model. We can see metapopulations experiencing global
fluctuations are much more sensitive to the strength of environmental stochastic-
ity. Parameters R = 1.5, α = 0.01, m = 0.02, kD = 1, kE = 5 and stochastic
simulations have N = 10000 patches with metapopulations realizations averaged
50 times. Frequency plots, top, conditioned on having the same instantaneous
mean population size.

14



3.3 Observing Patch Populations

Figure 3.4.: The proportion of occupied patches as the simulation evolves over
time. We can see the metapopulation experiencing global environmental stochas-
ticity (black line) stabilizing at a lower proportion of occupation than a metapop-
ulation experiencing local fluctuations (thick gray line). Parameters R = 1.5,
α = 0.01, m = 0.02, kD = 1, kE = 5 and stochastic simulations have N = 10000
patches with metapopulations realizations averaged 50 times.

Figure 3.5.: Patch populations (2 instances of patches shown) subjected to local
environmental stochasticity (thin gray lines) fluctuate seemingly random about
the mean of the entire metapopulation (thick black line). Parameters R = 1.5,
α = 0.01, m = 0.02, kD = 1, kE = 5 and stochastic simulations have N = 10000
patches with only one metapopulation realization.
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Chapter 3 Global Environmental Stochasticity

Figure 3.6.: The individual patch population (3 shown, thin gray lines) in a
metapopulation experiencing global environmental stochasticity follows the trend
of the mean for the metapopulation (thick black line). Due to global fluctuations
affecting all patches equally, it produces an effect of correlation between patch
sizes. Parameters R = 1.5, α = 0.01, m = 0.02, kD = 1, kE = 5 and stochastic
simulations have N = 10000 patches with only one metapopulation realization.
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4. The Rescue Effect

In section 1.1 we defined the rescue effect as saving a patch from extinction when it
is on the brink of extinction. Following the process presented in [23] we can measure
the strength of the rescue effect through analyzing the rate of local extinction. This
proves to be more challenging than anticipated and will require careful explanation.

4.1. Measuring the Strength of the Rescue Effect

To measure the strength of the rescue effect we look at rate of local extinction. This
is the rate at which patches that were previously occupied produces no progeny
and thus go extinct due to local dynamics. A lower rate of local extinction, among
other factors, could imply a higher strength of the rescue effect. Patches on the
brink of extinction is saved from extinction by an immigrant, thus preventing the
possibility of going extinct. The rate of local extinction evolves from the initial state
of the population until it reaches a steady state, Fig. 4.1. For global environmental
stochasticity we expected to see a much higher rate of local extinction. It is indeed
not the case, the rates are almost similar for global and local fluctuations.

In our simulation the process of calculating the number of offspring an adult produces
follows exactly the same process for local and global environmental models. This can
imply that the rate can be the almost the same in both models. Remember, the rate
of local extinction is measured as the number of patches that produced zero progeny
in this generation divided by the number of patches that is capable (occupied) of
producing progeny at the beginning of the generation. The more apparent difference
in proportion of occupied patches, as seen in Fig. 4.1 is then due to patches being
recolonized at a slower rate for global environmental fluctuations.

Although the measurement provided us with some valuable insight into the capa-
bilities of global environmental stochasticity, it does not clearly describe the rescue
effect as in the case for local environmental stochasticity. The largest concern is
if the local rates of extinction is almost similar, why are patches recolonized at a
slower rate, resulting in a lower proportion of occupied patches and subsequently a
lower mean population size.
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Chapter 4 The Rescue Effect

4.2. Measuring the Occupancy Rate

Taking a look at the lower occupancy rate for global environmental stochasticity, we
decided to determine at what rate a population patch receives immigrants, possibly
rescuing it from extinction. In a simulation we count the number of times a patch
receives an immigrant in a generation and record the current size of the patch. The
size of the patch is recorded after dispersers have left their native patches, but before
immigration happens, see section (2.1.2). From these measurements we produce the
result in Fig. 4.2 by dividing for the total number of occurrences of a patch size
in the complete simulation. It is immediately clear the rate at which patches in
a metapopulation subjected to local stochasticity receives immigrants is constant,
regardless of patch population size. This phenomenon can be inferred from the
uncorrelated patch sizes in the local environmental model, see Fig. 3.5.
A higher number of immigrants per patch size indicates a stronger rescue effect.
At low population sizes we see a weaker rescue effect in the global environmental
model. For accurate comparison we also show what the rate of receiving immigrants
would be like if, in the local model, the patch occupancy rate was the same as for
the global. This indicates that only at population sizes below sixteen do we see a
weaker rescue effect in the global model.
Comparing global environmental stochasticity we see that the rate at which patches
receives immigrants increases with patch size. The first element contributing to
this effect is that patch sizes are correlated, see Fig. 3.6. All patches simultaneously
experience favorable environmental effects, resulting in a large number of migrants.
To clarify the sudden lower than expected rate of receiving immigrants for extinct
populations patches, we take a closer look at the dynamics. A patch must be
recolonized before it can start producing progeny, but due to all patches being in
a bad state, recolonization does not happen immediately. The extinct patch has to
wait until the other patches, that survived unfavorable environmental circumstances,
are large enough to produce migrants. A patch that is extinct will compete with
all the other patches that are currently also extinct for migrants. These combined
effect produce a much lower rate of receiving immigrants than expected.
Further, the interesting observation is the sudden rise in the rate of populations
patches of small size. It is an effect of patches coming out of extinction by receiv-
ing an immigrant (or maybe 2), recolonizing the patch. Overall it shows why the
presence of at least one offspring producing individual is critical for the metapopula-
tion as a whole, but also a metapopulation experiencing unfavorable environmental
effects will, most likely, not be able to rescue itself.
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4.2 Measuring the Occupancy Rate

(a)

(b)

Figure 4.1.: Examining the strength of the rescue effect. We start the simulations
above (red lines) and below (blue lines) the steady state (black dot). It quickly,
within 5 generations, relaxes to the slow trajectory [23] and continues until it
reaches the steady state. The thick lines represent the deterministic limit, the
solid line the stochastic simulation for local environmental stochasticity and the
dotted trends are for global environmental model. Both (a) and (b) have the same
values on the y-axis, the x-axes present the two important measurements defining
the current state of the population, namely, proportion of occupied patches and
average patch population size. Parameters R = 1.5, α = 0.01, m = 0.02, kD = 1,
kE = 5 and stochastic simulations have N = 10000 patches averaged over 50
metapopulation realizations.
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Chapter 4 The Rescue Effect

Figure 4.2.: The rate at which a population patch receives an immigrant in a gen-
eration compared to its size. The size of a patch is measured after dispersers
have left the patch, but before migrants arrive. The black trajectory is for global
fluctuations, showing a positive correlation between number of immigrants and
patch size, while the thin gray line is for local fluctuations at the same parameter
settings. Lastly the thick gray line is adjusted for the local environmental popula-
tion to have the same rate of occupancy in the steady state. Parameters R = 1.5,
α = 0.01, m = 0.02, kD = 1, kE = 5 and stochastic simulations have N = 10000
patches averaged over 50 metapopulation realizations.
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5. Conclusion

The discrete stochastic Ricker model offers a very robust platform for simulating
metapopulations. Parameters can be varied for a wide range of possible application
producing clear results. In the case of a low number of patches, N small, the
dynamics are not robust, and other models could be used [23]. The discrete time
generations also require a large number of generations. Empirically, species with a
long life cycle will be difficult to evaluate. For local environmental stochasticity the
model has been empirically tested by [21], providing for the eligibility of the model.
The next step would be to verify the effects witnessed in the global environmental
model in an empirical environment. This is notably more difficult as all patches need
to be influenced simultaneously and equally. We suggest the resulting simulated
effects of a metapopulation enduring global environmental stochasticity requires
necessarily for such a study. The much higher extinction risk of such a fragmented
population can then be further assessed. It could also give an indication for the
validity of using a Gamma distribution to induce global environmental stochasticity
through modification of the birth rate. The Gamma distribution could be too harsh
a measure for modifying the birth rate and an alternative distribution which is less
severe on the birth rate could be presented.

The correlated size of patch populations in the global model causes a metapopula-
tion to have difficulty rescuing itself from extinction. It is an important observation
as the risk of extinction for the metapopulation is especially sensitive to the re-
production rate. We used a reproduction rate throughout of R = 1.5, as lower
rates produce a very sensitive population. We showed that a metapopulation with
a large number of patches is capable of recovering from a perturbation of reduc-
ing all patches to population size unity, for both the local and global model. The
metapopulations achieve a quasi steady-state where it will continue until a series
of chance stochastic events must eliminate the population. A metapopulation with
global environmental stochasticity still achieves a steady state, although it is con-
stantly fluctuation in this steady state region and there is no clear mean for the
population. The strength of environmental stochasticity is important, as metapop-
ulations enduring global fluctuations experience the fluctuations much stronger. As
the strength of the stochasticity is increased the difference in average population
size and proportion of occupied patches for global compared to local fluctuations
1becomes more pronounced .

Surprisingly the rate of local extinction and patch occupancy rate is not substantially
different in the case of global environmental stochasticity, deviating only slightly.
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Chapter 5 Conclusion

The strength of the rescue effect is seemingly similar in the two models. An im-
portant question to answer is, what causes the similarity and if the rescue effect
is still active the global environmental model? We measured the rate at which a
patch receives an immigrant in a generation based on its population size, and found
that in the case of local environmental fluctuations the rate is constant. This is in
accordance with the effect f uncorrelated patch sizes in the steady-state. On the
other hand, metapopulations with global environmental stochasticity have an in-
creasing rate of receiving migrants for increasing patch population size. The rescue
effect is still present in these populations, but it is easily overshadowed by stronger
stochasticity that could drive patches to extinction. For small population sizes the
rescue effect is also found to be weaker in the global environmental model.
Further evaluation will look at the path to extinction. Eriksson et al. [16] computed
the path for the local environmental model (figure 10) and found populations typ-
ically approached extinction gradually. Does a metapopulation experiencing global
fluctuations go extinct due to a sudden very low birth rate or successive adverse
environmental effects? The existence of the rescue effect can be verified if it is found
the metapopulation does not succumb when experiencing a sudden, low birth rate.
Global environmental stochasticity is a critical factor for populations studies. To
recognize the effects of global environmental stochasticity in empirical metapopula-
tion, one can look at the correlation of population sizes. In such a case the necessary
precautions can then be implemented in a timely fashion to prevent global extinc-
tion.
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A. Alternative Continuous Time
Model

A.1. Continuous time Metapopulation Model

For comparison to the discrete generation metapopulation model we study, I briefly
present the alternative, although similar, dynamics of stochastic, individual-based
continuous time metapopulation models as found in [16].
A metapopulation consists of N connected patches, where each patch has its own
independent birth-death dynamics. The within patch birth and death rates for a
specific time t are expressed as

bi(t) = ri, (A.1)

di(t) = µi+ (r − µ)i2/K, (A.2)

where i is the patch population size, r is the per-capita birth rate and µ the per-
capita mortality rate. The sources of stochasticity can be included in the form of
noise, directly modifying the birth and death rates. It is not included here. The
independent per patch migration rate m is dependent on the size of the patch:

mi = mi. (A.3)

After emigrating, dispersers join a common pool of M migrants. Immigration of
migrants into a patch from the pool happens with rate

I = ηM

N
. (A.4)

The rate of mortality during migration isη.
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Chapter A Alternative Continuous Time Model

To consider numerical simulations the population evolves in time steps according to
the summation of the rates, Eqs. (A.1)-(A.4), to the next event Λk, for patch k. If
patch k contains i individuals we have the sum:

Λk = bi + di +mi. (A.5)

To account for the whole metapopulation, events will happen with rate Λ = ∑
k Λk,

k = 1, ..., N . The continuous time model for metapopulations thus proceeds through
exponentially distributed random events with an expected value 1/Λ. Lastly, a
master equation can be produced for the contribution to dρ/dt from all events. ρ is
the probability of a patch having i individuals. Considering all possible transitions
which modify the populations size by +1 or -1 and writing the equation in terms of
raising and lowering operators E±ג the change in probability over time will be:

dρ
dt =

∞∑
j=0

(
E+
j E−j+1 − 1

)
bjnjρ+

∞∑
j=0

(
E+
j E−j+1 − 1

)
djnjρ

+ 1
N

∞∑
i=1

∞∑
j=0

E−i−1E+
i E+

j E−j+1mini (nj − δij + δi−1j) ρ−
∞∑
i=1

miniρ (A.6)

Here nj is the number of patches containing j individuals. Assuming instantaneous
migration: η →∞ and µ = 1.
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B. Numerical Simulations

B.1. Pseudo Code for Discrete Time Stochastic
Simulations

Local environmental stochasticity affects each patch separately. For a full stochastic
simulation the pseudo code is quite simple, here is a skeleton for the sequential code.
The local dynamics are contained in the iterations over all patches, contrary to the
case of global environmental stochasticity following below.

i n i t i a l i z e adults_in_patch
N = t o t a l number o f patches
R = recru i tment ra t e
kE = shape parameter environmental s t o c h a s t i c i t y
kD = shape parameter demographic s t o c h a s t i c i t y
alpha = dens i ty dependent s u r v i v a l
m = rate o f d i s p e r s a l

loop over g ene ra t i on s
f o r a l l patches

MeanRE = Gamma(kE ,R/kE)
f o r each i nd i v i dua l in patch

Ri = Gamma(kD,meanRE/kD)
o f f s p r i n g = Poisson (Ri )

f o r each o f f s p r i n g
r = U[ 0 , 1 ]
i f r<exp(−alpha∗adults_in_patch )

o f f s p r i n g_su rv i v e s =+ 1
end

end
chi ldren_in_patch =+ o f f s p r i n g_su rv i v e s

end
end

f o r each patch
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Chapter B Numerical Simulations

f o r each chi ldren_in_patch
r = U[ 0 , 1 ]
i f r<m

M =+ 1
chi ldren_in_patch =− 1

end
end

end

f o r each M
r = U[ 1 ,N]
chi ldren_in_patch ( r ) =+ 1

end

f o r each patch
adults_in_patch = chi ldren_in_patch

end
end

For global environmental stochasticity the code is similar, as discussed in section
1.2.1 the global fluctuations affect all patch populations equally. The difference in
code is the rate modified before calculating the local stochasticity.

i n i t i a l i z e adults_in_patch
N = t o t a l number o f patches
R = recru i tment ra t e
kE = shape parameter environmental s t o c h a s t i c i t y
kD = shape parameter demographic s t o c h a s t i c i t y

loop over g ene ra t i on s
MeanRE = Gamma(kE ,R/kE)
f o r a l l patches

f o r each i nd i v i dua l in patch
Ri = Gamma(kD,meanRE/kD)
o f f s p r i n g = Poisson (Ri )

f o r each o f f s p r i n g
r = U[ 0 , 1 ]
i f r<exp(−alpha∗adults_in_patch )

o f f s p r i n g_su rv i v e s =+ 1
end

end
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chi ldren_in_patch =+ o f f s p r i n g_su rv i v e s
end

end

f o r each patch
f o r each chi ldren_in_patch

r = U[ 0 , 1 ]
i f r<m

M =+ 1
chi ldren_in_patch =− 1

end
end

end

f o r each M
r = U[1 ,N]
chi ldren_in_patch ( r ) =+ 1

end

f o r each patch
adults_in_patch = chi ldren_in_patch

end
end

B.2. Transition Probabilities

For the deterministic limit we use the analytical eq. 2.2 to explicitly calculate ma-
trix. Using our numerical simulations we can compute these transition probabilities
by counting the number of times a population with j adults results in i progeny.
Averaging enough times over these simulations should agree with the analytical
equation, that is, in the local environmental stochastic model. In fig. Fig. B.1(a) we
see the results. While the simulation does not agree exactly, the absolute deviation
in values is very small, especially around the origin where the dynamics is critical.
For global fluctuations we find that the deviation is an order of magnitude higher,
although still small. Noticeably we find that the deviation is large around the ori-
gin, depicting the slightly higher probability for a patch to go extinct if at small
population size, it also shows that such a patch has little chance of being rescued.
The rescue effect rather acts on patches further away from extinction (population
size of zero).
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(a)

(b)

Figure B.1.: Measuring the deviation of transition probabilities for j adults pro-
ducing i progeny. (a) compares the local environmental stochastic simulations to
the analytical framework and the deviation is found to be in the order of 10−4. (b)
compares global environmental stochastic simulations with the analytical frame-
work, the deviation is much larger, in the order of 10−3. Parameters R = 1.5,
α = 0.01, m = 0.02, kD = 1, kE = 5 and stochastic simulations have N = 10000
patches averaged over 50 metapopulation realizations
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C. Patch Perturbations

C.1. Perturbing a single patch

Most of the population simulations start from a perturbed state. We initialize all
patches to either have a population size above or below the steady state. We also
looked at single patch perturbations. To see how a patch recovers from a pertur-
bation we first perturbed a single patch in the metapopulation to size unity and
followed the recovery of the patch. This measure was too harsh, as a patch has very
little chance to recover or be rescued before stochasticity drives it extinct. We thus
rather, randomly, halved a single patch size and recorded the probability of a patch
continuing its existence. In Fig. C.1 the patches enduring global fluctuations have,
as expected, a higher probability of going extinct in the first generation after a per-
turbation. Surprisingly the probability becomes equal after the initial generations.
The probability of the perturbed patch going extinct also slowly approaches zero,
this is due to normal stochastic factors taking over and possibly driving the patch
extinct even after it has recovered.
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Chapter C Patch Perturbations

Figure C.1.: Perturbing a single patch in the population to half its size an following
it until extinction. The thin gray line is for local fluctuations while the black line
for global fluctuations. Parameters R = 1.5, α = 0.01, m = 0.02, kD = 1,
kE = 5 and stochastic simulations have N = 10000 patches averaged over 50
metapopulation realizations
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