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Mincer was one of the first people to study the return to education in the 1970s.
He proposed a linear relationship between years of education, years of experience
and wages that assumes the economic environment is static. The 1960 US Census
data that was used by Mincer showed an approximately static economic environ-
ment insofar as the relationships between wages, education and experience that he
predicted could be observed. However applying the Mincer model to data after 1980
no longer produces valid estimates [17].

The impact of education does not stay constant over time and it is necessary to
build a model that is consistent with current empirical evidence. Recent studies
highlight the large variation in the returns to college education experienced by indi-
viduals who are observationally identical in the data [10]. Consequently any model
needs to account for heterogeneous returns to education that are influenced by un-
observable factors. Furthermore an individual’s expectations about what they stand
to gain influence their decision about going to college [10]. Any decision model needs
to include the influence of unobservables to account for the way individuals act as
if they possess information that is not available in the data.

We work with a binary decision model that assumes individuals go to college if
their expected net utility is positive. The net utility is calculated as a combination
of observed data and unobserved factors that will include the individual’s expected
gains. In addition we use a model that relates an individual’s observed wage to
their college decision in a way that allows for individual specific effects to ensure the
possibility of heterogeneous outcomes.

The main contribution of the project is to develop a strategy for estimating the
unobserved returns to education conditional on the unobserved heterogeneity. We
use nonparametric methods for estimation which requires us to choose a smooth-
ing parameter. However typical methods for selecting the appropriate smoothness
rely on having access to observed data. To be able to implement our estimator of
unobservables we develop a criterion for choosing the level of smoothing and use a
simulation study to test the performance.
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Abstract

This paper studies the average returns to college education conditional on
the unobservable heterogeneity that influences both education decisions and
wage outcomes. The recent instrumental variables literature has tried to es-
timate this parameter for a scalar unobservable but it does so only under an
unrealistic assumption that imposes monotonicity on the decision process. We
show how to utilize the Radon transform with continuous instruments in a
random coefficient model to estimate the average returns to college education
conditional on a vector of unobservables that we call CATE. Our specification
is flexible because it allows for complex unobserved heterogeneity of individu-
als and non-monotonic decisions. The main contribution of this project is to
implement two estimation strategies for recovering CATE. In particular we
construct a new regularized inverse for the Radon transform and a method for
parameter selection based on observable data. A simulation study compares the
performance of the estimation strategies and demonstrates that our parameter
selection method is a reliable guide for tuning the estimators.
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1 Introduction

The return to schooling has been the subject of continued interest for over fifty years
and quantifying the returns remains an open question. Estimates for the causal im-
pact of schooling on wages in the US are reported to be in the range of 4− 7% per
year by some sources and 10−15% by others [8]. The discrepancy is due to different
statistical approaches and it remains even when the same data set is used.

The difficulty in untangling the influence of education on wage outcomes1 is that an
individual’s decision about their education is potentially related to their unobserved
abilities, tastes or social influences and, in turn, these unobserved qualities have an
impact on the individual’s wage. When a decision both depends on unobservables
and is correlated with the gains that result from a decision then standard economet-
ric tools produce biased results [10].

In this paper we focus on one major education decision; whether to go to college
or not. We use a flexible model that allows for heterogeneity in returns to college
and in decisions. Our aim is to investigate the relationship between unobserved het-
erogeneity and the returns to college education by estimating the average returns
conditional on unobservables that we call CATE. By starting with a conditional
average we can ask questions about the average returns for sub-populations and
move beyond talking about ‘a’ return to schooling.

The structure of this report is as follows; section two introduces the model and
the conditional average returns, CATE, which is the object we will estimate. Sec-
tion three explains the estimation strategy which is based on the Radon transform
while section four outlines the key parameters involved in the estimation and how
they can be chosen. Finally section five presents a simulation study of the estima-
tors that compares two approaches for estimation and looks at the implementation
of parameter selection before an outlook concludes.

2 The Model

This section introduces the formal set up for the analysis of the returns to college
education ∆ which will be estimated via the conditional average returns CATE.
We model the observed log wages Y in terms of the decision to go to college D with
a separate model for the decision process itself.

Y = Y0 +∆D, where ∆ = Y1 − Y0 (1)

D = 1{Ṽ − Γ̃Z̃ − Θ̃ > 0} (2)

The outcome equation (1) is in the form of a random coefficient model where we
observe Y,D for each individual. The partial effect of D on Y is captured by the
coefficient ∆ which varies with the individual, finally Y0 absorbs the constant and
error term from the standard linear regression model. Y0 is the wage in the base
state corresponding to no college education and ∆ = Y1−Y0 is the return to educa-
tion for an individual under a hypothetical shift from state 0 to state 1.

1Recent work also consider influences on non-monetary outcomes such as health but we restrict out
focus to wages in this project [11].
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We explicitly model the state an individual is in through the decision model (2).
Individuals choose college when their expected net utility is positive. The net utility
depends on the cost factors or information contained in the observed instruments2

Ṽ , Z̃ and on the unobserved scalar random coefficients Γ̃, Θ̃.3 The important aspect
of our decision model is the inclusion of multiple sources of heterogeneity in the form
of a vector of random coefficients. The random intercept −Θ̃ contains unobserved
contributions to the net utility such as the expected gains ∆ while the random co-
efficient Γ̃ reflects the individual specific impact of the instruments on the net utility.

In this report we work with two dimensions4 of heterogeneity Γ = (Γ̃, Θ̃)⊤ which is
the vector of coefficients for (Z̃, 1)⊤. We rescale the decision model so that (Z̃, 1)
is a unit vector that we denote as eΦ = (cos(Φ), sin(Φ)) for some Φ ∈ [0, π] and let
V = Ṽ /|(Z̃, 1)| where | · | is the Euclidean norm. The rescaled model is

D = 1{V > Γ⊤eΦ}

Recent work on decision models that allow for dependence on unobservables and
correlations with the returns ∆ were based on an additive scalar unobservable [6][2].
A consequence of using an additive unobservable is that it places restrictions on the
heterogeneity of decisions [4]. The key innovation in our approach is that we can re-
cover a relationship between returns to education and unobservables from a decision
model that allows for heterogeneity in decisions. Because of this generality Heck-
man and Vytlacil refer to (2) as a benchmark nonseparable, nonmonotonic model [2].

While we allow for a rich structure in terms of unobservables we require that the
model is linear in the parameters which is potentially restrictive. Instead of try-
ing to capture higher order terms in the observable variables we want to emphasize
the dependence of the college decision on an unobserved structure. In addition we
require the following assumptions for our estimation process.

Assumption 1 (A-1) 0 < P(D = 1) < 1;

(A-2) V,Φ ⊥ Y0,Γ and V,Φ ⊥ Y1,Γ where ⊥ denotes independence;

(A-3) The distribution of (V,Φ,Γ) is absolutely continuous with respect to the Lebesgue

measure;

(A-4) The supp(fΦ) = [0, π] and for every φ ∈ [0, π]

[
inf

γ∈supp(fΓ(·))
γ⊤eφ, sup

γ∈supp(fΓ(·))
γ⊤eφ

]
⊂ supp(fV |Φ(·|φ).

Assumption (A-1) requires that this is a fraction of the population who goes to
college and a fraction that does not to ensure there is some variation. (A-2) and
(A-3) are standard assumptions in the instrumental variables literature and require

2An instrumental variable Z is defined to be correlated with D but independent of Y . In the case
of education examples include distance to college or tuition fees. We use instruments to deal with
the endogeneity problem due to the correlation between D and ∆.

3As the net utility can only be identified up to scale we set the coefficient of V to 1 under the
assumption that the coefficient has a known sign and w.l.o.g. it is positive.

4This model can be generalized to higher dimensions when Γ̃, Z̃ ∈ R
d.

6



that the instruments V,Φ are continuous and independent of the random parame-
ters. Lastly (A-4) is a large support assumption that is necessary for the Radon
transform which is the core of our estimation strategy and is explained in the fol-
lowing sections.

The main aim of this project is to implement an estimator for the average returns
to college education ∆ conditioned on unobservable characteristics Γ,

CATE(γ) = E[∆|Γ = γ].

CATE is the average returns for the subpopulation with unobserved heterogene-
ity vector equal to γ. It is also the average returns for individuals who would
be indifferent about attending college if they were exogenously assigned a value of
(Φ, V ) = (φ, v) such that γ⊤eφ = v. Furthermore it is independent of the instru-
ments (Φ, V ) due to Assumption (A-2) which implies that it can be used for policy
analysis. These are all essential properties of the marginal treatment effect (MTE)
defined in [2]. We think that CATE is a natural extension of MTE to a scenario
with a vector of unobservables and the freedom for heterogeneous decisions. As in
[2] a large variety of measures based on averages can be written as weighted averages
of CATE.

If CATE is not constant in the direction of Γ̃ it is an indication of heterogeneous
cost factors associated with the instruments, namely a non-linearity in the influence
of the instruments on the decision and hence on the returns. Similarly if CATE is
not constant in the direction of Θ̃ it demonstrates the existence of heterogeneous
unobservables that are included in the net utility of going to college.

3 Estimation with the Radon Transform

The difficulty with estimating CATE is that it is an expectation of the unobserved

gains ∆ conditioned on unobservable characteristics Γ. To express CATE in terms
of observables we use the Radon transform R which is a bounded linear operator
typically associated with tomography. Statistical inverse problems involving a Radon
type operator have previously been used to estimate the distribution of random
coefficients in a linear model [5].

Definition 1 The Radon transform applied to a function f ∈ L1(R
2) yields the

integral of f over the line Lφ,u := {γ : γ⊤eφ = u} with respect to the Lebesgue

measure on the line, dLφ,u
(γ),

R[f ](φ, u) =

∫

Lφ,u

f(γ)dLφ,u
(γ).

Under Assumption 1 we can relate CATE and the distribution of unobservables fΓ
to the observables Φ, V, Y,D by using the Radon transform.5

E[Y |(Φ, V ) = (φ, v)] =

∫ v

∞
R[E[∆|Γ = ·]fΓ(·)](φ, u)du

=

∫ v

∞
R[CATE(·)fΓ(·)](φ, u)du

5Throughout this paper we use fX(x) to refer to the distribution of a random variable X at the
point X = x.
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The details of the derivation and further discussion of the Radon transform can be
found in Appendix A.

3.1 Regularized Radon Inverse

The basic observation of our model is that a function of observables is equal to
the integral of the Radon transform of an expression involving unobservables. To
recover the unobservables we would like to invert the Radon operator. This is an
ill-posed inverse problem as the inversion of the Radon transform is not continuous;
introducing a small amount of error to the argument may result in large changes in
the value. To manage this problem we use a regularized inverse AT of the Radon
transform. In our two dimensional setting it is an operator AT : {h : [0, π] × R →
R} → {f : R2 → R} defined as

AT [h](γ) =

∫ π

0

∫ ∞

−∞
KT (e

⊤
φ γ − u)h(φ, u)dudφ, γ ∈ R

2 (3)

with the property that lim
T→∞

‖ATR[h]− h‖L2 = 0. The function KT which shows up

in the integrand of AT is similar to a smoothing kernel in nonparametric statistics
and is classically defined with respect to a Fourier transform involving an indicator
function [5]. ExplicitlyKT (x) = (2π2)−1

∫ T
0 cos(tx)tdt, where T is the regularization

parameter that controls the degree of smoothing; a smaller T corresponds to greater
smoothing and a decreased frequency of oscillations.

In the estimation of CATE the argument of AT is a function of the form ∂vE
where E : (φ, v) 7→ E[g(Y,D)|(Φ, V ) = (φ, v)] is a regression function. The argu-
ment has to be estimated prior to the regularized inversion which risks introducing
substantial error early in the process. The estimation of the derivative of a regression
function is more difficult than a standard regression and the choice of regularization
parameter is a topic of ongoing research [7].

A theoretical contribution of this project is the construction of an alternative regu-
larized inverse. By changing the form of KT it is possible to use integration by parts
to remove the difficult derivative estimation. As an alternative to the regularized
inverse AT we define an alternative regularized inverse BT to be the same way as
AT (3) except in the integrand we replace the function KT by JT where

JT (x) =
1

2π2

∫ T

0
cos(tx)tψ

(
t

T

)
dt

and ψ(x) = c exp
(

−1
1−|x|2

)
is defined for x ∈ B2(0, 1) with a normalization constant

c.6 The details can be found in Appendix B. The important feature is that the
function ψ is an element of the space of rapidly decreasing functions on R2 known
as the Schwartz space S(R2). The properties of the Schwartz space7 guarantee that
we can do integration by parts on the regularized inverse BT [∂vE] and exploit the
resulting iterated expectation to get

BT [∂vE](γ) = E

[
J̃T (e

⊤
Φγ − V )g(Y,D)

fΦ,V (Φ, V )

]
, where J̃T (x) = J ′

T (x). (4)

6We introduce the normalization constant c to guarantee that
∫
R
JT (x)dx = 1.

7For all 1 ≤ p ≤ ∞,S(R2) ⊂ Lp(R2) and the Fourier transform as an isomorphism on S(R2).
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The trimmed sample counterpart to the expectation (4) is,

1

N

N∑

i=1

J̃T (e
⊤
φi
γ − vi)g(yi, di)

fΦ,V (φi, vi)
1{fΦ,V (φi, vi) > τ} (5)

which requires an unknown, but estimatable, density fΦ,V in the denominator. To
evaluate (5) we replace fΦ,V with an estimator which we call a plug-in. To avoid
division by values that are too close to zero we including a trimming parameter τ .
Throughout this report we trim 2% of the data and the results are robust for 1−5%
trimming. The density estimation of fΦ,V can easily be done in an application and
the sum is simple to evaluation which makes this method computationally appealing.

3.2 The Estimators

We can express CATE(γ) = E[∆|Γ = γ] as a ratio of functions of observables
involving the Radon inverse

CATE(γ) =
R−1 [∂vE[Y |(Φ, V ) = ·]] (γ)
R−1 [∂vE[D|(Φ, V ) = ·]] (γ) =

R−1 [∂vE[Y |(Φ, V ) = ·]] (γ)
fΓ(γ)

.

The expression for the numerator of CATE and the distribution of unobservables
fΓ in the denominator can be estimated using a regularized inverse with either a
multidimensional integral to calculate AT or a finite sum to evaluate BT .

As an example we present two estimators for fΓ based on AT and BT respectively
and remark that the numerator for CATE can be estimated in the same way with
a Y replacing D in the expectation in (6) and yi replacing di in the numerator of
the sum in (7).

f̂AΓ (γ) =

∫ π

0

∫ ∞

−∞
KT (e

⊤
φ γ − u) ̂∂vE[D|(Φ, V ) = (φ, u)]dudφ (6)

f̂BΓ (γ) =
1

N

N∑

i=1

J̃T (e
⊤
φi
γ − vi)di

f̂Φ,V (φi, vi)
1{f̂Φ,V (φi, vi) > τ} (7)

where h̄ denotes the extension of the function h to zero outside of its domain of
definition and we use ĥ to show that we are using an estimator of h.

The estimation with AT is a two stage process. First we must estimate the ar-
gument of AT , ∂vE[g(Y,D)|(Φ, V ) = (φ, u)] where g(Y,D) = Y for the numerator
and g(Y,D) = D for the denominator. The first stage estimation of the derivative
requires its own regularization parameter. Secondly we need to choose the amount
of smoothing for the regularized inverse AT by appropriately picking a value of T
as a function of sample size. With the two stage process both components of the
integrand of (3) have a separate regularization parameter which provides more scope
for fitting AT .

By contrast the estimation with BT only has one stage. By using integration by
parts and rewriting the iterated expectation we removed the need to explicitly es-
timate ∂vE[D|(Φ, V ) = (φ, u)]. The only task is to select the T which controls BT

and is now the only major parameter controlling the smoothing. We are effectively
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smoothing both components of the integrand, JT and ∂vE[D|(Φ, V ) = (φ, u)], at
once. In addition this method requires a trimming parameter and an estimator for
fΦ,V as discussed above.

4 Parameter Selection

We begin with a description of standard criteria used for parameter selection and
then develop a data-driven method for tuning the regularization parameter T that
is feasible for an application with either AT or BT . In addition we discuss the
parameter selection for the first stage plug-in estimator ∂vE[D|(Φ, V ) = (φ, u)].

4.1 Objective Functions for Parameter Selection

Given independent and identically distributed observations (xi)
N
i=1 of a random

variable X the density fX can be estimated with non-parametric methods and
the regularization parameter T can be chosen to minimize the mean squared er-
ror

∫
(f̂TX(x) − fX(x))2dx. As fX is unknown the mean squared error cannot be

calculated directly. If T minimizes the mean squared error then it minimizes the
expression

∫
(f̂TX(x))2dx−2

∫
f̂TX(x)fX(x)dx for which there is an unbiased estimator

∫ (
f̂TX(x)

)2
dx− 2

N

N∑

i=1

f̂TX(xi). (8)

However, we want to estimate the density of the unobserved random vector Γ where
it is not possible to calculate the sum in (8) as we cannot evaluate f̂Γ(γi) when γi
are unobserved. We are particularly interested in the unobserved heterogeneity Γ
and returns to education ∆ because they provide an insight into how the benefit
of schooling varies across a population. To recover these unobservables we have
introduced an ill-posed inverse problem and now face a second challenge of how to
adequately choose the amount of smoothing, as a function of sample size, to regu-
larize the inverse.

In the simulation study we begin by choosing all the regularization parameters to
minimize an objective function that relies on a comparison with the true function.
We consider both the mean squared error and the sup-norm as objective functions
that can provide a benchmark for the parameter selection. Subsequently we con-
struct a third data-driven approach that is appropriate for an application as it
minimizes an objective function that depends on observables.

A data-driven method for selecting T . To select T we minimize the differ-
ence between two estimators of the same object. We discuss the method in terms
of fΓ for which we compare two estimators, P̂ , P̄ of the probability that an individ-
ual goes to college and has observable characteristics (Φ, V ) within a certain range
specified by the box B, namely P(D = 1 ∩ {Φ, V } ∈ B). The estimator P̂ involves
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a functional of f̂Γ while P̄ is calculated directly from the data as follows;

P̂B(T ) =
1

Ntest

Ntest∑

i=1

1{(φi, vi) ∈ B}
∫

R2

1{vi > γ⊤eφi
}f̂TΓ (γ)dγ

P̄B =
1

Ntest

Ntest∑

i=1

di1{(φi, vi) ∈ B}

where we estimate f̂Γ on 80% of the sample and calculate our criterion Err on the
complementary sample of size Ntest. A coarse grid of boxes is used to partition the
data into equal sized groups and T is chosen to minimize

Err(T ) =
M∑

j=1

|P̂Bj
(T )− P̄Bj

| (9)

which is the sum of the difference in the estimators across all the boxes. Multiple
boxes are used to ensure that the estimator performs reasonably in different areas.

Analogously we choose T for the estimator of the numerator of CATE to minimize
the difference between a direct, and indirect, estimate of E[Y 1{(Φ, V ) ∈ B}|(Φ, V )].

4.2 Parameter Selection for the Argument of AT

We use a non-parametric local polynomial estimators of ∂vE[g(Y,D)|(Φ, V ) = (φ, u)].
The advantage of local polynomials is they have a lower bias at the boundaries com-
pared to kernel or spline methods [9]. However the estimation of a derivative of a
regression function is a difficult problem. The regularization parameter selection for
estimators of derivatives is a field of active research [7]. We leave the implementation
of a data-driven tuning of the derivative estimation for future research.

In the simulation study we choose the regularization parameter to minimize the
mean squared error between the local polynomial estimator and the truth. In the
estimation of fΓ when g(Y,D) = D we have ∂vE[g(Y,D)|(Φ, V ) = (φ, u)] is equal to
R[fΓ(·)](φ, v) which is positive by definition of a slice integral of a density. We take
the maximum of the local polynomial estimate and 0 which significantly reduces the
error and contributes to the success of AT for estimating fΓ.

5 Simulation Study

The simulation study provides a guide for how to choose the regularization param-
eter T in an application and compares the two estimators of the regularized Radon
transform (6) and (7) based on the regularized inverse operators AT and BT respec-
tively. Three criteria for choosing T are compared in the estimation of fΓ and it is
shown that our data-driven method selects a reasonable T . After selecting suitable
parameters for the estimation we compare the performance of the two estimation
methods and show that they are able to recover the relationship between unobserved
heterogeneity and the returns to education.

We use the statistical software R [12] with additional packages for local polyno-
mial regression [13], adaptive quadrature [14][15] and parallel computing [16].
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5.1 Simulation Set-up

Our simulation set up is based on independent normal distributions where Φ is a
truncated normal with support on [0, π]. For the estimation of fΓ we also experi-
mented with a mixture of multivariate normals for which the estimators performed
equally well but maintain a simpler set up here due to difficulties with CATE. We
explicitly model the unobservables ∆,Γ = (Γ̃, Θ̃), Y0 along with the observables Φ, V
to define D = 1{V > Γ⊤eΦ} and Y = Y0 +∆D.

Γ̃ ∼ N (1, 1), V ∼ N (−0.2, 2), Y0 = 2Γ̃ + Θ̃

Θ̃ ∼ N (−1
2 , 1), Φ ∼ N[0,π](

π
2 ,

π
4 ), ∆ = 1

2 Γ̃− 2Θ̃

The key intuition for the simulation set up comes from the role of the random
intercept term in the decision model, Θ̃, which contains the negative expected gains.
We define Θ̃ so that it is negatively correlated with the real gains ∆ and is the
dominant term in the expression for ∆. Subsequently the other parameters were
chosen so that D takes the value one approximately half the time which is in line
with empirical data [3].

5.2 Comparison of Objective Functions for Parameter Selection

In the simulation study we use two objective functions that are not available for an
application, the mean squared error and the sup-norm. They provide a benchmark
for the appropriate choice of T . In addition we use the data-driven objective func-
tion Err defined in section 4.1. We apply all three methods to choose T for the
estimator f̂B,T

Γ which is our preferred method for an application due to the diffi-
culty in estimating the first stage plug-in for AT . Values of T ∈ [1.1, 1.9] produce an
estimator f̂B,T

Γ that has one central peak in a similar location to the true fΓ. The
three criteria focus on different features of the estimator but all choose a reasonable
T ∈ [1.1, 1.9].
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Figure 1: The choice of smoothing parameter T for the estimator f̂B,T
Γ

depends on
which objective function is minimized. The results are averaged over 10 simulations
with N = 2000 observations. The standard errors for the mean squared error and
the sup-norm are too small to be seen. The corresponding plots of f̂B,T

Γ
for each T

are in Appendix C.
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5.3 Comparison of Estimator Performance

In this section we compare the performance of the two regularized inverse estimators
(6) and (7) based on AT and BT . We look at the distribution of error when all the
parameters are chosen to minimize a mean squared error criterion. The parameter
values are recorded in Appendix C along with some indicative plots of the estimators.
To measure the error in an estimator of h we use the average L2 error (ALE)

ALE(h) =

{∫
[ĥ(γ)− h(γ)]2fΓ(γ)dγ

}1/2

which allows us to focus on how well the estimator performs at values of the unob-
servable Γ in the peak of the distribution [5]. As CATE involves conditioning on fΓ
it is very hard to estimate this at points where the density of fΓ is low.
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Figure 2: The distribution of
the average L2 error is calculated
from 100 independent simula-
tions where fΓ is estimated with
N = 2000 points and CATE is
estimated on N = 10000. The
estimation of CATE and corre-
sponding calculation of ALE are
done over the region where the
mass of f̂Γ is concentrated to
avoid small values of f̂Γ in the

denominator of ĈATE.

In Figure 2 the distribution of error is shown for our two estimation strategies based
on the regularized Radon inverses AT and BT respectively. The two estimators f̂AΓ
and f̂BΓ show a clear difference in their performance however there is no difference
in the estimation of CATE. The main reason AT is comparatively more successful
on fΓ than CATE is because of how well the first stage plug-in can be estimated.

Figure 3: The true fΓ and the
estimator f̂A

Γ
are very similar.

For f̂A
Γ

we used h = 0.7 for
the first stage regularization and
T = 2 for the regularized inverse

AT . The estimator ĈATE
B

has the appropriate smoothness
and location in space but, un-

like ĈATE
A
, it struggles to pick

up the variation in Γ̃. We use
T = 2.25 for the numerator and
T = 1.4 for the denominator.
(See Appendix C)

Due to the computational time required to integrate estimators involving AT and
the difficulty in estimating the first-stage plug-in ∂vE[g(Y,D)|(Φ, V ) = (φ, u)] we
recommend the use of the estimator (7) based on the regularized Radon inverse BT .
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However this estimator does not perform as well at estimating fΓ and struggles with
the dependence of the returns ∆ on both dimensions of unobserved heterogeneity.

6 Outlook

This project estimates the average returns to college education conditional on unob-
servables. As the simulation study demonstrates, our estimators are able to recover
information about the structure of unobservables that are intrinsic to the decision
process and heterogeneous returns. To recover the unobservables we introduced an
ill-posed inverse problem through the Radon transform. We constructed a new reg-
ularized inverse that allowed us to simplify the estimation strategy into a one-stage
process involving a finite sum. To use the estimators in an application we presented
a method for selecting the smoothing parameter T which worked well in the simu-
lation study.

Future work will look at the application of these estimators to real data.
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A The Radon Transform

The application of the Radon transform to a function f ∈ L1(R
d) yields the integral

of f over the hyperplane Ls,u := {γ : γ⊤s = u} with respect to dLs,u
(γ) which is the

Lebesgue measure on the hyperplane,

R[f ](s, u) =

∫

Ls,u

f(γ)dLs,u
(γ).

Figure 4: In R2 the Radon transform is the slice integral over the line Lx,y = {v :
x⊤v = y} indexed by a vector on the unit sphere x = eφ and a scalar y.

We use a large support assumption (A=4) to ensure that the support of fΓ is in
a region that can be recovered by our instruments. Namely for any point γ in the
support of fΓ there exists some (φ, v) in the range of our instruments such that γ is
on the line Lφ,v or equivalently γ⊤eφ = v.

A.1 Decision Model for Different Dimensions of Heterogeneity

The previous literature that accounted for the impact of unobservables on the treat-
ment decision D relied on an additive scalar unobservable Θ [2][6]. In particular the
decision model was in the form of a scalar threshold crossing model

D1 = 1{µ(V, Z) > Θ} = 1{FΘ(µ(V, Z)) > U} = 1{P (V, Z) < U} (10)

for some function µ of the observables V, Z. Using the monotonic transformation
of the cdf FΘ yields the final expression in (10) which is in terms of a uniform
random variable U on the interval[0, 1]. A decision model in this form is equivalent
to assuming that decisions are monotonic [10]. The advantage of this set up is the
ease of estimation;

P(D1 = 1|(V, Z) = (v, z)) = P(U < P (V, Z)|(V, Z) = (v, z)) = P (v, z)

As a contract our decision model involves multiple sources of unobserved hetero-
geneity and requires the Radon transform to estimate P(Dd = 1|(V, Z) = (v, z)); in
d dimensions we have the model

Dd = 1{Ṽ − Γ̃⊤Z̃ − Θ̃ > 0} (11)
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for Γ̃, Z̃ ∈ Rd. Rescaling by the norm of (Z̃⊤, 1) gives Dd = 1{V > Γ⊤S} where S
is the unit vector on the upper hemisphere and Γ ∈ Rd+1.

P(Dd = 1|(V, S) = (v, s)) = E[E[Dd|V = v, S = s,Γ = γ]|V = v, S = s]

= E[E[Dd|Γ = γ]|V = v, S = s], using (A-2)

=

∫
1{v > γ⊤s}fΓ(γ)dγ

=

∫ v

−∞

∫

{γ:γ⊤s=u}
fΓ(γ)dLs,u

(γ)du

=

∫ v

−∞
R[fΓ(·)](s, u)du

Using the Radon transform allows us to recover the distribution of unobservables
fΓ, namely

fΓ(γ) = R−1
[
∂vE[Dd|(V, S) = ·]

]
(γ)

where h̄ denotes the extension of the function h as 0 outside of its domain of defini-
tion. This is useful if the regression function ∂vE[Dd|(V, S) = ·] has regressors with
bounded support. It is an innocuous assumption as we assume the variables (V, S)
have a large enough support to apprehend the whole distribution of unobservables
fΓ.

A.2 Central Result for Identification

Theorem 1 Consider an arbitrary function φ such that E [|φ(Y0)|+ |φ(Y1)|] < ∞.

Let L ≥ 2, and assume that Assumption 1 holds. Then, for almost every x in

supp(X), the following statements are true:

f
Γ̃|X

(·|x) = R−1

[
∂vE

[
D

∣∣∣
(
S̃, Ṽ

)
= ·, X = x

]]
(12)

E

[
φ(Y1)

∣∣∣Γ̃ = ·, X = x
]
f
Γ̃|X

(·|x) = R−1

[
∂vE

[
φ(Y )D

∣∣∣
(
S̃, Ṽ

)
= ·, X = x

]]
(13)

E

[
φ(Y0)

∣∣∣Γ̃ = ·, X = x
]
f
Γ̃|X

(·|x) = R−1

[
∂vE

[
φ(Y )(D − 1)

∣∣∣
(
S̃, Ṽ

)
= ·, X = x

]]
.

(14)

From the theorem it is simple to calculate the relationships for CATE using the
fact that ∆ = Y1 − Y0 and Y = Y D + Y (1−D). Namely

E[∆|Γ = ·]fΓ(·) = E[Y1|Γ = ·]fΓ(·)− E[Y0|Γ = ·]fΓ(·)

= R−1

[
∂vE

[
Y D

∣∣∣
(
S̃, Ṽ

)
= ·

]]
−R−1

[
∂vE

[
Y (D − 1)

∣∣∣
(
S̃, Ṽ

)
= ·

]]

= R−1

[
∂vE

[
Y
∣∣∣
(
S̃, Ṽ

)
= ·

]]

A.3 Calculating R[fΓ(·)](φ, v) for the Simulation

For the two stage estimator (6) involving the regularized Radon inverse AT it is
difficult to tune the first stage plug-in estimator ∂vE[g(Y,D)|(Φ, V ) = (φ, u)]. In
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the simulation we use an oracle method of comparing the estimate against the truth
where

∂vE[D|(Φ, V ) = (φ, u)] = R[fΓ(·)](φ, u)
∂vE[Y |(Φ, V ) = (φ, u)] = R[∆fΓ(·)](φ, u)

As the simulation set up was chosen to have the same variance it is straightforward
to calculate these expressions using a parameterization of Lφ,u such that

∀γ ∈ Lφ,u, ∃t ∈ R, γ = u

[
cos(φ)
sin(φ)

]
+ t

[
− sin(φ)
cos(φ)

]

and then doing the Radon integral with respect to the parameter t.

As fΓ(γ, θ) =
1
2πe

−1

2
[(γ−1)2+(θ+0.5)2] we get

R[fΓ(·)](φ, v) =
1√
2π
e

−1

2
[v−(cos(φ)−0.5 sin(φ))]2

Using these calculations we could tune the plug-in by comparing against the truth.
This method is obviously not feasible for an application so we refer to it as an oracle.
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B Alternative Regularized Radon Inverse

The inverse Radon transform is an ill-posed inverse problem; introducing a small
amount of error to the argument may result in large changes in the value. To deal
with this we need to construct a regularized inverse. To express our estimator in
an alternative form that is more suitable for an application we want to be able to
perform integration by parts on the regularized inverse. This is not possible with
the classical regularized inverse involving KT as defined in section 3.

B.1 Define the Regularized Inverse using the Schwartz Space

The classical regularized inverse is defined in terms of the inverse Fourier transform
of an indicator function, we will use the inverse Fourier transform of an element of
the Schwartz space and use the properties of the Schwartz space to guarantee that
we can do integration by parts.

Definition 2 The Schwartz space S(Rd) is a space of functions where all their

derivatives are rapidly decreasing

S(Rd) := {f ∈ C∞(Rd) : ∀α, β ∈ N
d |x|α|∂βf(x)| −→|x|→∞ 0}

where α, β are multi-indices.

The Schwatz space has some important properties that are useful for our problem;
first S(Rd) is contained in Lp(Rd) for all 1 ≤ p ≤ ∞ and secondly the Fourier
transform F is an isomorphism on S(Rd).

Example 1 ψ(x) = exp

( −1

1− |x|2
)

is an element of S(Rd) with support on Bd(0, 1)

For the regularized inverse we introduce the smoothing parameter T and observe
that ψ

(
x
T

)
is defined for x ∈ Bd(0, T ). By decreasing the value of T we truncate

the Fourier transform which will increases the smoothing in the regularized inverse.

We will use the normalized Fourier inverse of ψ

φ(x) =
c

(2π)d

∫

ξ∈Bd(0,1)
e−ix⊤ξψ(ξ)dξ

where c is chosen so that
∫
Rd φ(x)dx = 1. By definition of the Schwatz space φ is

integrable and so c exists. In particular we will define φT (x) for x ∈ Bd(0, T ) and
show that φT (x) = T dφ(Tx).

φT (x) =
1

(2π)d

∫

ξ∈Bd(0,T )
e−ix⊤ξψ

(
ξ

T

)
dξ

=
T d

(2π)d

∫

η∈Bd(0,1)
e−ix⊤ηTψ (η) dη

= T dφ(Tx)
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Definition 3 Let A(γ) = R−1[g](γ). We define the regularized Radon inverse

AT for a general function g through a convolution with φT

AT (γ) = (A ∗ φT )(γ)

where φT is defined above through the inverse Fourier transform of an element of

the Schwartz space.

B.2 Bias in the Regularized Inverse

The bias from using the regularized inverse AT as a replacement for the inverse
Radon transform A is

‖AT [g]−A[g]‖∞ .

To calculate the bias we will work with (A−AT )(x) =
∫
Rd(A(x)−A(x−y))φT (y)dy

which comes from the fact c was chosen earlier to guarantee that
∫
φ(y)dy = 1 =∫

φT (y)dy.

We need a smoothness assumption on A to be able to provide a bound on the
bias. For the explanation we only assume the existence of one derivative but the
result can be generalized for s derivatives.

Assumption 2 The operator A has derivative DA ∈ L∞ and ‖DA‖∞ ≤ M for

some M <∞.

Using assumption 2 we provide a bound for the absolute value of the difference
between A and AT which gives us the bound in sup-norm.

|(A−AT )(γ)| ≤ T dM

∫

Rd

|y||φ(Ty)|dy

≤M

∫

Rd

∣∣∣ η
T

∣∣∣ |φ(η)|dη

= T−1M

∫

Rd

|η||φ(η)|dη

As φ ∈ S then |η||φ(η)| → 0 as |η| → ∞ and the integral is finite. The fact that the
bias depends on T−1 is due to the assumption that the first derivative is bounded.
This can be generalized to having a bounded sth derivative and a bound on the bias
term that depends on T−s.

B.3 Defining JT and BT

Analogous to the presentation of the classical regularized Radon inverse we rewrite
AT in terms of an integral where KT is replaced with our new JT . For our work in
a two dimensional setting where ∂vE : [0, π]× R → R we have

AT [∂vE](γ) =

∫ ∞

−∞

∫ π

0
JT (γ

⊤eφ − u)∂vE(φ, u)dudφ, γ ∈ R
2

where

JT (u) =
2c

(2π)2

∫ T

0
cos(tu)td−1ψ

(
t

T

)
dt =

c

(2π)2

∫ T

−T
eitu|t|d−1ψ(

|t|
T
)dt.
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As |t|ψ(|t|) ∈ S(R) then the Fourier transform is also an element of the Schwatz
class which implies that JT ∈ S(R) and hence JT ∈ Lp(R) for all 1 ≤ p ≤ ∞. This
allows us to use integration by parts and write

AT [∂vE](γ) =

∫ ∞

−∞

∫ π

0
J̃T (γ

⊤eφ − u)E(φ, u)dudφ, γ ∈ R
2

where

J̃T (u) = J ′
T (u) =

−c
2π2

∫ T

0
sin(tu)tLψ

(
t

T

)
dt.
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C Plots of Estimates

C.1 Estimates of fΓ

In this section we show a comparison between the true distribution of unobservables
and various estimators. Recall that

f̂AΓ (γ) =

∫ π

0

∫ ∞

−∞
KT (e

⊤
φ γ − u) ̂∂vE[D|(Φ, V ) = (φ, u)]dudφ

which requires a regularization parameter for the plug-in estimator ̂∂vE[D|(Φ, V ) = (φ, u)]
and a suitable choice for T . Due to the computation burden of running our data-
driven method with this estimator we used the mean squared error criterion in
the simulation to tune both parameters. When N = 2000 we use h = 0.7 as the

regularization parameter associated with ̂∂vE[D|(Φ, V ) = (φ, u)] and T = 2 for the
regularized Radon inverse AT .
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Figure 5: The estimator f̂A
Γ

(left) is a good match for the underlying distribution
fΓ (right). Estimation is done with a sample N = 2000 and the regularization
parameters (h, T ) = (0.7, 2) based on a mean squared error criterion.

The alternative method of estimating fΓ involves a sum which is computationally
easier and allows us to use a data-driven approach for selecting T . In particular

f̂BΓ (γ) =
1

N

N∑

i=1

J̃T (e
⊤
φi
γ − vi)di

f̂Φ,V (φi, vi)
1{f̂Φ,V (φi, vi) > τ}

which is a one-stage estimator were the only smoothness parameter is T . In addition
the plug-in f̂Φ,V is estimated with local polynomials and τ is chosen to trim 2% to
avoid division by values too close to zero.

The choice of T depends on the criterion used; for the mean squared error T = 1.4,
with the data-driven method T = 1.2 and for the sup-norm T = 1.75. The corre-
sponding plots for each value of T are displayed in Figure 6.
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Err: T=1.2
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Figure 6: We consider three objective functions that can be minimized to select
a suitable value of the parameter T . In the estimation with BT the mean squared
error (MSE), sup-norm (Sup) and our data-driven objective function Err all produce
different values for T although they lie within a similar region and produce relatively
similar estimates. For comparison the truth in the bottom right is substantially higher
and more peaked, however the estimator does pick up on the correct location of the
peak and is done with a comparatively small sample size of 2000.

C.2 Comparison with ĈATE

The estimates of CATE are done with a sample size of 10000 in contrast to the 2000
that was used for the estimation of fΓ in the report. For nonparametric estimation
methods a sample size of 10000 is not considered large, however it can be difficult
to find data sets of that size.

The plots are displayed over a central region where the majority of the mass of
f̂Γ lies as this guarantees a reasonable behaviour of the denominator in CATE.
Even so on the boundaries of the central region the estimate starts to blow up.

Recall that in the simulation study we define

CATE(Γ) = 0.5Γ̃− 2Θ̃.

The estimator ĈATE
A
is less reliable on the boundaries than ĈATE

B
. The advan-

tage of the ĈATE
A
is that it is not constant in either dimension of the unobservables

indicating that there is a complex structure of unobservables involved in the out-

come. By contrast ĈATE
B
is constant in the direction of Γ̃.
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Figure 7: The true CATE as a function of unobservables (Γ̃, Θ̃) and an estimate

ĈATE
A
where the estimation parameters for the numerator are T = 2.25 for the reg-

ularized Radon inversion and h = 1.1 for the local polynomial estimate of a derivative
of a regression function and in the denominator T = 2 and h = 0.7. Decreasing T
corresponds to more smoothing in the regularized inverse while increasing h intro-
duces more smoothing in the local polynomial estimate. All parameters were chosen
to minimize a MSE criterion.
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Figure 8: The true CATE as a function of unobservables (Γ̃, Θ̃) and an estimate

using ĈATE
B

where the estimation parameters for the numerator are T = 2.5 with
trimming set at 2% and in the denominator T = 1.4 again with 2% trimming. De-
creasing T corresponds to more smoothing in the regularized inverse while increasing
h introduces more smoothing in the local polynomial estimate. All parameters were
chosen to minimize a MSE criterion.
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