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Abstract

Many of the real systems such as social, technological, biological and informational systems can be
described as complex networks. In this study we are interested in two types of movement networks that
occur in the United Kingdom, which are internal migration and commuting. United Kingdom 2001
Census data has been used in order to analyze movement networks through complex network tools
at different spatial scales. Nodes represent locations in movement networks rather than individuals
and edges store the total number of movements from one location to another. At larger scale, we
observed high correlations between in- and out-degree of each location; however at smaller level
degree correlations were not that informative so we analyzed the network motif structures, which are
small patterns of interconnection that occur more frequently than one would expect from random
networks. We observed different motif structures for internal migration and commuting networks.
The results for reciprocity, which characterises the simplest non-trivial motif, are also presented in
this study. A major motivation for studying movement networks is to understand the influence of
network characteristics on epidemic spreading. The epidemic threshold for a network is closely related
to the largest eigenvalue of its adjacency matrix, which we calculate.

Introduction

Two claimed features of complex systems, the scale-free and small-world properties, increased the at-
tention given to complex networks in the past 10-15 years.Specific models of these complex network
properties were discovered in the late 1990s [1]. Small world networks have highly clustered connections,
and the distance between any nodes are relatively short. This feature shows fast communication locally
and globally [2]. On the other hand, scale free networks have many nodes with few connection and few
nodes with many connections. The fraction of nodes having k edges, p(k), decays with a power law degree
distribution [3,/4].

Complex networks describe a wide range of real systems from different fields. Many social, techno-
logical, biological and informational systems can be described as complex networks [5]. Social networks
include friendship networks, corporate network, email networks. Technological networks includes trans-
portation, energy, communication and sensor networks. Biological networks include transcriptional gene
regulation, ecological networks and protein interactions. Finally, information networks include World
Wide Web, Twitter and peer-to-peer networks. In this paper, we are interested in two types of movement
networks in the United Kingdom, which are internal migration and commuting.

We want to study commuting and migration systems through a complex network analysis. Quan-
titative analyses of complex networks are mostly based on graph theory. In graph theory, the graph
G = (V, E) is a collection V' of nodes that are linked to each other by set of edges E. In social networks,
individuals are represented as nodes and the relationship between people is represented with edges. On
the other hand, in movement networks nodes represent the locations rather than individuals and edges
store the total number of movements from one location to another [6].

Better transportation systems have facilitated and increased commuter movements, so modeling and
analyzing commuting behavior has been the focus of various studies [7]. Two related studies in the
literature have been done by Patuelli et al. (2007) [8] and De Montis et al. (2010) [9]. Patuelli et
al. offers a network analysis of commuting flows in Germany. They studied the spatial evolution of



the commuting network over time, and they found the commuting network becoming more dense and
clustered. On the other hand, De Montis et al. analyzed the inter-municipal commuting systems of the
Italian islands of Sardinia and Sicily by using a weighted network analysis technique. The second type
of movement network, which is the internal migration also studied in the literature by Maier et al. |10].
They applied social network analysis to internal migration between US States. The paper offers the
topological similarities of social and migration networks. In all of these studies, the movement data had
transferred into network structure.

We are interested in finding the patterns of connections between components by looking at different
features of movement networks from global to local scale. At global scale, we found the degree distribu-
tion, in-degree and out-degree correlation and sink and source dynamics for both of the migration and
commuting network at different spatial scales. We concluded that it is more informative to observe the
motif structures in networks at fine spatial scale, which are more sparse and have more nodes, rather
than degree correlations. Network motifs are the small connected subnetworks in a network, with gen-
erally three or four nodes, that have significantly higher frequencies than would be expected in random
networks. This is a new local feature that has been offered by R.Milo et al. to go beyond the global prop-
erties of networks [11]. We then analyzed the three-noded motif structures in commuting and migration
networks, and observed how the results differ from each other. The simplest measure of non-trivial motif
structure, which is called reciprocity, is also calculated for the movement networks.

One motivation for analysis of movement networks is to understand the spread of infectious diseases. In
the literature four main types of movement networks have played fundamental roles [6] : (1) the movement
of individuals to and from work [12], (2) the airline transportation network [13},/14], (3) the movement of
livestock [15] and (4) the movement of dollar bills (activity as a prior to movement of people) [16]. For the
disease spread modeling of our study, we just focused on the commuting behavior. We aim to understand
the influence of commuting network characteristics on epidemic spreading. In recent studies, it has been
proved that the epidemic threshold (whether an epidemic occurs in a population or the disease simply
dies out) for a network is closely related to the largest eigenvalue of its adjacency matrix [17]. In general,
the spectral property of a network might be a good start point on epidemic spread analysis; however a
better model will be more complex and will require more information than the spectrum [18].

The paper is organized as follows: In the Methods section we introduce the construction of migration
and commuting networks with the data obtained from United Kingdom 2001 Census, and the different
spatial scales defined to analyze it. In the Results section we apply complex network analysis to observe
different features of movement networks, and to understand the effect of network characteristics on
epidemic spreading. Finally we discuss the results of the network analysis, and its relation to epidemic
spreading in the Conclusion section.

Methodology

Data

We analyzed the movement networks in two different spatial scales of data according to the NUTS clas-
sification [19]. The NUTS Classification (Nomenclature of territorial units for statistics) is a hierarchical
system for dividing up the economic territory of the EU. There are five different region classifications
defined with NUTS. NUTSI1 stands for Government office regions, NUTS2 stands for groups of unitary
authorities, NUTS3 stands for upper tier authorities or groups of lower tier authorities. LAUI1 classifies
lower tier districts, whereas LAU2 classifies wards within the United Kingdom. At the time when the
Census was done, NUTS4 and NUTS5 was standing for LAU1 and LAU2 respectively. An example of
the hierarchy for the regions around the University of Warwick is shown in Figure [1| [20].

In this study we are interested in Local Authority Districts (LA) which corresponds to NUTS4 figure
in, and Output Area Levels (OA) which are small and local patches with a population of a few hundred
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Figure 1. Hierarchy of regions around Output Area 00CQFP0009 .

people. When we divide the UK into local authority districts, there are 426 different areas; whereas
when we divide the map into output area levels there are 218,038 different areas. We used the United
Kingdom 2001 Census data in order to construct migration and commuting networks in the form of
origin-destination matrix. The Census provides us a rich and high quality data available on migration
and commuting. The data provide disaggregations by various topics such as gender, age, status of migrant,
ethnic group, limiting long-term illness, economic activity,and method of travel to work or study .
Generally speaking, movement networks capture the information on the total number of people that travel
between different nodes, where nodes represent different areas in the map. In the next two paragraphs,
the stages of network mapping is explained with three stages: data collection, network graph construction
and visualization .

Migration data includes all people resident in the United Kingdom whose address on Census day
was different from that one year before the Census . The total resident population is assumed to be
constant over two years, which means the residents coming to or going out from the United Kingdom
is not considered. If we consider M as the migration network, M;; give the number of migrants from
district 7 to district j. The visualisation of internal migration network in Scotland at local authority level
is given in Figure [2 There are 32 different districts represented as nodes, and 902 connections between
each district represented as links. Force Atlas 2 algorithm is run through Gephi in order to visualize the
network. As the number of degrees increases , the colour of the nodes are changing through purple, pink
and white.

In 2001, each individual in a household specified their employment information and destination of
work if they are employed so that they could collect data on commuting. Commuting data includes all
people aged between 16 and 74 that are employed and resident in the United Kingdom . Let us
consider C' as the commuting matrix, then C;; gives the number of people that live in district ¢ and work



Figure 2. Internal migration network in Scotland. Figure 2A shows the network generated by
Gephi, and figure 2B shows that migration happens through districts where households are located.

in district j. The visualisation of commuting network in Scotland at local authority level is given in
Figure [3| There are 32 different nodes like in the migration, however there are fewer connections which
is 422. Again we used Gephi in order to visualize the network. As the number of degrees increases , the
colour of the nodes are changing through purple, pink and white.

Figure 3. Commuting network in Scotland. Figure 3A shows the network generated by Gephi,
and figure 3B shows that commuting occurs through districts where households and workplaces are
located.

In LA level, we have weighted directed networks, where w; ; captures the total number of people
moves from area i to area j. In OA level, we have almost topological directed network and the matrix is
very large, consisting of 218,038 nodes. In the output area level, it is more advantageous to use sparse
matrix where we only denote the existing directed edges rather than including all possible edges between
nodes. Using sparse matrices facilitates the calculations, since instead of storing 4, 75210'° points, most
of which are zero, in commuting data we store 6,680,537 directed edges, and in migration data we store
1,760,957 directed edges with sparse matrices.



Network Measures

We are interested in the patterns of connections in migration and commuting systems, which can be
represented as a network as we explained in the previous part. The structure of the network has a big
influence on the behaviour of the system. There are different properties of networks which we can measure
such as degree, density, clustering coefficient, transitivity, modularity and betweenness. By applying tools
from graph theory it is possible to characterize global and local features of the network. In our study, we
are interested in the degree distribution, reciprocity and motif structures of the movement networks.

Degree distribution is one of the fundamental characteristics of the network structure, which is the
frequency distribution of node degrees [5]. The degree distribution of the network is represented with py,
which is the probability of a randomly chosen node having k edges. Directed networks have two different
degrees for each node, the in- and out-degree, which are respectively the number of edges incoming into
and outgoing from a node. Therefore, we are interested in two different degree distributions in directed
networks. The nodes with high degree might play an important role in the system, because of this reason
it is worth measuring degree properties for each node.

What will be more interesting to look at next is the in- and out-degree correlation for each location
in the system based on the principle of source and sink dynamics (see Figure . When a location has
more movements to outside it behaves as a source, and if a location has more movements inside it shows
a sink behavior.

N

o SOURCE

g

1]
=

A SINK

S

>
In-degree

Figure 4. Sink source dynamics in the degree correlation plot.

Moreover, reciprocity is another property of networks that might be interesting to calculate, espe-
cially because it is a popular subject in social psychology. In social network, it shows how likely you
respond positively when you receive positive action. In general, reciprocity is the probability of two
vertices in a directed network point to each other. We can calculate the reciprocity r, by using A;;: the
adjacency matrix and m: the total number of directed edges in the network by using equation . In
migration and commuting systems, a higher reciprocity shows there are more movements in the network.

_ iy i

m

(1)

Network motifs are the major theme of this project. Motifs gathered attention recently to uncover
structural design principles of complex networks. The analysis of motifs are done in directed networks.
Motifs, the small patterns of interconnections, may indicate functional properties of network and differ
according to different types of networks. For example, biochemical networks that are responsible for
regulating the expression of genes in cells contain the three-node motif called feed-forward loops and the
four-node connected motif called bi-fan far more than one would expect from a random network with
similar properties [26]. There are two main tasks to detect network motifs:

r



1. Generate a small group of proper random networks. Randomized networks preserve the degree
distribution of the nodes in the real network. Each node in the randomized networks has the
same single node characteristics, which implies same number of incoming and outgoing edges as
the corresponding node has in the real network. The randomized graph is obtained by applying a
Markov chain algorithm based on starting the real network repeatedly swapping randomly chosen
pairs of connections until the network is well randomized [27].

2. Scan each network for all possible n-node subgraphs. Record the number of occurrences of each
subgraphs in the real network N,e, and in randomized networks Nyanq. If the input network is
very large (e.g. #ofedges > 100,000) or we want to analyze subgraphs of size > 5, then we sample
subgraphs in the network and calculate their concentrations instead of occurrences to approximate
motifs faster [28]. Concentration of a subgraph is the number of occurrences divided by the total
number of subgraphs of the same size in the network.

Finally, we compare the real network to suitably randomized networks according to the two statistical
measures: Piaue and Zgeore, and select the patterns in the real network occurring significantly higher
than those in the randomized networks. Zs.ore is calculated with the equation where SD stands for
standard deviation. Note that the Zy .. could be positive or negative. A higher value shows that the
corresponding motif is more often in the network.

Nreal - Nrand
Zscore = o~ 2
5D (2)

An example of a comparison of real and randomized networks is given in Figure

real network B randomized networks

Figure 5. Comparison of motifs in the real network and randomized networks.

In the literature, there are different motif detection tools such as Mfinder 28], MAVisto [29] and
FANMOD. In this paper, we examined the network motifs for migration and commuting data by us-
ing FANMOD [30]. FANMOD implements two methods to detect network motifs: full enumeration of
subgraphs [26], and sampling of subgraphs to estimate subgraph concentrations |11].



Epidemic Spread

Networks are power tool for conceptualizing the potential interaction within a population. The SIR
epidemic model divides the population into three compartments: susceptible, infected and recovered
population [31]. The modeling of diseases is based on the law of mass action where the rate of epidemic
increase is proportional to the product of the number of susceptible and infectious individuals [32].De-
terministic SIR dynamics on a metapopulation network is shown with equations and .

Si=~5)_ Biil; 3)
J
Ii =8> Byl =T (4)
J
The asymptotic early growth regime corresponds to (see equations and @)
S; =1+ 0(I) (5)
I~ (Y Bij —70i)1; + O(1?) (6)

J

So, early in the epidemic infection I(t) is proportional to e* (see equation @), where

A=, J=(Jiy), Jij=PBi; —dij. (7)

Finally, we relate equation to commuting data C;; using the equation @D which ends up with a
Jacobian.

Bij = a(Cij + Cji) +v(Y_ CirCiy) (8)
k
J=a(C+C")+r(CCT) -1 (9)

In previous studies, it has been proposed that the epidemic threshold (7) is related with the dominant
eigenvalue Ay 4 of the Jacobian(see equation (10))) [33]. We will argue this statement in the Discussion
section.

T=— (10)

Results

Network Measures

The results of the network parameters at local authority level are given in Table[I} These basic parameters
are offered by Newman in order to characterize the network [5]. The average degree and the density in
the migration network are larger than the values in the commuting network. This shows there are more
movements happening in the migration network.

Next we are interested in the degree-related properties such as degree distribution and degree corre-
lation. We found the incoming and outgoing degree distribution for different spatial levels (see Appendix
A). In movement networks, it is interesting to observe the in- and out-degree correlations. The degree
correlation of migration network at local authority level is given in Figure [f] The in- and out-degree



Table 1. Network Parameters in LA level

Index Migration | Commuting
Min in-degree(id);Min out-degree(od) 37;30 68
Max ¢d;Max od 422:418 370;392
Number of vertices with od > id 217 190
Number of vertices with id > od 203 233
Number of vertices with od = id 6 3
Average degree 516.81 366.64
Standard deviation degree 144.69 145.81
Density 0.60 0.43
Average clustering coefficient 9.98 25.99
Transitivity 10.78 25.00
Maximized modularity 0.73 0.83
Betweenness mean 367.89 410.79
Betweenness standard deviation 1008 471.57
Max betweenness mean 5521 4692
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Figure 6. Degree correlation of migration network at local authority level.

are highly correlated in this network, which is what we would predict intuitively because the migration
happens between home locations relatively symmetrically.

The degree correlation of commuting network at local authority level is given in Figure[7] The regions
above the red line, that are shown with dots, behaves as a source whereas the regions below the red line
behaves as a sink. Here, we observe a more distributed plot as we would predict before because there are
different types of areas: sinks are likely to be commercial and industrial areas; sources are likely to be
suburban areas.

Moreover, we continue our analysis on degree correlations at output area level (see Figure. However,
in this case the degree correlation plots are not informative as the ones before due to the sparse, essentially
biological, nature of the dataset. So, at this point we change our method to analysis of network motif
structures. First we start our analysis with a measure of the simplest form of motif,i.e. at two node level,
called reciprocity.
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Figure 7. Degree correlation of commuting network at local authority level.
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Figure 8. Degree correlation at output area level.

We calculated the reciprocity factor for migration and commuting data in both spatial scales. The
results are shown in Table 2] As we can conclude, there is less reciprocity in commuting. This is mainly
because the work places are located in different districts than the residential places, whereas in migration
we observe more reciprocity because people tend to migrate over the residential places. Finally, in the
Output Area level, we observe very small reciprocity, also they are equal to each other, this is mainly
because of the matrix being very large and sparse. The reciprocity in output area level is not therefore
as informative as at the local area level. At this point, question of interest might be the relation of
reciprocity r with two-motif Zg.oe. Probability of having a directed edge from j to i given the directed
edge from ¢ to j in the real network will be relatively higher than one would expect to see in a null model.

Moreover, we also calculated the reciprocity in LA level for male and female differently at local
authority level (see Table . In migration network, male and female have similar results, as people tend
to move with their families. In commuting network, we observe a higher movement in male population
rather than the females. This could be related with the employment percentage of male to be higher
than the female.



Table 2. Results of Reciprocity

Migration | Commuting
LA Level | »=0.7456 | r=0.6151
OA Level | r =0.0582 | r =0.0579

: LA Level and OA Level

Table 3. Results of Reciprocity: Female and Male

Migration | Commuting
Female | r =0.6593 | r = 0.5383
Male | r=0.6691 | r=0.6141

Then, we examined the motif structures in migration and commuting data at different scales. The
results of the data at local authority level is given in Appendix B. What we are more interested is the
motifs at output area level, as we have almost a topological network. The results of the migration network
is given in Figure [9] The motif results are obtained with full enumeration, which is computationally
expensive and time consuming. The motif with the highest Zg.ore is a clique, this implies a stronger
symmetry between patches than reciprocity alone. It shows there are lots of movements in the network

that are equally likely in terms of direction, at the level of triples of nodes, which we would heuristically
predict from our picture.

MIGRATION Frequency Mean- Standard- Z-Score
OALEVEL (Original) Frequency Deviation
(Random) (Random)
R
2 056e.009% 502
0.00084% 2.056e-009% 6.502e-010 43784
R
R
R
71650/, 2597e |
037165% 1 ooosesazve | 1P 1 2015
R
R
50/, 0055 7337
0.01962% 4.090e-005% | 9.7332¢-008 20116
R R

Figure 9. Migration network motifs at output area level. R represents the area of residential
buildings, the donation added after the results have been obtained from FANMOD.

There are two possible ways to find motif structures, the first one is with full enumeration and the
second is an edge sampling algorithm. In this part,we compared the results of the migration network
motifs when we use different algorithms FANMOD also supports several models for randomized
network generation such as local constant model, global constant model and no constant model. In the
local constant model, directed edges are exchanged with one another and the number of edges connected
to each node remains constant. The comparison is done with the result from full enumeration with local
constant model, sampling algorithm with global constant model and sampling algorithm with no constant
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model. We observe the similar results in sampling algorithm, however the motif with the highest Zs.ore
could not be found with the sampling algorithm.

Full Z-Score Sampling; Z-Score Sampling; Z-Score

Enumeration; Global No

Local Constant Constant Constant
43734 2809 20016
29215 1097.4 33508
20116 991.55 2191.2

Figure 10. Comparison of migration network motifs generated with different algorithms.

Finally, we found the commuting network motifs. Because of the commuting network is very large
we could not find the results of the whole network. However, we divided the map into four regions with
similar size in order to obtain smaller size networks. We took contiguous subnetworks in order to reflect
the network. The results of the three regions are given in Figure [L1| which are all the same, the results
are obtained with sampling algorithm.

COMMUTING Frequency Mean- Standard- Z-Score
OALEVEL (Original) Frequency Deviation
(Random) (Random)
RW 0.04134% 1.088e-007% | 8.0677e-009 | 51242
0.02740% 1.310e-007% | 6.4409e-009 | 42552
0.00935% 2267e-007% | 8.9574e-009 | 10438
RW, RW
RW 0.48294% 0.00012182% | 3.5769¢-007 | 13498
0.39586% 0.00019388% | 6.1396e-007 | 6444.6
0.1398% 0.00029591% | 1.3587¢-006 | 1026.8
RW
R
w 0.064322% 1.629¢-005% | 8.01e-008 8028.2
0.047015% 1.743e-005% | 8.8586e-008 | 5305.3
0.015943% 1.596e-005% | 8.586e-008 20354
RW RW

Figure 11. Commuting network motifs at output area level. R represents the areas with
residential buildings and W represents the areas with workplaces, the donation added after the results
have been obtained from FANMOD.
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Epidemic Spread

We found the dominant eigenvalue and epidemic threshold of the commuting network at local authority
level by using the Equation @ The results depend on different sets of («,v) (see Table [4)).

Table 4. The dominant eigenvalue and epidemic threshold

« v max(A) T
10~10 | 1010 7.68 0.130
107° | 10719 | 13.57 | 0.073
10710 | 1079 85.88 0.011
107° 10~° 91.77 0.010

Conclusion

In this paper we presented a comparison of migration and commuting network measures between different
hierarchy of regions by using the UK 2001 census data. For the local authority level, movement networks
show sink/source behavior: In the migration network, the in- and out-degree are highly correlated because
migration happens between home locations relatively symmetrically. On the other hand,in the commuting
network, we observe distributed sink/source behavior over the system, which shows that in the network,
there are some locations likely to be commercial and industrial which behave as a sink, and there are
suburban areas which behave as a source.

In the output area level, we observe symmetry between nodes rather than sink/source behavior. In
order to deepen our analysis on the output area level, we decided to examine motif structures with three
nodes. We observed different network motif structures for commuting and migration networks. The motif
with the highest Zs.ore is a clique in the migration network, which implies a stronger symmetry between
patches than reciprocity alone, r = 0.74. However, in the commuting network we observe less symmetry
between patches because the regions may represent work places, residential areas or areas containing
both. Also we found a lower reciprocity factor,r = 0.61, which implies less symmetric movement in the
network.

Understanding the movement behavior of commuters are essential in order to model the spread of
disease. There are several reasons why scientists are interested in epidemic modeling. The first reason is
to understand commuters behavior and how the parameters in the network effect the spread mechanism.
The second goal is to predict the disease spread in future, and finally the most important one is to
determine ways to control and stop epidemic. In previous studies in the literature, it has been shown a
relationship between the epidemic threshold of a system and the dominant eigenvalue of the corresponding
matrix. Looking at the spectrum might be a good starting point which is very basic, however it is not
sufficient to model the spread of diseases. Givan et al. provide a summary of the most general way
to find an exact relations and predict the epidemic threshold of a system which can be more complex
in general than the previous approach, and can interpret all of the spectral properties of commuting
data [18].Epidemic is a process very sensitive to network structure, and it is hard to make concrete
analysis when having networks with larger size. For a future work, the motivation from this study might
be to link everything such as reciprocity, motif structure, basic network measures and spectrum of the
network in order to model the disease spread, to make the model more closer to the real process.
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Appendix A: the degree distribution plots

Node Degree Distribution: LA Level
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Figure 12. Degree distribution plot at local authority level.
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Figure 13. Degree distribution plot at output area level.
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Appendix B: the network motifs at local authority level

Network motifs at local authority level:In migration data, we have the higher Z — score for a clique,
this implies a stronger argument than reciprocity. It shows there are lots of movements. However, in
commuting data we don’t observe a clique structure.

MIGRATION FPrequency IMean-Frequency B -Deviation | Z-Score
LALEVEL (Original] (Bandom) (Bandom)

“\\ 18204% 13.823% 000720 6000
SR 4
/“\\ 10.308% TST1% 000481 S.862

.

Y 9.3515%

‘\\ * : 8T60% 000431 3722
- -

03571% 0172% 00003 6783

-»
i
/’3
1.307% 0.881% 00000 3426
A
;i

1617% 1.067% 00010 3204

Figure 14. Migration network motifs with three and four nodes at local authority level.
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'
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]
1.2704% 0.3302% 000111 B413
]
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-
]
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L 20 -

Figure 15. Commuting network motifs with three and four nodes at local authority level.
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