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Abstract

In this paper we study the role of Mixed-Mode Oscillations (MMOs), observed experimentally in mo-
toneurons, in the dynamics of different networks. As control parameters we have the applied current
(Iapp) and the coupling strength (Ggap) between pairs of neurons. By fixing the value of one of these
parameters, we analyze the dynamics in the network with identical neurons via a synchrony measure (χ2)
which gives the average fluctuations in the voltage with respect to the fluctuations in the voltage of single
cells. To do so, we first compare the synchrony measure with the number of cells given a global coupling.
Secondly, we compareχ2 with the number of connections among cells by changing the number ofkth
nearest neighbors. Finally, we look at small-world topologies to observe the dependance ofχ2 on the ran-
domness in the network. We also analyze the dynamics of a network with neurons in different regimes,
these examples show the importance of mixed-mode oscillations in the overall behavior.
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1. Introduction

The stimuli we receive from the external world are processedby our sensory systems creating our own
representation of this world. This information guides the motor systems to interact with our environment:
from somatic reflexes such as the withdrawal of a finger from the stove, the posture, rythmic patterned
motor movements such as walking, to voluntary and complex movements as catching a ball, or even
speech. The motor systems within the central nervous system(CNS) are hierarchically organized into (1)
the spinal cord, (2) brainstem, and (3) cerebral cortical levels [1]. Thespinal cord level is mainly involved
in reflex responses. Thebrainstem level involves the descending motor pathways from the cerebral cortex
that regulate the motor activity of the reflex circuits. At the highest level is thecerebral cortex which
stimulates both the brainstem and the spinal cord that activate skilled movements such as writting.

The somatic reflexes are the automatic stereotypic motor responses by voluntary muscles to sensory
stimuli. Since the body is continuously bombarded by internal and external stimuli, a selection must be
made by sensory receptors within the skin, voluntary muscles, tendons, and joints. From them a signal
is transmitted via spinal and cranial sensory nerves to the spinal cord and brainstem for processing in
order to respond. This information is conveyed byalpha motoneurons to the extrafusal muscle fibers
and viagamma motoneurons to the intrafusal muscle fibers. The alpha and gamma motoneurons, called
lower motoneurons, are the final common pathway to control reflex, postural, rythmic and voluntary
movements. The activities of such alpha and gamma motoneurons are affected by multiple receptors
from the spinal and cranial nerves and from upper motoneurons which can convey either excitatory or
inhibitory signals. These descending pathways are regulated directly or indirectly by the cerebral cortex
and the cerebellum [1].
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A lesion in the nervous system or a neurologic disease can be manifested bynegative signs where
a loss of a function or capacity is expressed or bypositive signs which are abnormal motor responses
such as Parkinson’s disease. These last symptoms appear generally due to the withdrawal of inhibitory
influences. Depending on the region affected, we can refer to lesions in the lower motoneurons or upper
motoneurons since the symptoms can be easily identified. When lower motoneurons innervating a muscle
or a group of muscles results in a paralysis or paresis (partial paralysis, weakness) of those muscles. This
occurs in poliomyelitis where the polio virus can selectively affect motoneurons of the spinal cord and of
the brainstem. On the contrary, lesions in upper motoneurons can generate multiple symptoms affecting
limbs and tendon reflexes as in the paraplegia where a trauma causes a loss in neural activity and paralysis
of both lower limbs. Sensations from the body below the affected limbs are absent. In Quadriplegia all of
the four limbs are paralysed and it can even affect the control of the diafragm [2].

A little is known about the cause of the Amyotrophic lateral sclerosis also known as motor neuron
disease since it is the most common degenerative motor disease. Because there is degeneration of both
the upper and lower motoneurons, signs of both types of motoneurons are expressed. Most of the affected
muscles show signs of degeneration of lower motoneurons such as paralysis, atrophy, fasciculations, and
weakness. Some muscles exhibit signs of upper motoneurons paralysis although these signs are source
of controversy [2, 3] and references therein. The degenerative processes include changes in the cell body
and in the nerve fibers including breakdown of the myelin sheath and axon in the vicinity of the injury
[1].

Loss of neurons occurs normally throughout life. This neuronal loss is generally accompanied by
a compensatory sprouting of axonal branches by other CNS neurons in the vicinity, however this is not
enough to stop a degenerative process in the CNS. Neurons of fetal and neonatal mammals have a great
capacity of regeneration, in consequence transplanting young neurons seems to attain some functional
recovery. These techniques, together with new bioengineering techniques that include microsurgical
reattachment can be part of the treatment of some degenerative motoneuron disorders [4].

A peculiar characteristic of motoneurons is that they present mixed mode oscillations (MMOs), where
low-amplitude high-frequency oscillations alternate with high-amplitude low-frequency spikes. Experi-
mentally it is difficult to observe MMOs since low-amplitude oscillations disappear for motoneurons with
high excitability. It is still unknown which ionic currentsare responsible for the oscillations and shape the
discharge in the subprimary range [5]. MMOs have also been reported in interneurons [6] and pyramidal
cells of the frontal cortex [7] and in some cases they were associated with a subthreshold resonance due
to a slowly activated potassium current and enhanced by the persistent sodium current [7]. The model
we use in this project was first introduced to describe mouse motoneurons [8] where it is argued that the
frequency resonance is too low in this kind of motoneurons toexplain the high frequency of oscillations.
Thus, MMOs in mouse motoneurons are not related to the subthreshold resonance but to the spiking
mechanism and arise from the balance between the delayed rectifier current and the sodium current.

To elucidate the role of MMOs in the nervous system we study networks of motoneurons with MMOs
coupled via gap junctions in different topologies. A similar work has studied networks of globally coupled
inhibitory interneurons that show MMOs, however as we explained above, these oscillations are produced
by different mechanisms such as the slow potassium current. It is interesting to mention that in this
work, neurons present both clustering and synchronizationdue to the gap junctions and to the intrinsic
dynamics of the neurons [9]. Other studies have considered chemical coupling finding clustering with
strong coupling [10].

We focus our attention on electrical coupling via gap junctions, since it is the simplest form of cou-
pling. This coupling plays an important role in coordination and generation of motor outputs [11]. In
general, gap junctions among motoneurons will tend to synchronyze their firing which in many cases is a
desirable output as in the cardiac muscle or in the respiratory system. In reflex and voluntary movements,
it is expected that motoneurons fire simultaneously so that the muscle or groups of muscles contract (or
stretch) strongly enough, i.e. when motoneurons fire simultaneously, that increase the amplitude of the
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motor output.
In this project we study the dynamics of motoneurons coupledvia gap junctions with different topolo-

gies. This allows us to understand the role of MMOs in the overall dynamics on the network. To start with,
in Section 2 we present the model of a single neuron with threevoltage-gated variables and the reduced
model which lumps together the sodium conductance inactivation h and the delayed rectifier activation
variablen in a single recovery variableW [5]. We also include the bifurcation diagram that shows the
voltage of the stationary solution, both the stable and unstable, as a function of the parameterIapp. Three
region are identified: a quiescent region, a subprimary regime and a primary regime. At the end of this
section we introduce the coupling term among neurons in the networks studied and a synchrony measure
χ2 that allows us to describe the dynamics of the network in terms of the fluctuations in the voltage of the
neurons. Section 3 shows the numerical results. We analyze first globally coupled networks to understand
the influence of the coupling strengthGgap and the applied currentIapp on the overall dynamics. Adition-
ally, we look at networks in which neurons are linked to theirkth nearest neighbors and networks with
small-world topologies. We conclude this section by showing some examples in which neurons within
the network are in different regimes. Section 4 is concerned with the discussion ofthe results.

2. Model

The initial model for one uncoupled neuron is given by a set offour differential equations with two
fast currents that generate spikes given by the inactivation function of sodium currenth and the delayed
rectifier potassium conductancen and the slower afterhyperpolarization (AHP) conductance [5]. The
sodium conductance is assumed to activate instantaneouslyand to inactivate fast. This equations read as
follows:

Cm
dV
dt
= IL(V) + INa(V, h) − IK(V, n) + IAHP(V, z) + Iapp(t), (1)

τh
dh
dt
= h∞(V) − h, (2)

τn
dn
dt
= n∞(V) − n, (3)

τz(V)
dz
dt
= z∞(V) − z. (4)

2.1. Reduced model

In order to analyze these equations mathematically it is convenient to reduce this model to a system of
three variables. To do so, both the sodium conductance inactivationh and the delayed rectifier activation
variablen, Eqs. (2) and (3) respectively, are replaced by the potentials Wh andWn via the change of
variableh = h∞(Wh) andn = n∞(Wn) and thenWh andWn are replaced byW as explained in [5]. The
reduced model is then given by

Cm
dV
dt
= GL(VL − V) +GNam∞(V)3h∞(W)(VNa − V) −GKn∞(W)(VK − V)

+GAHPz(VAHP − V) + Iapp, (5)

dW
dt
=

γh(V,W)
γh(V,W) + γn(V,W)

h∞(V) − h∞(W)
τhdh∞(W)/dW

+
γn(V,W)

γh(V,W) + γn(V,W)
n∞(V) − n∞(W)
τndn∞(W)/dW

, (6)

τz(V)
dz
dt
= z∞(V) − z. (7)
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In Eqs. (5) and (6) the voltage-gated variables are

m∞(V) =
1

1+ e−(V+46)/10
,

h∞(V) =
1

1+ e(V+70)/10
,

n∞(V) =
1

1+ e−(V+40)/10
.

In Eq. (6), the functionsγh(V,W) andγn(V,W) are defined as follows

γh(V,W) =
∂INa

∂h∞

dh∞
dW

and

γn(V,W) =
∂IK

∂n∞

dn∞
dW
.

In Eq. (7), the activation variable of the AHP conductancez is such that when a spike takes place, its
value varies asza f ter = α · zbe f ore + (1− α), where 0≤ α ≤ 1 and then it decays exponentially according
to z(t) = za f ter e−t/τZ . The values of the parameters are summarized in the table below.

Na current K current AHP current Others
VNa = 50 mV VK = −80 mV VAHP = VKmV VL = −80 mV
GNa = 50µS GK = 7µS GAHP = 0.7µS GL = 0.3µS
τh = 1.0 ms τn = 1.0 ms τzmax = 10 ms Cm = 0.8 nF

This model produces MMOs which are due to the balance betweenthe spike-generating currents [5].
For example, it is observed that either adding a persistent component to the sodium current or a decrease of
the delayed rectifier current reduces MMOs. Subthreshold oscillations (STOs) can even disappear when
the transient sodium conductance is increased beyond 60µS. The greater the membrane excitability, the
fewer STOs are observed, i.e. MMOs require low membrane excitability.

The AHP current interacts with the slow inactivation of the sodium current to control the excitability
and consequently, the firing pattern. The AHP reduces the firing frequency yet it favors primary range
firing because it increases the motoneuron excitability by de-inactivating the sodium current.

In order to identify the neurons within the network we label the state variablesVi, Wi andzi. Addi-
tionally, we add acoupling term Igap to Eq. (5) corresponding to the gap junctions among neurons in the
network

Igap,i =
Ggap

N

N∑

i=1

Ai j(V j − Vi),

whereAi j is the adjacency matrix whose entries areai j = 1 if neuroni is coupled to neuronj and it is
zero otherwise.

2.2. Mathematical analysis of the reduced single-cell model
The fixed points of this model are located in thez = 0 plane and the intersections of the nullclines

dV/dt = 0 anddW/dt = 0. The second nullcline is the straigh lineV = W. Therefore, the fixed points are
given by the steady-state current voltage equation (5), as follows

GL(VL − V) +GNam∞(V)3h∞(V)(VNa − V) −GKn∞(V)(VK − V) +GAHPz(VAHP − V) + Iapp = 0.

The bifurcation diagram of the model in Fig. 1 shows the voltage of the stationary solution, both the stable
and unstable, as a function of the parameterIapp. Three regions are identified: (a) in the quiescent regime,
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the model shows a stable fixed point and oscillations die out.(b) This fixed point becomes unstable when
it merges with an unstable limit cycle atIapp ≈ 4.1 nA through a subcritical Hopf bifurcation. Small
amplitude oscillations (STOs) around the unstable fixed point alternate with large amplitude spikes. As
the applied current increases, the inter-spike period decreases. Figure 2 show the voltage traces and the
trajectory in the phase space for different values of the current in this regime. (iii) AtIapp ≈ 7.3 nA, the
subthreshold oscillations and the unstable periodic solution disappear and the neuron fires with a fixed
frequency.

Figure 1:Bifurcation diagram of the reduced model (Eqs. (5)-(7)) shows the voltage of the stationary solution, both
the stable and unstable, as a function of the parameterIapp. Three regions are identified: (a) in the quiescent regime,
the model shows a stable fixed point and oscillations die out.(b) This fixed point becomes unstable when it merges
with an unstable limit cycle atIapp ≈ 4.1 nA through a subcritical Hopf bifurcation. (iii) AtIapp ≈ 7.3 nA, the
subthreshold oscillations and the unstable periodic solution disappear and the neuron fires with a fixed frequency. [5]

2.3. Synchrony measure in a network
In order to measure the fluctuations in the voltage of the neurons within a network it is necessary to

compute the variance of their values for many iterations so that we are able to recognize a network that
completely synchronizes from a network that either form clusters or does not synchronize at all. The
synchrony measure used to analyze the dynamics in the networks we look at was introduced first in an
attempt to measure the correlations in neural networks [12,13, 14, 15]. Given the average voltage

V(t) =
1
N

N∑

i=1

Vi(t),

the variance of the time fluctuations is given by [15]

σ2
V = 〈[V(t)]2〉t − [〈V(t)〉t]2 ,

where〈·〉 = (1/T )
∫ T

0
· dt denotes the time-averaging over a timeT . To normalizeσ2

V we calculate
fluctuations over single cell potentials

σ2
Vi
= 〈[Vi(t)]2〉t − [〈Vi(t)〉t]

2 .
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Figure 2:Voltage traces and trajectories in the phase space for two neurons (a), (b)Iapp = 4.3 nA and (c), (d)Iapp = 6.0
nA. The phase space in (b) shows oscillations (STOs) around the unstable fixed point before the spike takes place.
Inset: Projection on the planez = 0 of the STOs around the unstable fixed point. In (d) one oscillation around the
unstable fixed point is observed. Inset: Projection on the planez = 0 of the STO around the unstable fixed point.

The synchrony measure is then given by the expression

χ2(N) =
σ2

V
1
N

∑N
i=1σ

2
Vi

, (8)

which takes values between 1 and 0 with 1 when the network is completely synchronyzed in the sense
that all states variables are equal for all neurons or 0 if thecells are spiking randomly which does not
happen since we are not adding noise.

3. Results

3.1. Globally coupled networks

Our first example consists of globally coupled neurons. The regularity of such networks allows us
to focus our attention on the control parametersGgap andIapp. Since all the neurons in the network are
coupled all-to-all, the topology in this case does not take amain role in the dynamics of the network.
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3.1.1. χ2 vs Ggap

We first analyze the relationship between the synchrony measure χ2 as expressed in Eq. (8) as a
function of the coupling strengthGgap for networks with 2, 6 and 10 identical neurons keeping the applied
currentIapp constant as shown in Fig. 3. Two cases are studied: (a)Iapp = 4.5 nA (Fig. 3(a)) and (b)
Iapp = 6.0 nA (Fig. 3(b)). For each point, we average 20 realizations with random initial conditions where
each realization runs for 30000 iterations with a time step of dt = 0.05 ms. Fig. 2(a) shows the voltage
trace for a neuron in the regime treated in case (a), a cell in this regime presents many STOs before a
spike is produced. Similarly, Fig. 2(c) shows the voltage trace of a cell in the regime studied in case (b),
one single STO is observed before the neuron fires.

Let us first look at the case (a). We can see that the slope changes with the coupling strength, above
Ggap = 0.002µS becomes more likely that two neurons synchronize. Equivalently to this interpretation,
we can also say that the speed at which two neurons synchronize is faster as we increaseGgap beyond
0.002µ and until around 0.008µS. For a value to reachχ2

= 1 in a transient time less or equal to 10000
iterations, the coupling strength has to be extremely high for the system to approach assymptotically to
the valueχ2

= 1. For 6 neurons we observe a similar behaviour untilGgap = 0.0065 µS. However,
increasing the coupling strength beyond this value produces more fluctuations and therefore a smaller
value of the synchrony measure. The same occurs to a network with 10 neurons but for higher coupling
strength.

For a currentIapp = 6.0 nA in the case (b), a slight increase in the coupling strength from Ggap =

0.001µS demonstrates that neurons reach the stable state (clustering or complete synchronization) con-
siderably faster. The same asymptotic behaviour is observed, nevertheless.

1 2 3 4 5 6 7 8 9 10

x 10
−3

0.5

0.6

0.7

0.8

0.9

1

G
gap

 (µ S)

χ2

 

 

2 neurons
6 neurons
10 neurons

(a)

1 2 3 4 5 6 7 8 9 10

x 10
−3

0.8

0.85

0.9

0.95

1

G
gap

 (µS)

χ2

 

 

2 neurons
6 neurons
10 neurons

(b)

Figure 3:χ2 vsGgap for globally coupled networks with different number of neurons (line is used for reference only).
(a) ForIapp = 4.5 nA the fluctuations are higher and consequently the networkreaches the stateχ2 more slowly. For
6 and 10 neurons is not even clear if such a state is reached forstrong enough coupling. (b) ForIapp = 6.0 nA the
functional dependence ofχ2 on the coupling strengthGgap is evident, and the behaviour is the same for networks with
different number of neurons yet the more neurons are, the faster the convergence is. Each value has been averaged
over 15 realizations where each of them runs 30000 iterations with a transient time of 10000. In order to show the
data more clearly we just include error bars for two neuron networks.

The difference in subprimary oscillations in these two regimes considered above completely changes
the dynamics in the network. The presence of MMOs, as we discuss later, generates a richer dynamics for
which we cannot just find a synchronized state where all neurons fire together but also clusters of neurons
where cells within a cluster fire simulatenously. When theseclusters are observed (figure not included),
MMOs determine the difference in phase between clusters.
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3.1.2. χ2 vs Iapp

Fig. 4 shows the relationship between the synchrony measureχ2 and the applied currentIapp by
fixing the coupling strength toGgap = 0.006µS. Interestingly, for some values of the applied current the
network synchronizes more slowly independently of the number of neurons in the network. For example,
at Iapp = 5.0 nA the network does not reach the synchronized state (for which χ2

= 1) within the 30000
iterations that the simulations last even though for the previous valueIapp = 4.9 nA and the next value
Iapp = 5.1 nA such synchronized state is reached. We might explain this due to the difference in the
number of MMOs, however this is not the case here since those three cases present one subprimary
oscillation. Therefore, it is not clear what determines such a slow behaviour for some currents.
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Figure 4: χ2 vs Iapp for globally coupled networks with different number of neurons andGgap = 0.006 µS (line is
used for reference only). For some values of the current the networks apparently do not synchronize, however single
realizations show the opposite. This is due to the speed at which the network reaches the stateχ2

= 1; interestingly
for some values of the current it takes longer. Each value hasbeen averaged over 15 realizations where each of them
runs 30000 iterations with a transient time of 10000.

3.2. kth nearest neighbors networks

In this example we analyze the influence of regular topologies in the dynamics of the networks by
looking at the relationship between the synchrony measureχ2 and the parameterGgap by fixing the num-
ber of neurons in the networks and varying the number of neighbors to which a neuron is linked. We
focus on networks with 10 neurons connected to their 1st, 2ndand 3rd nearest neighbors.

We consider two cases: (a)Iapp = 4.5 nA (Fig. 5(a)) and (b)Iapp = 6.0 nA (Fig. 5(b)). In the
first case, the fluctuations are higher due to the MMOs. For 2ndnearest neighbors it is expected that the
network will synchronize for strong enough coupling however, it is not easy to claim the same for 3rd
nearest neighbors since beyondGgap = 0.0075µS the fluctuations inχ2 are higher and its convergence to
1 is not evident. For the second case, there is a clear relationship betweenχ2 andGgap. As the coupling
strength increases,χ2 tends asymptotically to 1 which is the completely synchronized state. The speed at
which such a state is reached is directly related to the number of neighbors.

3.3. Small-world networks

The last example with identical neurons, i.e. with all the neurons in the same regime, studies the rela-
tionship between the synchrony measureχ2 with the coupling strengthGgap and the applied currentIapp
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Figure 5: χ2 vs Ggap for networks with 10 neurons linked to theirkth nearest neighbors (line is used for reference
only). (a) ForIapp = 4.5 nA the fluctuations are higher andχ takes very low values. For 3rd nearest neighbors the
fluctuations are higher beyondGgap = 0.0075µS and whether the network reaches the stateχ2

= 1 is not clear. (b)
WhenIapp = 6.0 nA the functional dependence ofχ2 on the coupling strengthGgap is evident, and the behaviour is the
same for networks with different number of neurons yet the more neighbors a neuron has, the faster the convergence
to the valueχ2

= 1 is. Each value has been averaged over 20 realizations whereeach of them runs 50000 iterations
with a transient time of 10000.

in small-world topologies. To generate small-world networks we use the method proposed by Newmann
and Watts [16]: Given a network with 20 neurons connected each to its 3rd nearest neighbors, for each
connection a new link is added with probabilityp, therefore on average 20· 3p links are added, for this
method neither loops nor repeated links are forbidden. For each value ofp we average the value ofχ2

over 20 realizations.
The first case analyzes the relationship ofχ2 with three values ofGgap: 0.004 µS, 0.006 µS and

0.008µS, by varying the probabilityp of adding new links to the network. The appled current is fixedto
Iapp = 4.5 nA. Although it is expected that for higher values of the coupling strength a higher value of the
synchrony measure is obtained, it is interesting to notice the same behavior for all of the three cases, even
though the randomness in the topology seems to be determinant since the functional dependance cannot
be inferred straightforwardly: the minimum is reached forp = 0.15 and the maximum forp = 0.95, for
example. In general, the values forGgap = 0.004 µS remain below those forGgap = 0.006 µS and the
same occurs with this one andGgap = 0.008µS (See Fig. 6(a)).

The second case looks at the relation of the synchrony measureχ2 with the applied currentIapp and
consequently the MMOs, indirectly. Three values ofIapp are considered:Iapp = 4.3 nA, Iapp = 4.5 nA
and Iapp = 6.0 nA, for which the neurons have four, two and one MMO, respectively. The coupling
strength is fixed toGgap = 0.004µS. For the highest current we observe that the dynamics on thenetwork
approaches to 1 which again suggests that the presence of more MMOs makes more difficult for the
neurons to synchronize their firing. Fluctuations are higher for a current atIapp = 4.3 nA which oscillates
around the values obtained forIapp = 4.5 nA.

3.4. Neurons in different regimes

In this example we look at different topologies in which one neuron is in a different regime than the
rest. We analyze one single network and the evolution of the network in time. We focus our attention on
the time period where the network has reached a stable state.Additionally, we show the voltage traces
for some neurons in the network.
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Figure 6:(a) χ2 vs probabilityp for small-world networks with 20 neurons for three different values of the coupling
strengthGgap; Iapp = 4.5 nA for all of them. Forp = 0 we have networks whose neurons are connected to their
3rd nearest neighbors. (b)χ2 vs probabilityp for small-world networks with 20 neurons for three different values of
the applied currentIapp; in the three casesGgap = 0.004 µS. For regimes where we find more than one MMO, the
fluctuations are high and the randomness in the topology has astronger influence, whereas atIapp = 6.0 nA the value
of χ2 increases as the probability of adding new links increases.Each value has been averaged over 20 realizations
where each of them runs 50000 iterations with a transient time of 10000.

3.4.1. Star topology
The first case is a network with 6 neurons connected in a star topology. We fix the value of the

coupling strength toGgap = 0.006 µS. The only link between neurons is through the central neuron
(neuron 1) which it happens to be in a different regimeIapp = 4.3 nA. However, this central neuron drives
the other neurons (in a regimeIapp = 4.5 nA) to a state with same periodicity yet different phase. Some
neurons fire during subprimary oscillations of others. Figure 7(a) shows the dynamics of the network for
a small period of time. We observe than neurons 2, 3 and 4 fire simulateously, i.e. these neurons form
a cluster, even though there is no direct link among them. Thespikes of the other neurons that remain
isolated are determined by the MMOs in the central neuron, which can be observed in Fig. 7(b) which
shows the voltage trace for neurons in different clusters.

3.4.2. 1st nearest neighbors
The second case correspond to a network with 10 neurons coupled by their 1st nearest neighbors.

Neuron 1 is in the regimeIapp = 4.3 nA and the rest receive a slightly higher current ofIapp = 4.5 nA. We
find that the dynamics of the network converges to a state where all the neurons have the same period but
different phase. Such a period is smaller than that of the uncoupled networks. The way neurons fire, it is
highly related to the MMOs since the spike of some neurons take place during subprimary oscillations of
others (See Figs. 8(a) and 8(b)).

3.4.3. Global coupling
For a network of 10 globally coupled neurons three clusters are formed. Again neuron 1 is in a

different regime and remains isolated. The other neurons form two clusters where neurons in a cluster fire
simultaneously. Figure 9(a) shows the way neurons in the network organize; neurons in the clusters fire
when the subprimary oscillations of neuron 1 take place. Figure 9(b) allows us to see the voltage trace of
representative neurons for each cluster.
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Figure 7:(a) Evolution in time of a network with 6 neurons coupled in a star with the central neuron being in a regime
at Iapp = 4.3 nA (Neuron 1) and the rest atIapp = 4.5 nA. The coupling strength isGgap = 0.005 µS. The spikes
are observed in red. The rightmost neurons are uncoupled: Neuron 7 is in the regimeIapp = 4.3 nA and Neuron 8
in Iapp = 4.5 nA. The state which the network converges to shows clustering and the period of all the neurons is the
same and smaller than the period in the uncoupled neurons. (b) Voltage trace for neuron 5 (green solid line), 6 (red
solid line), 4 (blue solid line) and 1 (black solid line). MMOs in neuron 1 determine the phase at which following
neurons fire.
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Figure 8: (a) Evolution in time of a network with 10 neurons coupled to their 1st nearest neighbors. The coupling
strength isGgap = 0.005 µS. Neuron 1 is in a regime atIapp = 4.3 nA and the rest atIapp = 4.5 nA. The spikes are
observed in red. The rightmost neurons are uncoupled: Neuron 11 is in the regimeIapp = 4.3 nA and Neuron 12
in Iapp = 4.5 nA. The state which the network converges to is such that neurons are not in phase but the inter-spike
period is the same of all of those in the regimeIapp = 4.5 nA. This period is smaller than the period in both uncoupled
neurons. (b) Voltage traces for neurons 1 (black solid line)and its 1st nearest neighbors: neuron 2 (red solid line)
and neuron 10 (green solid line). The periodT of both neurons 2 and 10 is the same, and in general this is the same
period at which all neurons in the regimeIapp = 4.5 nA fire.

The role of MMOs in the dyamics of the networks becomes evident in the above examples. In this
case, the neuron that is in a different regime, and in particular its MMOs, determine when theother
neurons fire.
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Figure 9: (a) Evolution in time of a network with 10 neurons with all-to-all coupling. The coupling strength is
Ggap = 0.005µS. Neuron 1 is at the regimeIapp = 4.3 nA and the others are atIapp = 4.5 nA. The spikes are observed
in red. The rightmost neurons are uncoupled: Neuron 11 is in the regimeIapp = 4.3 and Neuron 12 inIapp = 4.5.
Neuron 1 remains isolated whereas the other neurons self-organize in two clusters. (b) Voltage traces for neurons 2
(green solid line), 3 (red solid line) and 1 (black solid line). MMOs in neuron 1 determine when the other neurons
in the netwrok fire. We observe that neuron 4 fires in phase withthe last STO before the spike and neuron 6 fires in
phase with the second last STO, for example.

4. Discussion

We have studied networks of motoneurons in different topologies. Electrical coupling between neu-
rons, in general, tends to synchronize their firing, yet we can find clustering as well, especially in situa-
tions when neurons have several subprimary oscillations.

In globally coupled networks we were able to understand the influence of the coupling strengthGgap

and the applied currentIapp on the synchrony measureχ2. For two neurons the convergence towards the
valueχ2

= 1, i.e. the complete synchronization, is different for the regimesIapp = 4.5 nA andIapp = 6.0
nA. In the first case, this convergence is slower than in the second case where it is reached for a medium
coupling strengthGgap = 0.005µS. Surprisingly, for the regimeIapp = 6.0 nA the functional dependence
of χ2 onGgap is the same for networks with different number of neurons. It increases fast at the beggining
and then it converges aymptotically to a completely synchronized state. In other words, more excitable
motoneurons in the subprimary regime are more likely to synchronize their firing in comparison to less
excitable cells.

When neurons are connected to theirkth nearest neighbors their influence is just local. Therefore,
this kind of networks allows us to study the importance of this local interaction for the overall behavior
in the network. In a regime ofIapp = 4.5 nA networks are very poorly synchronizable. The explanation
is obvious, a local interaction does not allow to spread information efficiently and the time it takes for the
network to synchronize is expected to be very long. The situation changes drastically forIapp = 6.0 nA.
In this regime the dependence ofχ2 on the coupling strengthGgap grows asymptotically towardsχ2

= 1
for all the networks studied. This suggests that for strong enough coupling the network synchronizes no
matter how many neurons it has nor the number of neighbors these neurons are connected to.

Regarding small-world networks the randomness in the connections play an important role in the
dynamics. In these examples we looked at the relationship betweenχ2 and the probabilityp of adding new
connections in the network. When networks with different coupling strength were studied andIapp = 4.5
nA fixed, we find a similar behavior: the minimum and maximum value of χ2 are reached for the same
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probability,p = 0.15 andp = 0.95, respectively. Moreover, the fluctuations decrease considerably when
the probability is increased beyondp = 0.25. Nonetheless, for high probabilities beyondp = 0.7, the
fluctuation among neurons become substantially higher and this is reflected in a decrease of the synchrony
measure for some values ofp. In contrast, for the relationship betweenχ2 and the applied currentIapp

we fix the coupling strength toGgap = 0.004µS we can just observe an asymptotic behavior for the case
whereIapp = 6.0 nA. When the neurons are in less excitable regimes it is muchmore difficult for them to
synchronize.

An important observation must be made in relation to all these previous examples. The fact that the
synchrony measure is less than one in most of the cases can certainly mean that the network forms clusters
rather than synchronizes . However, one must bear in mind that this might also mean that the network
does not converge to a stable dynamics in the time we ran the simulations, and therefore the network
remains in a partially disordered configuration. Thus, we may also study the speed at which this stable
configuration is attained.

The examples where neurons within the network are in different regimes give us insight about the role
of the MMOs in the dynamics of the network. For this particular examples we observe that the neuron
that is in a different regime does not synchronize and the others form clusters, in general. The inter-spike
period of all the neurons in this network happened to be smaller than the period they would have had
if they were uncoupled. Interestingly, the firing patterns were determined completely by the MMOs of
the neuron in a different regime which suggests that these subprimary oscillations play a fundamental
role in the overall behavior of a network of motoneurons. This examples could reflect a rather simplified
situation in which a neuron, due to degenerative processes,becomes less excitable. The fasciculations
observed in many patients can be regarded to this out-of-synchrony dynamics.

Comparison of these numerical results with experimental data could give us more insight into the
biological mechanism by which networks of motoneurons behave the way they do and into the timescales
real phenomena are produced. Hence, in the future this couldhave profound implications for human
health in the treatment of degenerative motoneuron disorders.
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