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Abstract

In this paper we study the role of Mixed-Mode OscillationsMis), observed experimentally in mo-
toneurons, in the dynamics offtBrent networks. As control parameters we have the appliegmu
(lapp) and the coupling strengtig,p) between pairs of neurons. By fixing the value of one of these
parameters, we analyze the dynamics in the network withticimeurons via a synchrony measuyé)(
which gives the average fluctuations in the voltage witheesfo the fluctuations in the voltage of single
cells. To do so, we first compare the synchrony measure wéthdimber of cells given a global coupling.
Secondly, we comparg® with the number of connections among cells by changing thebar ofkth
nearest neighbors. Finally, we look at small-world top@sdo observe the dependancg®bn the ran-
domness in the network. We also analyze the dynamics of sonletwith neurons in dferent regimes,
these examples show the importance of mixed-mode oseitlain the overall behavior.

Key words: Networks, motoneurons, mixed-mode oscillations, syneization

1. Introduction

The stimuli we receive from the external world are proce$fgenlr sensory systems creating our own
representation of this world. This information guides theton systems to interact with our environment:
from somatic reflexes such as the withdrawal of a finger froenstiove, the posture, rythmic patterned
motor movements such as walking, to voluntary and complexem@nts as catching a ball, or even
speech. The motor systems within the central nervous sy&&8) are hierarchically organized into (1)
the spinal cord, (2) brainstem, and (3) cerebral corticadlie[1]. Thespinal cord level is mainly involved
in reflex responses. Thmainstemlevel involves the descending motor pathways from the cerebrdxo
that regulate the motor activity of the reflex circuits. Aethighest level is theerebral cortex which
stimulates both the brainstem and the spinal cord thataetskilled movements such as writting.

The somatic reflexes are the automatic stereotypic motporess by voluntary muscles to sensory
stimuli. Since the body is continuously bombarded by irdéemd external stimuli, a selection must be
made by sensory receptors within the skin, voluntary mgsd¢éndons, and joints. From them a signal
is transmitted via spinal and cranial sensory nerves to pireakscord and brainstem for processing in
order to respond. This information is conveyeddpha motoneurons to the extrafusal muscle fibers
and viagamma motoneurons to the intrafusal muscle fibers. The alpha and gamma motonsucalled
lower motoneurons, are the final common pathway to contftéxepostural, rythmic and voluntary
movements. The activities of such alpha and gamma motonsue &ected by multiple receptors
from the spinal and cranial nerves and from upper motoneundrich can convey either excitatory or
inhibitory signals. These descending pathways are regai@itectly or indirectly by the cerebral cortex
and the cerebellum [1].
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A lesion in the nervous system or a neurologic disease canaréf@sted bynegative signs where
a loss of a function or capacity is expressed ompbysitive signs which are abnormal motor responses
such as Parkinson’s disease. These last symptoms appesialyedue to the withdrawal of inhibitory
influences. Depending on the regioffiezted, we can refer to lesions in the lower motoneurons oeupp
motoneurons since the symptoms can be easily identified n\élaeer motoneurons innervating a muscle
or a group of muscles results in a paralysis or paresis gadralysis, weakness) of those muscles. This
occurs in poliomyelitis where the polio virus can seledihaffect motoneurons of the spinal cord and of
the brainstem. On the contrary, lesions in upper motoneucan generate multiple symptontiegting
limbs and tendon reflexes as in the paraplegia where a traansgs a loss in neural activity and paralysis
of both lower limbs. Sensations from the body below tffected limbs are absent. In Quadriplegia all of
the four limbs are paralysed and it can evéieet the control of the diafragm [2].

A little is known about the cause of the Amyotrophic latergksosis also known as motor neuron
disease since it is the most common degenerative motorsgis@&ecause there is degeneration of both
the upper and lower motoneurons, signs of both types of neotams are expressed. Most of tikeated
muscles show signs of degeneration of lower motoneurorsasiparalysis, atrophy, fasciculations, and
weakness. Some muscles exhibit signs of upper motoneussalypis although these signs are source
of controversy [2, 3] and references therein. The degeinenatocesses include changes in the cell body
and in the nerve fibers including breakdown of the myelin #haad axon in the vicinity of the injury
[1].

Loss of neurons occurs normally throughout life. This neatdoss is generally accompanied by
a compensatory sprouting of axonal branches by other CN®nein the vicinity, however this is not
enough to stop a degenerative process in the CNS. Neurortabbhd neonatal mammals have a great
capacity of regeneration, in consequence transplantinggymeurons seems to attain some functional
recovery. These techniques, together with new bioengimgéechniques that include microsurgical
reattachment can be part of the treatment of some degereenaditoneuron disorders [4].

A peculiar characteristic of motoneurons is that they presexed mode oscillations (MMOS), where
low-amplitude high-frequency oscillations alternatehwliigh-amplitude low-frequency spikes. Experi-
mentally it is dificult to observe MMOs since low-amplitude oscillations gigear for motoneurons with
high excitability. Itis still unknown which ionic currengse responsible for the oscillations and shape the
discharge in the subprimary range [5]. MMOs have also begorted in interneurons [6] and pyramidal
cells of the frontal cortex [7] and in some cases they weredated with a subthreshold resonance due
to a slowly activated potassium current and enhanced bydhgigtent sodium current [7]. The model
we use in this project was first introduced to describe mousneurons [8] where it is argued that the
frequency resonance is too low in this kind of motoneuroresqaain the high frequency of oscillations.
Thus, MMOs in mouse motoneurons are not related to the sesitbtd resonance but to the spiking
mechanism and arise from the balance between the delayt#féreurrent and the sodium current.

To elucidate the role of MMOs in the nervous system we studyoeks of motoneurons with MMOs
coupled via gap junctions infierent topologies. A similar work has studied networks obglty coupled
inhibitory interneurons that show MMOs, however as we exgld above, these oscillations are produced
by different mechanisms such as the slow potassium current. Itdeesiing to mention that in this
work, neurons present both clustering and synchronizatiento the gap junctions and to the intrinsic
dynamics of the neurons [9]. Other studies have considdrethical coupling finding clustering with
strong coupling [10].

We focus our attention on electrical coupling via gap jumrsi, since it is the simplest form of cou-
pling. This coupling plays an important role in coordinatiand generation of motor outputs [11]. In
general, gap junctions among motoneurons will tend to syprofze their firing which in many cases is a
desirable output as in the cardiac muscle or in the respiragstem. In reflex and voluntary movements,
it is expected that motoneurons fire simultaneously so treatiuscle or groups of muscles contract (or
stretch) strongly enough, i.e. when motoneurons fire sanelbusly, that increase the amplitude of the



motor output.

In this project we study the dynamics of motoneurons coupidap junctions with dierent topolo-
gies. This allows us to understand the role of MMOs in the aldynamics on the network. To start with,
in Section 2 we present the model of a single neuron with tho#tage-gated variables and the reduced
model which lumps together the sodium conductance indiiva and the delayed rectifier activation
variablen in a single recovery variabM/ [5]. We also include the bifurcation diagram that shows the
voltage of the stationary solution, both the stable andabist as a function of the parametgy,. Three
region are identified: a quiescent region, a subprimarymegind a primary regime. At the end of this
section we introduce the coupling term among neurons ind¢warks studied and a synchrony measure
2 that allows us to describe the dynamics of the network in $asfithe fluctuations in the voltage of the
neurons. Section 3 shows the numerical results. We anafgrglbbally coupled networks to understand
the influence of the coupling strendgByap and the applied currems,, on the overall dynamics. Adition-
ally, we look at networks in which neurons are linked to thefr nearest neighbors and networks with
small-world topologies. We conclude this section by shgnsome examples in which neurons within
the network are in dierent regimes. Section 4 is concerned with the discussithreaiesults.

2. Modd

The initial model for one uncoupled neuron is given by a sdbaf differential equations with two
fast currents that generate spikes given by the inactivdtinction of sodium currerti and the delayed
rectifier potassium conductanceand the slower afterhyperpolarization (AHP) conductaride [The
sodium conductance is assumed to activate instantaneanglio inactivate fast. This equations read as
follows:

Cm?j_\t/ = 1L(V) + Ina(V, ) = 1k (V1) + Tanp(V; 2) + lapp(t), @
W = h(v) ~h, @
rn% = Ne(V) =1, )
TZ(V)Z—f =zo(V) -z @

2.1. Reduced model
In order to analyze these equations mathematically it iseoient to reduce this model to a system of
three variables. To do so, both the sodium conductancevasion h and the delayed rectifier activation
variablen, Egs. (2) and (3) respectively, are replaced by the potsnfia and W, via the change of
variableh = h,(W,) andn = n.(W,) and ther\\,, andW,, are replaced byV as explained in [5]. The
reduced model is then given by
dv 3
Cma = GL(VL — V) + GNarnoo(V) hoo(VV)(VNa - V) - GKnDO(W)(VK - V)
+ GanpZ(Vanp — V) + lapp, (5)
aw _ (V. W) heo (V) — (W) (V. W) Neo (V) — Ne(W) (6)
dt  yn(V. W) + (V. W) 7hdhe(W)/dW — yn(V, W) + yn(V, W) TadNe(W)/dW*

WS = 2.(V) -2 )




In Egs. (5) and (6) the voltage-gated variables are

1
mo(V) = 1+ e (V+46)10°
1
heo(V) = 1+ gV+70y10°
1

Ne(V) = 1+ e (V+40)10°

In Eq. (6), the functionsy(V, W) andy,(V, W) are defined as follows
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In Eq. (7), the activation variable of the AHP conductancesuch that when a spike takes place, its
value varies agsier = @ - Znetore + (1 — @), Where 0< a < 1 and then it decays exponentially according
t0 Z(t) = Zaster €Y. The values of the parameters are summarized in the taldesbel

Na current K current AHP current Others

VNa = 50mV | Vk = -80mV | Vapp = VikmV | V. = -80 mV
GNa = 50/18 GK = 7,[18 GAHP = 07[18 G|_ = 03/18
Th=10ms T =1.0ms Tmax = 10ms | C, = 0.8nF

This model produces MMOs which are due to the balance betteespike-generating currents [5].
For example, itis observed that either adding a persistanponent to the sodium current or a decrease of
the delayed rectifier current reduces MMOs. Subthreshaldlatsons (STOs) can even disappear when
the transient sodium conductance is increased beyop® 60he greater the membrane excitability, the
fewer STOs are observed, i.e. MMOs require low membrandabitity.

The AHP current interacts with the slow inactivation of tleelisim current to control the excitability
and consequently, the firing pattern. The AHP reduces theffrequency yet it favors primary range
firing because it increases the motoneuron excitability dxyndctivating the sodium current.

In order to identify the neurons within the network we labied state variableg;, W, andz. Addi-
tionally, we add aoupling term | g5 to Eq. (5) corresponding to the gap junctions among neurotteei
network

Ggap

a|

Igap,i = _;ilp § Aij(Vj _Vi)»
i=1

whereA; is the adjacency matrix whose entries aje= 1 if neuroni is coupled to neurorj and it is
zero otherwise.

2.2. Mathematical analysis of the reduced single-cell model

The fixed points of this model are located in the: 0 plane and the intersections of the nullclines
dVv/dt = 0 anddW/dt = 0. The second nulicline is the straigh lie= W. Therefore, the fixed points are
given by the steady-state current voltage equation (5plmsifs

G|_(V|_ - V) + GNaI'TLo(V)shoo(V)(VNa - V) - GKI"I(X,(V)(VK - V) + GAHPZ(VAHP - V) + |app =0.
The bifurcation diagram of the model in Fig. 1 shows the \g#taf the stationary solution, both the stable

and unstable, as a function of the paraméigy. Three regions are identified: (a) in the quiescent regime,
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the model shows a stable fixed point and oscillations die(@)T his fixed point becomes unstable when
it merges with an unstable limit cycle &fpp, ~ 4.1 nA through a subcritical Hopf bifurcation. Small
amplitude oscillations (STOs) around the unstable fixettpaliernate with large amplitude spikes. As
the applied current increases, the inter-spike periodedses. Figure 2 show the voltage traces and the
trajectory in the phase space foffdrent values of the current in this regime. (iii) Bbp = 7.3 nA, the
subthreshold oscillations and the unstable periodic mmiwtisappear and the neuron fires with a fixed
frequency.
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Figure 1:Bifurcation diagram of the reduced model (Egs. (5)-(7)vehthe voltage of the stationary solution, both
the stable and unstable, as a function of the paranigierThree regions are identified: (a) in the quiescent regime,
the model shows a stable fixed point and oscillations die @)tThis fixed point becomes unstable when it merges
with an unstable limit cycle aft.,,, ~ 4.1 nA through a subcritical Hopf bifurcation. (i) At,,, = 7.3 nA, the
subthreshold oscillations and the unstable periodic golutisappear and the neuron fires with a fixed frequency. [5]

2.3. Synchrony measurein a network

In order to measure the fluctuations in the voltage of thearsuwithin a network it is necessary to
compute the variance of their values for many iterationshab we are able to recognize a network that
completely synchronizes from a network that either formstdts or does not synchronize at all. The
synchrony measure used to analyze the dynamics in the fetwar look at was introduced first in an
attempt to measure the correlations in neural networksl[3214, 15]. Given the average voltage

vio =1 v,
N
the variance of the time fluctuations is given by [15]
g = (VO - V)],

where(:) = (1/T)fOT~ dt denotes the time-averaging over a tiffie To normalize(r\z, we calculate
fluctuations over single cell potentials

g, = (Vi1 - Vi ()]
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Figure 2:Voltage traces and trajectories in the phase space for tumns (a), (b) app = 4.3 A and (c), (d)app = 6.0

nA. The phase space in (b) shows oscillations (STOs) ardumdiistable fixed point before the spike takes place.
Inset: Projection on the plare= 0 of the STOs around the unstable fixed point. In (d) one @dimth around the
unstable fixed point is observed. Inset: Projection on thag# = 0 of the STO around the unstable fixed point.

The synchrony measure is then given by the expression

2Ny = —V. (8)
TN 2

which takes values between 1 and 0 with 1 when the networkrngpbately synchronyzed in the sense
that all states variables are equal for all neurons or 0 ifcills are spiking randomly which does not
happen since we are not adding noise.

3. Results

3.1. Globally coupled networks

Our first example consists of globally coupled neurons. Huilarity of such networks allows us
to focus our attention on the control paramet8gs, andlapp. Since all the neurons in the network are
coupled all-to-all, the topology in this case does not takeain role in the dynamics of the network.



3.1.1. x?vsGgap

We first analyze the relationship between the synchrony mmead as expressed in Eq. (8) as a
function of the coupling strengtBg,, for networks with 2, 6 and 10 identical neurons keeping thgiag
currentl,pp constant as shown in Fig. 3. Two cases are studiedtafg)= 4.5 nA (Fig. 3(a)) and (b)
lapp = 6.0 NA (Fig. 3(b)). For each point, we average 20 realizatioitis ndom initial conditions where
each realization runs for 30000 iterations with a time stegte= 0.05 ms. Fig. 2(a) shows the voltage
trace for a neuron in the regime treated in case (a), a ceflisnregime presents many STOs before a
spike is produced. Similarly, Fig. 2(c) shows the voltageérof a cell in the regime studied in case (b),
one single STO is observed before the neuron fires.

Let us first look at the case (a). We can see that the slope ebawrith the coupling strength, above
Ggap = 0.002 S becomes more likely that two neurons synchronize. EcgiiBi to this interpretation,
we can also say that the speed at which two neurons synckrniaster as we increas,, beyond
0.002u and until around @08 uS. For a value to reacgy? = 1 in a transient time less or equal to 10000
iterations, the coupling strength has to be extremely hightfe system to approach assymptotically to
the valuey? = 1. For 6 neurons we observe a similar behaviour UBgl, = 0.0065 uS. However,
increasing the coupling strength beyond this value prosimeere fluctuations and therefore a smaller
value of the synchrony measure. The same occurs to a netwtirid @/neurons but for higher coupling
strength.

For a currentap, = 6.0 nA in the case (b), a slight increase in the coupling stiefigim Gg,, =
0.001 S demonstrates that neurons reach the stable state (zlgstercomplete synchronization) con-
siderably faster. The same asymptotic behaviour is obdenavertheless.
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Figure 3:x% vs Ggap, for globally coupled networks with ffierent number of neurons (line is used for reference only).
(a) Forlapp = 4.5 nA the fluctuations are higher and consequently the netvesghes the stajg more slowly. For

6 and 10 neurons is not even clear if such a state is reachestiémy enough coupling. (b) Fbg,, = 6.0 nA the
functional dependence gf on the coupling strengtB.,, is evident, and the behaviour is the same for networks with
different number of neurons yet the more neurons are, the fasteotivergence is. Each value has been averaged
over 15 realizations where each of them runs 30000 itersticith a transient time of 10000. In order to show the
data more clearly we just include error bars for two neuradmwaeks.

The diference in subprimary oscillations in these two regimesidensd above completely changes
the dynamics in the network. The presence of MMOs, as we sidetier, generates a richer dynamics for
which we cannot just find a synchronized state where all nesdiice together but also clusters of neurons
where cells within a cluster fire simulatenously. When theasters are observed (figure not included),
MMOs determine the dierence in phase between clusters.



3.1.2. x? VS lapp

Fig. 4 shows the relationship between the synchrony meaguead the applied currentp, by
fixing the coupling strength tGgs, = 0.0064S. Interestingly, for some values of the applied current the
network synchronizes more slowly independently of the neinalh neurons in the network. For example,
atlapp = 5.0 nA the network does not reach the synchronized state (fashug? = 1) within the 30000
iterations that the simulations last even though for theiptes valuel,pp = 4.9 nA and the next value
lapp = 5.1 nA such synchronized state is reached. We might explaindihe to the dference in the
number of MMOs, however this is not the case here since thuse tcases present one subprimary
oscillation. Therefore, it is not clear what determineshsaislow behaviour for some currents.
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Figure 4: x? Vs lpp for globally coupled networks with @erent number of neurons a@},, = 0.006 uS (line is
used for reference only). For some values of the currentéh&arks apparently do not synchronize, however single
realizations show the opposite. This is due to the speed iatwthe network reaches the state= 1; interestingly

for some values of the current it takes longer. Each valudban averaged over 15 realizations where each of them
runs 30000 iterations with a transient time of 10000.

3.2. kth nearest neighbors networks

In this example we analyze the influence of regular topob@iethe dynamics of the networks by
looking at the relationship between the synchrony meagtiead the paramet&y,, by fixing the num-
ber of neurons in the networks and varying the number of Highto which a neuron is linked. We
focus on networks with 10 neurons connected to their 1staPwd3rd nearest neighbors.

We consider two cases: (&), = 4.5 nA (Fig. 5(a)) and (b)app = 6.0 nA (Fig. 5(b)). In the
first case, the fluctuations are higher due to the MMOs. Fom&adest neighbors it is expected that the
network will synchronize for strong enough coupling howevteis not easy to claim the same for 3rd
nearest neighbors since beydBgh, = 0.00754S the fluctuations i? are higher and its convergence to
1 is not evident. For the second case, there is a clear nesdtip betweeny? andGgap. As the coupling
strength increaseg? tends asymptotically to 1 which is the completely synctzedistate. The speed at
which such a state is reached is directly related to the nuoflreeighbors.

3.3. Small-world networks

The last example with identical neurons, i.e. with all thanoas in the same regime, studies the rela-
tionship between the synchrony measufevith the coupling strengtBg,, and the applied currerifp,
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Figure 5: x* VS Ggap for networks with 10 neurons linked to théith nearest neighbors (line is used for reference
only). (a) Forlasp = 4.5 nA the fluctuations are higher agdiakes very low values. For 3rd nearest neighbors the
fluctuations are higher beyor@,, = 0.0075uS and whether the network reaches the state 1 is not clear. (b)
Whenl,pp = 6.0 nA the functional dependencegfon the coupling strengtBgs, is evident, and the behaviour is the
same for networks with éfierent number of neurons yet the more neighbors a neuronheafaster the convergence
to the valugy? = 1 is. Each value has been averaged over 20 realizations wheheof them runs 50000 iterations
with a transient time of 10000.

in small-world topologies. To generate small-world netikeowe use the method proposed by Newmann
and Watts [16]: Given a network with 20 neurons connecteti éadts 3rd nearest neighbors, for each
connection a new link is added with probabilipy therefore on average 2@p links are added, for this
method neither loops nor repeated links are forbidden. Eohealue ofp we average the value gf
over 20 realizations.

The first case analyzes the relationshipyéfwith three values 0Gg,p: 0.004 S, Q006 uS and
0.008uS, by varying the probability of adding new links to the network. The appled current is fited
lapp = 4.5 NA. Although it is expected that for higher values of thegiing strength a higher value of the
synchrony measure is obtained, it is interesting to notieesame behavior for all of the three cases, even
though the randomness in the topology seems to be deternsimae the functional dependance cannot
be inferred straightforwardly: the minimum is reached o 0.15 and the maximum fop = 0.95, for
example. In general, the values 18gap = 0.004 1S remain below those fdBgsp, = 0.006 4S and the
same occurs with this one af@,, = 0.008uS (See Fig. 6(a)).

The second case looks at the relation of the synchrony megéwith the applied currenit,,, and
consequently the MMOs, indirectly. Three valued gf, are consideredtapp = 4.3 NA, lapp = 45 NA
andlapp = 6.0 nA, for which the neurons have four, two and one MMO, respelst The coupling
strength is fixed t@gs, = 0.004uS. For the highest current we observe that the dynamics ametineork
approaches to 1 which again suggests that the presence ef MdOs makes more flicult for the
neurons to synchronize their firing. Fluctuations are higtea current atap, = 4.3 nA which oscillates
around the values obtained fap, = 4.5 nA.

3.4. Neuronsin different regimes

In this example we look at fferent topologies in which one neuron is in &elient regime than the
rest. We analyze one single network and the evolution of #teork in time. We focus our attention on
the time period where the network has reached a stable gtdtitionally, we show the voltage traces
for some neurons in the network.
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Figure 6:(a) x2 vs probability p for small-world networks with 20 neurons for thredfdient values of the coupling
strengthGgap; lapp = 4.5 nA for all of them. Forp = 0 we have networks whose neurons are connected to their
3rd nearest neighbors. (b vs probabilityp for small-world networks with 20 neurons for thredfdient values of

the applied currentypp; in the three caseSy,, = 0.004 uS. For regimes where we find more than one MMO, the
fluctuations are high and the randomness in the topology btasrger influence, whereaslgg, = 6.0 nA the value

of y? increases as the probability of adding new links increaBesh value has been averaged over 20 realizations
where each of them runs 50000 iterations with a transierg 6fi.0000.

3.4.1. Star topology

The first case is a network with 6 neurons connected in a spaldgy. We fix the value of the
coupling strength t@Gg,, = 0.006 uS. The only link between neurons is through the central meuro
(neuron 1) which it happens to be in ddrent regime,,, = 4.3 nA. However, this central neuron drives
the other neurons (in a reginig,, = 4.5 nA) to a state with same periodicity yeffgirent phase. Some
neurons fire during subprimary oscillations of others. Fégi(a) shows the dynamics of the network for
a small period of time. We observe than neurons 2, 3 and 4 firalateously, i.e. these neurons form
a cluster, even though there is no direct link among them. sfiilees of the other neurons that remain
isolated are determined by the MMOs in the central neuronghwvban be observed in Fig. 7(b) which
shows the voltage trace for neurons iffeiient clusters.

3.4.2. 1st nearest neighbors

The second case correspond to a network with 10 neuronsembbyyl their 1st nearest neighbors.
Neuron 1is in the regimky, = 4.3 nA and the rest receive a slightly higher currentgf = 4.5 nA. We
find that the dynamics of the network converges to a stateavdiethe neurons have the same period but
different phase. Such a period is smaller than that of the unedugitworks. The way neurons fire, it is
highly related to the MMOs since the spike of some neurons pddce during subprimary oscillations of
others (See Figs. 8(a) and 8(b)).

3.4.3. Glabal coupling

For a network of 10 globally coupled neurons three clusteesfarmed. Again neuron 1 is in a
different regime and remains isolated. The other neurons foorglivgters where neurons in a cluster fire
simultaneously. Figure 9(a) shows the way neurons in thear&torganize; neurons in the clusters fire
when the subprimary oscillations of neuron 1 take placeue@@(b) allows us to see the voltage trace of
representative neurons for each cluster.
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Figure 7:(a) Evolution in time of a network with 6 neurons coupled inta svith the central neuron being in a regime
atlapp = 4.3 nA (Neuron 1) and the rest &f,, = 4.5 nA. The coupling strength 84, = 0.005 uS. The spikes
are observed in red. The rightmost neurons are uncoupledroN¢ is in the regimé,,, = 4.3 nA and Neuron 8
in l;pp = 4.5 nA. The state which the network converges to shows clusgennd the period of all the neurons is the
same and smaller than the period in the uncoupled neurohsbltiage trace for neuron 5 (green solid line), 6 (red
solid line), 4 (blue solid line) and 1 (black solid line). MNON neuron 1 determine the phase at which following
neurons fire.
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Figure 8: (a) Evolution in time of a network with 10 neurons coupledheit 1st nearest neighbors. The coupling
strength isGgp = 0.0051S. Neuron 1 is in a regime &y, = 4.3 nA and the rest dt,,, = 4.5 nA. The spikes are
observed in red. The rightmost neurons are uncoupled: Melttds in the regiméap, = 4.3 nA and Neuron 12

in l,pp = 4.5 nA. The state which the network converges to is such thaioneuware not in phase but the inter-spike
period is the same of all of those in the regimg = 4.5 nA. This period is smaller than the period in both uncoupled
neurons. (b) Voltage traces for neurons 1 (black solid larg) its 1st nearest neighbors: neuron 2 (red solid line)
and neuron 10 (green solid line). The peribaf both neurons 2 and 10 is the same, and in general this isthe s
period at which all neurons in the regirhg, = 4.5 nA fire.

The role of MMOs in the dyamics of the networks becomes etidethe above examples. In this
case, the neuron that is in affdirent regime, and in particular its MMOs, determine whendtier
neurons fire.
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Figure 9: (a) Evolution in time of a network with 10 neurons with alkatl coupling. The coupling strength is
Ggap = 0.005uS. Neuron 1 is at the reginig,, = 4.3 nA and the others are ki, = 4.5 nA. The spikes are observed
in red. The rightmost neurons are uncoupled: Neuron 11 isdérreégimel,,, = 4.3 and Neuron 12 i, = 4.5.
Neuron 1 remains isolated whereas the other neurons ggfiime in two clusters. (b) Voltage traces for neurons 2
(green solid line), 3 (red solid line) and 1 (black solid Jin&MOs in neuron 1 determine when the other neurons
in the netwrok fire. We observe that neuron 4 fires in phase tvéHast STO before the spike and neuron 6 fires in
phase with the second last STO, for example.

4, Discussion

We have studied networks of motoneurons ifietient topologies. Electrical coupling between neu-
rons, in general, tends to synchronize their firing, yet wefaad clustering as well, especially in situa-
tions when neurons have several subprimary oscillations.

In globally coupled networks we were able to understandrifieence of the coupling streng@ya,
and the applied currerifp, on the synchrony measugé. For two neurons the convergence towards the
valuey? = 1, i.e. the complete synchronization, isfeient for the regimekyp, = 4.5 nA andl,pp = 6.0
nA. In the first case, this convergence is slower than in tberseg case where it is reached for a medium
coupling strengtiyap = 0.0054S. Surprisingly, for the regimigp, = 6.0 nA the functional dependence
of x? onGgqp is the same for networks withflierent number of neurons. It increases fast at the beggining
and then it converges aymptotically to a completely synetzed state. In other words, more excitable
motoneurons in the subprimary regime are more likely to bymitize their firing in comparison to less
excitable cells.

When neurons are connected to thidhr nearest neighbors their influence is just local. Theesfor
this kind of networks allows us to study the importance of fbcal interaction for the overall behavior
in the network. In a regime dipp = 4.5 nA networks are very poorly synchronizable. The explamati
is obvious, a local interaction does not allow to spreadrimfation dficiently and the time it takes for the
network to synchronize is expected to be very long. The sinahanges drastically fdgp, = 6.0 nA.

In this regime the dependenceydfon the coupling strengtBy,, grows asymptotically towardg® = 1
for all the networks studied. This suggests that for stramgugh coupling the network synchronizes no
matter how many neurons it has nor the number of neighbosg theurons are connected to.

Regarding small-world networks the randomness in the attiores play an important role in the
dynamics. In these examples we looked at the relationskipdes > and the probability of adding new
connections in the network. When networks witffelient coupling strength were studied dggh = 4.5
nA fixed, we find a similar behavior: the minimum and maximurtueeof y are reached for the same
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probability,p = 0.15 andp = 0.95, respectively. Moreover, the fluctuations decreaseiderably when

the probability is increased beyomd= 0.25. Nonetheless, for high probabilities beyomd= 0.7, the
fluctuation among neurons become substantially highertaadstreflected in a decrease of the synchrony
measure for some values pf In contrast, for the relationship betweghand the applied curreng,

we fix the coupling strength Gy, = 0.0044S we can just observe an asymptotic behavior for the case
wherelapp = 6.0 nA. When the neurons are in less excitable regimes it is rmante dficult for them to
synchronize.

An important observation must be made in relation to all¢h@®vious examples. The fact that the
synchrony measure is less than one in most of the cases ¢aimgemean that the network forms clusters
rather than synchronizes . However, one must bear in mindhigmight also mean that the network
does not converge to a stable dynamics in the time we ran mhelations, and therefore the network
remains in a partially disordered configuration. Thus, we lslgo study the speed at which this stable
configuration is attained.

The examples where neurons within the network arefiiegint regimes give us insight about the role
of the MMOs in the dynamics of the network. For this particldaamples we observe that the neuron
that is in a dfferent regime does not synchronize and the others form cdstegeneral. The inter-spike
period of all the neurons in this network happened to be sm#tlan the period they would have had
if they were uncoupled. Interestingly, the firing patterrerevdetermined completely by the MMOs of
the neuron in a dierent regime which suggests that these subprimary osmilaplay a fundamental
role in the overall behavior of a network of motoneurons.stéxamples could reflect a rather simplified
situation in which a neuron, due to degenerative procebsefimes less excitable. The fasciculations
observed in many patients can be regarded to this out-affggny dynamics.

Comparison of these numerical results with experimenttd dauld give us more insight into the
biological mechanism by which networks of motoneurons keltlae way they do and into the timescales
real phenomena are produced. Hence, in the future this dwavd profound implications for human
health in the treatment of degenerative motoneuron dissrde
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