Insurance models and risk-function premium principle

Aditya Challa
Supervisor : Prof. Vassili Kolokoltsov

July 2, 2012

Abstract

Insurance sector was developed based on the idea to protect people from random unforseen events. In
this project we analyse the basic working of an insurance company and the various models used in this field.
The insurance company is assumed to have a contract, called insurance policy, with the policy holders. The
contract states that the insurance company is liable to pay for the losses due to certain random events. In
return, the policy holder must pay a fixed amounts (premiums) in regular intervals of time. An insurance
company is supposed to have such contracts with thousands of policy holders. Thus, from the point of view
of the insurance company, we get a deterministic amount of money in each time interval, and claims at
random times. Loosely, premiums are deterministic functions to compensate for the losses due to random
events. Thus, premiums are most essential for the working of an insurance company. In this project we
develop a new premium principle called risk-function premium principle which has the property that all
other premium principles are special cases of this principle.

1 Introduction

Unforeseen circumstances could have a major impact on the society and life of the people in it, and how careful
one might be there are a few things which man cannot control. It is thus important to think about such circum-
stances, and find out a way to deal with them. Now, the question arises as to how to deal with situations one
might not know how and when they would arise. The theory of probability and statistics gives a reasonable tool
for dealing with such situations. On the idea to protect people from the unforseen circumstances, the insurance
sector was developed.

To ensure that the insurance company does not go bankrupt, we need to have a efficient model which is amenable
to analysis. Insurance deals with situations which are highly complex. For example insurance against weather
fluctuations, which the field of Catastrophe modelling deals with. Predicting weather is one of the questions
which had made progress but still does not have an reasonable answer. Thus, when insurance company deals
with this situation, it has huge amounts of data along with thousands of parameters. This is a typical example
of a complex system in the field of insurance.

An insurance company would usually start with a capital, and start selling the policies. After a while it would
start getting premiums for the policies. The company would save these premiums, or reinvest it for higher
interests. Now, the company is liable to pay all those policy holders who would claim their losses from time to
time. In this whole process, randomness could arise from:-

e The time at which the policy-holders would claim their losses.
e The size of the each claim.

e If the company would reinvest its gain from premiums in a risky asset, what is the chance that it would
loose a portion of it?

There is also a small chance that the policy-holders would quit for some reasons, which can easily be ignored.
Each of the above situations could be modelled in a number of ways, and the ideal model depends on the type
of policy and the historic data.

Once the models are established, the company has to make few important decisions as, how much should be
charged as premium?, where to invest the premiums?, what is the initial capital required to avoid bankruptcy?,
etc. To answer such questions we need to have a criteria based on which we can answer such questions. For
example, one of the criteria could be that the company chooses its premiums, investment strategies, and initial



capital based on whether it would reach bankruptcy in finite time or not. That is, mathematically speaking, if
7 is the time when the company would reach bankruptcy we need to calculate

P (7 < oo|variables)

This is called the Probability Of Ruin and the decisions are made such that this probability is zero or as less
as possible. Here, the variables stand for the decisions the company has to make. This is widely used in the
industry. There could be other principles which are stronger or weaker, based on the company.

There are a lot of different kind of policies the insurance company offers. In theory, a pre-defined regular pay-
ments to the company and a huge payment in case an event occurs could be considered as a policy. It could
also be that the company has to pay a series of payments after an event occurs, but all such payment could be
combined to a single payment at time 0, using interest rates and depreciation. In general policies are divided
into life and non-life insurance policies. In this project, we will be dealing majorly with the non-life insurance
policies.

Apart from its obvious practical use, these models gives rise to rich mathematical and statistical theories, which
in its own right is very interesting and challenging. Most of the results discussed here are widely used in the field
of actuarial sciences. Thus we state only the most important results keeping in mind the practical application
of the results. We refer the reader to the references for majority of the proofs. We start with discussing the
basic models in insurance and few of the results. Most of these results are widely used and are borrowed from
(Ramasubramanian, 2009) and (Rolski et al., 2009). The new idea in this project is related to the Premium
Principles. We propose a new premium principle of which all other premium principles are special cases.

2 Basic Models in Insurance

As mentioned earlier, there are sources of randomness in the process of the working of an insurance company,
which needs to be modelled. In this section we look at few of the basic models for the arrival times of the claims
and the claim size distributions.

2.1 Arrival Times of the Claims

We start with defining a stochastic process for the arrival times of the claims called Claim Number Process,
{N(t) : t > 0}, where N(t) denoted the number of claims before time ¢. The basic probability space is given by
{Q, F, P}. The immediate consequences of this being a model for arrival times are:-

Al: N(0) =0 and N(t) > 0,Vt > 0. This comes from the fact that we assume there are no claims at time
t =0, and since N(t) denotes the number of claims, it must be a non-negative integer.

A2: If 0 < s < t, then N(s) < N(t), that is N(¢) is a non-decreasing process. This is because N (t) denotes
all the claims before time ¢ and, all the claims before time s, are also before time ¢ for s < ¢. Also,
N(t) — N(s) denotes the number of number of claims in (s, t].

Note that N(t) is a process which takes only integer values, and at some time a jump occurs. The jumps can
once again only be positive integers. Corresponding to this claim number process we could define the n'” claim
arrival time as

T, =inf{t >0: N(t) =n}

and time for the n*® claim is defined as
An = Tn - Tn—l

A,, are also called inter-arrival times. Note that the assumptions made above are the least possible assumptions,
and we need to make further assumptions to get a quantifiable model. We now discuss two widely used models,
and the extra assumptions they make.

2.1.1 Poisson Process

We begin with making few further assumptions:-

A3: The process {N(t) : t > 0} has independent increments, that is, for all 0 < t; < ta < t3, N(t3) — N(t2) is
independent of N (t3)—N(t1). This means that the claims arriving in two disjoint intervals are independent.

A4: Along with independent increments the process {N(t)} also have stationary increments, that is for all
0<s<tand h>0,N(t) — N(s) and N(t+ h) — N(s + h) have the same distribution.



A5: There could only be, at maximum, one claim arriving in a short interval of time. Mathematically stated
this assumptions tells us
P(N({t+h)—N({t)>2)=0(h) ashlO0

where o(h) means that it reduces linearly as h. This is true for all ¢, because of the stationary increments
assumption in A4.

A6: There exists A > 0 such that
P(N({t+h)—N@#)=1)=Ar+o0(h) ashlO0

This number A is called the claim arrival rate. Once again this is true for all ¢, because of the stationary
increments assumption in A4.

Note that the assumption A3 is quite intuitive, since we think that claims arrive independently of other claims.
This kind of thinking, however is negated to some extent in assumptions A5 and A6 where we assume that two
claims cannot come at the same time. But, it is still a reasonable assumption in view of the company, since the
chances of such a situation arising in real life are very small. For example, if we consider a situation where there
is an accident or an earthquake, then it is possible that more than one claim could arrive at the same time.
There are however other models to deal with such situations. Assumption A4 is also not completely realistic,
but is a good first step to model insurance claims.

The assumptions A5 and A6 give information regarding how the process acts in small intervals, where we also
used assumption A4. This along with the fact that {N(¢)} is a stocchastic process should, in theory, allow us
to find the distribution of claims in a finite interval. This is infact true as is shown in the following theorem.

Theorem 2.1.1. If there is a stochastic process {N(t) : t > 0} which statisfies the assumptions Al — A6, then
for any t,s > 0 we have

P(N(t+s)—N(t)=k)=P(N(t)=k) = e (1)
Thus, N(t) has the Poisson distribution with parameter At.
See (Ramasubramanian, 2009) and (Rolski et al., 2009) for the rigorous proof this theorem.

Definition 2.1.1. A stochastic process {N(t) : t > 0} which follows assumptions Al — A6 and hence theorem
2.1.1 s applicable, is called time homogeneous Poisson process with a rate .

An immediate extension is to allow for varying rates as a function of time, A(.). This would violate the
assumption A4, and assumptions A5 and A6 have the r.h.s depending on time. This leads us to the following
general definition

Definition 2.1.2. Let A(.) be a non-negative measurable function, with finite integrals over all bounded sets in
[0,00). A stochastic process {N(t) :t > 0} is said to be a Poisson Process with rate A(.) if

o Assumptions A1 — A3 hold

e The sample paths N(.,w) are continuous from the right.

¢
e For 0 <s <t, we have N(t) — N(s) has a Poisson distribution with pammenter/ Ay)dy.

Note that the case A(.) = constant gives a homogeneous Poisson process. Also, the non-decreasing assumption
A2 would give that the sample paths N(.,w) have left limits, thus giving us cadlag functions of time. The ex-
istence of such a process could be proved using Kolmogorov’s consistency results and theory of weak convergence.

If A(.) = 1 then the Poisson process is called a standard homogeneous Poisson process. It is the usual case that

we prove results for the standard version and carry them onto the general Poisson processes. This is possible
because of the following theorem

Theorem 2.1.2. Let A(.) be a rate function of the Poisson process N(t). Also define

u(t) = /0 A(s)ds

Let N(t) be the standard Poisson process. Then the following hold true



(i) {N(u(t)) it > 0} is a Poisson process with rate A(.)

(i) If A(.) > 0 and
lim p(t) = o0

t—o0

then, {N(u~(t)) : t >0} is the standard homogeneous Poisson process.

Intuitively, the above theorem uses the re-normalisation of the time to jump between the standard and the
general Poisson processes. (.) gives a different way to model the process. One could adjust this function to
increase or decrease the number of claims arrived in a particular time interval, for example seasonal trends.

We have previously defined the inter-arrival times, A,. In the model of Poisson process we can find the
distribution of the inter-arrival times, as the next theorem demonstrates.

Theorem 2.1.3. If {N(t) :t > 0} denotes a time-homogeneous Poisson process with rate A > 0 and {T;}
denotes the claim-arrival times, then {A,} is a sequence if independent identically distributed random variables
having exponential(\) distribution.

The proof of this theorem is quite standard and can be found in the references (Ramasubramanian, 2009) or
(Rolski et al., 2009).

The above theorem has a lot of implications. First of all, it gives us another way to define the Poisson process.
We could construct the process by starting at time ¢t = 0, and waiting for an exponentially distributed time
before placing a claim at that time. Then we wait once again for an exponentially distributed time, independent
of the previous time. This gives us a Poisson process according to the above theorem.

The above theorem also allows us to compute various quantities like the time till £** claim which is nothing
but sum of exponential distributions, and hence a gamma distribution. Also, the exponential distribution has
a typical property called the memoryless property which gives a lot more information about the process. More
importantly this way of describing the process using inter-arrival times allows us to extend the Poisson process
by moving from the exponential waiting times to a general distributions. Such processes are very useful in the
actuarial context and are called Renewal Processes which we would deal with in the next section.

The Poisson process model for arrival of claims is a very crude model for the arrival of claims. Practically, it
has been found that the inter-arrival times do not always correspond to the exponential distributions. However,
this provides a very good first step in understanding the claim arrival processes. Also, there are a number of
ways one can define the Poisson process. See (Rolski et al., 2009) for various ways to define a Poisson process.

2.1.2 Renewal Process

As mentioned earlier, we could extend the Poisson process by taking non-exponential inter-arrival times. This
gives us the so called Renewal Process. We use the same notation {4, } for the inter-arrival times as before.

Definition 2.1.3. Let {A, :n=1,2,---} be the sequence of i.i.d non-negative random variables. Let Ty = 0,
and Tyny1 = Ty, + An. Thus the sequence {T;} would gives us times at which the it" claim arrives. Then, we
have that

N(t)=maz{i >0:T; <t}

This process {N(t) : t > 0} is called the renewal process.

We assume that
P<Az = 0) <1

that is, the random variables A; are not degenerate at 0. This allows us to avoid trivial cases and also has the

consequence that for any finite ¢
E(N(t)) < o0

This result is quite intuitive. If we disregard the above assumption, we can add infinitely many A; in a interval
without changing its distribution. Note that this process still has independent increments, and even stationary
increments if the inter-arrival distributions are the same.

We also define another process
No(t) = Tjou(T:) = N(t) +1 (2)



Here, we also counted the event happening at time ¢ = 0. This has the advantage that {Ny(t)} is a stopping
time with respect to the natural filtration where as {N(¢)} is not.

Once we move away from exponential inter-arrival times, its tough to obtain results for finite times. Thus, many
nice properties of the Poisson process are lost. We can however get some asymptotic results on the claim-number
process. Also, the exact distribution of N(.) is tough to find in a renewal process. We get a result similar to
the central limit theorem, which gives us a nice approximation. Such asymptotic results may not help us to
find the distributions for finite times, but are useful for calculating ruin probabilities.

1
Theorem 2.1.4 (Elementary Renewal Theorem). Assume P(A; =0) <1 and E(A;) = X < oo, then

lim SN (f) = A 3)

t—oo

This theorem suggests that the expected number of claims would linearly increase with time, for large times.

1
Theorem 2.1.5 (Central Limit Theorem). Assume that 0 < Var(4;) < oo, E(4;) = X and ¢ = N*Var(A;),

then N(f) - A
. t) — At

Where ®(,) is the distribution function of the standard normal. Also, the convergence is uniform over all x.

The proofs of the above results are fairly standard and can be found in any of the standard textbooks. See
(Ramasubramanian, 2009) and (Rolski et al., 2009).

As mentioned before, it is tough to get the distributions for N(t) for some time ¢. The previous results suggest
that, it is easy to look at E(N(t)) instead, since this is amenable to manipulation. This gives the motivation
to define a Renewal Function.

Definition 2.1.4. The function
H(t) = E(No(t)) = E(N(t)) +1

is called the renewal function corresponding to the renewal process N(t).

The next theorem gives us a way to connect the renewal function with the inter-arrival times, and also show
that the renewal function has all the information about the inter-arrival times.

Theorem 2.1.6. Let the inter-arrival times satisfy P(A; = 0) < 1. Then the renewal function is (1) right
continuous, (2) non-decreasing and (3) H(0—) = 0, H(t) < oo,Vt > 0. The measure py induced by H(t) is
o — finite and is supported on [0.00). Also, If F' denotes the distribution of the inter-arrival times and pp the
measure induced by it, then

H="Y F*" pir = (4)
n=0 n=0

Where F*™) s the n times convoluted distribution. Also, if éH(s) denote the Laplace transform of H and if

lr(s) denote the Laplace transform of F, then

S 1

U (s) = i) (5)

Thus, using the uniqueness property of the Laplace-transforms we can find the distribution of the inter-arrival
times from the renewal function.

The proof can be found in (Ramasubramanian, 2009) and (Rolski et al., 2009).



Consider the following calculation:

o0

HEt) = Y FM()

n=0

:pw>+zpm
=MmM+Z/WW%—WW)

= H[Ooo) /ZF* t—SdF()

= H[Ooo) /Ht—SdF (s)

Note that we used the fact that t > 0 in the second step, and monotone convergence to exchange the summation
and the integral. The above calculation motivates us for the following definition.

Definition 2.1.5. A convolution equation of the form

U(t) = u(t) + /0 U(t — s)dF(s)

is called the renewal equation. Here, F is the distribution for the non-negative random variables, and u(.) is a
known function. U(.) is the unknown function. Clearly H(,) satisfies the renewal equation with u(.) = Ij.o0)(.)
from the previous calculation.

The following theorem gives a general solution to the renewal equation.

Theorem 2.1.7. Let the renewal equation

t —l—/OtU(t—s)dF(s)

hold for a given u(.) which is locally bounded( bounded on bounded sets) and a non-degenerate distribution F.
Define the renewal function(measure) by

H(t) =3 F* (uHu) = Zu}(")>
n=0 n=0

Then, the unique solution in the class of locally bounded measurable functions on [0, 00) is given by

U(t) = /0 u(t — s)dH (s)

The proof of this theorem can be found in (Ramasubramanian, 2009). Note that the above theorem concludes
the existence of a solution to the renewal equation and also gives a way to construct it. Now that the existence
of solution has been established, we are interested in the properties of such a solution. Renewal theorems gives
some asymptotic properties of the solutions to the renewal equations.

Before we state the renewal theorems, note that we previously considered u(.) is in the class of locally bounded
functions. But the renewal theorems here hold for a different class of functions called the Directly Reimann
Integrable functions. Few of the classes of Directly Reimann Integrable functions are

e Continuous functions with support on a bounded set.
e Indicator functions on finite intervals.

e All Reimann integrable functions with support on a bounded set

u(t) = F(t+¢) — F(t) and u(t) = F(t) — F(t — ¢) where, F' is a distribution of the probability measure
and ¢ > 0 is fixed.

Now we state the renewal theorems.



Theorem 2.1.8. Let F' denote the distribution of the inter-arrival times supported on [0.00), and having a

1
finite expectation % Then

e (Blackwell Renewal Theorem) If H is the corresponding renewal function, then for any h >0

lim [H(t + h) — H(t)] = Ah

t—o0

o (Key Renewal Theorem) Let u(.) is a directly reimann integrable function and U(.) be the solution to the
general renewal equation in the class of locally bounded function. Then

lim U(t) = )\/OOO u(s)ds.

t—o00

To appreciate the importance of the theorem, we give the distribution for the Residual Life Time, that is the
time to the next claim. The residual life time at time ¢ > 0 is defined as

Q(t,¢) = P(Tnw+1 —t < ()

Then, If F' denotes the distribution of the inter-arrival times, then we find that Q(., () is the solution to the
renewal equation

Ult)y=(F(t+¢) —F(t)) +/O U(t — s)dF(s)

and hence from the key renewal theorem we have

o <
Jim Q6.0 =X [ (PO = F@yit = [ (- Py

This distribution is also called the integrated tail distribution of F'(.).

2.1.3 Conclusion

In this subsection we looked at two important models for the claim arrivals. One of the main assumptions we
consider is that od the stationary increments. A general theory can be developed to some extent without this
assumption. All these models come under the category of point processes. See (Rolski et al., 2009) for more on
point processes.

One other inherent assumption we made is that, we counted each claim as a single unit. This, in reality is
not true. Each claim is of different amount. Thus, instead of a jump of size one, we can consider randomly
distributed jumps.A Poisson process with random jumps is called a Compound Poisson Process and usually
goes along with the normal Poisson process. In this report, we have taken a different route. We characterise
each source of randomness separately and combine them later on in the subsection on Ruin Probabilities.

2.2 Claim-Size distributions

The next source of randomness in a insurance model comes from the sizes of the claims. The exact distrubution
depends mainly on the insurance policy. For example, in case of life insurance policies the amount is fixed and
known before hand, and hence there is nothing random in it. On the other hand, the non-life insurance policies
like accident coverage or automobile insurance has a random element in the claim sizes.

In theory any probability distribution supported on [0, c0) could be a claim-size distribution. But few distribu-
tions could be dangerous ( the ones with infinite variance). In this subsection we discuss the various types of
claim size distributions and their impact.

2.2.1 Light-Tailed Distributions

As an insurer one would like to reduce the probability of high claims. Mathematically stated, this means we
would like to have the claim-size distributions whose tail probabilities reduce, preferably reduce exponentially.
Such distributions are called “Light-tailed” distributions defined as follows.



Definition 2.2.1. Let F' be the claim-size distribution with its support on [0.00). We say that F is “ Light-
tailed” if there exists a A and C such that

1—F(z)<Ce™™  forall x>0

An equalent condition is the existence of moment generating function defined by
oo
mp(s) = Be®X) = / e**dF(x)
0

for s € (—e,€), for some €. Also, if we define
sp=sup{s > 0:7mp(s) < oo}
then we have that A < sg. Any distribution which is not light-tailed is called heavy-tailed distribution.

As mentioned earlier such distributions are “ nice” in the sense that they are amenable to analysis and would

not pose a great danger to the insurance company. Few examples of the light-tailed distributions are
e Exponential distribution with parameter A
e Gamma distribution,
e Any distribution with compact support

e Truncated Standard normal, defined as
TN(z) = P(IN(0,1)| < ) = 29(x) — 1
where ¢(.) is the distribution of the standard normal.

An insurance company cannot directly control the claim-size distributions. It can, however, remove those
policies which have higher risk. But that is not the only criteria which controls the claim-size distribution. It
is thus important to look at heavy-tailed distributions as well. We now define an important subclass of the
heavy-tailed distributions useful in actuarial context. For other subclasses of the heavy tailed distributions see
appendix A.1.

2.2.2 Sub-Exponential distributions

There are various ways to define sub-exponential distributions. The following definition is the most straightfor-
ward one, from preceding discussion.

Definition 2.2.2. Let, X1, Xo, -, be a set of i.i.d random wvariables from a distribution F, and let S, =
X1+ Xo+ -+ Xy, and M, = max {Xy,Xo, -+, X}, If,

P(S, >t)=P(M, >t)[1+0(1)], foralln>2 (6)
then F' is said to be sub-exponential. The class of sub-exponential distributions os denoted by S
Note that the following are equivalent.

P(S, >t)=P(M, >t)[1+o0(1)], foralln>2

= tgrgcfm:l for all n > 2

— tlirgollil:‘}:ét))l for alln>2

= tli)rrololl_F;fL(t()ﬂzn forallmn>2
2

=l ) =

Thus, any of the above conditions could be taken as as standard definition.The following theorem is useful in
the actuarial context.



Theorem 2.2.1. Let F € S, and a discrete distribution {p1,pa,- -}, such that an(l + €)™ < oo, for some

n

€ >0, then, if G(z) = anF*"(as), then

. 1-G(z)
AT () ;np"

In actuarial context, suppose we are interested in the total claim amount till time ¢. As before, let N(¢) be the
number of claims till time ¢, and X with distribution F' denote the claim size. Then the total claim is given by

N(t)

St) =Y Xi
k=1

Where, X}, is the k" claim amount. The above theorem then tells us that the tail distributions of the S(t) is
almost the same as F'.

2.2.3 Conclusion

In this sub-section, we have seen various types of claim-size distributions, from light-tailed, to regularly varying,
and sub-exponential which are subclasses of heavy-tailed distributions. Our next aim, to use these claim size
distributions, with the point processes discussed before, and calculate the ruin probability, that is the probability
that the company goes bankrupt in finite time.

2.3 Ruin-Probabilities

In this subsection, we shall look at the ruin probabilities of a company. Ruin Probabilities give a good idea of
the health of an insurance company. Also, this quantity is important in making decisions about the premium
rates, and other business strategies to keep the company making profits. The definition of ruin-probability,
a claim number process, and claim size distribution are already discussed above. Along with these we define
Claim amount Process and the Surplus Process. The notation is the same as above.

Definition 2.3.1. If N(t), and X;, be as defines above.
e Define
S(t) =Y X, (7)
Where, N(t) gives the number of claims till time t, and X; is the i'" claim. {S(t)} is called the Total

Claim Amount Process.

o If we assume that the premiums is a deterministic function, p(.), and moreover assume p(t) = ct, where
c 1s called the premium rate. Also, take that the initial capital to be x. Define

Rt)y=x+ct—S(t) VYt>0 (8)
Then {R(.)} is called the surplus process.
e Then the ruin is defined by the event {R(t) < 0 for some t > 0}, and the ruin time is given by
To=inf{t >0: R(t) <0}
and the ruin probability then becomes,

¢(x) = P(19 < 0o|R(0) = z) = P, (19 < o0)

The aim is to get expressions for the ruin probability with a initial capital z. One can look at the Risk Process
as a random walk on the real line. To simplify this a little, note that the ruin can occur only when a claim
takes place, that is at times {77, T5,--- }. Hence, we can discretize the risk process to {R(T,) : n € N}. This is
known as the Skeleton Process.

Also, If we write
Zn, =X, —CcA,



Where A, is the inter-arrival times, defined before. These {Z,,} would give the loss to the company in each
time interval between two claims. Then if we write

k=1

then {5, }gives the total loss for the company in the first n claims, and the ruin probability can be written as

¢(x) =P {SupSn > 33}

n>0

Moreover {S,} gives a discrete random walk on real line, with jumps forming an i.i.d sequence {Z,}. The
following theorem gives a basic result on this random walk.

Theorem 2.3.1. With the notation as fized,
e If E(Z1) <0 then lim S, = —oo, and hence the ruin probability is less than 1.
n—oo

e [f E(Z1) > 0 then lim S, = 0o, and hence the ruin probability is equal to 1, that is the ruin is certain.
n—oo

e If E(Zy) =0, then limsup S, = oo and liminf S, = —oco. Hence even in this case, the ruin is certain.
n—o0o n—in fty

From the above theorem it is certain that, we need that E(Z;) < 0, for an insurance policy to keep the company
afloat. This is known as the Net Profit Condition. However, this only can guarantee that ¢(x) < 1, and does
not remove the possibility of ruin completely. With further information, one can find upper bound on the ruin
probabilities as we shall see now.

2.3.1 Sparre-Anderson Model

A Sparre-Anderson Model takes the claim number process to be a renewal process, and the claim sizes are
independent of the claim number process. The independence of the processes are not always true in real life,
but it still gives us a good model to work with. The first basic results one can obtain are are the analouges of
the SLLN, Elementary renewal Theorem, Blackwell’s renewal theorem, and Central Limit theorem concisely put
in the following theorem.

Theorem 2.3.2. Consider the Sparre-Anderson model, with the notation as before. Then,

.1 _ EB(Xy)
. tlggo ES(t) = BA) a.s.

1o ElX)
* dm 2SO = Fa)

. _ EB(Xx)
e for any h > 0, tlggoE(S(t—i— h))— E(S(t) = E(Al)h
o Assuming finite second moments,
1 1

d
. S(t) — Aut) —% N (0,1
et 7 (S0~ ) =5 N

as t — oo , where, 0%, is the variance of X1, 0%, is the variance of Ay, A= E(A;)™" and p = E(X1).

If the claim sizes are light tailed, then we can find a solution h = r for
E (") =1
If E(Z1) < 0, where Z; is as previously defined. This solution is called the Lundberg coefficient. This leads us
to get an exponentially decreasing bound on the ruin probabilities.
Theorem 2.3.3 (Lundberg Bound). Assuming that Lundberg coefficient , v > 0, exists, we have
p(z) <e ™

The proof of the above theorem can be seen by noting that {ers" 'n € N} forms a martingale, and using op-
tional sampling theorem.

This is an important result, as it tells us how much should our initial capital be, given the risk in each of our
time steps. It is clear that the rate at which the ruin probabilities reduce with the initial capital depends on
the Lundberg coefficient, which in-turn depends on the premium rate ¢. As, ¢ increases, E(Z;) reduces, thus
giving a high value of r and hence reducing the ruin probabilities. So, for an insurance company, one can fix
the ruin probability, and then decide on the (¢, z) depending on constraints.
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2.3.2 Cramer-Lundberg Model

As we have seen previously, one special case of the renewal model for claim number process is the Poisson
process. A model where the claim number distribution is given by the Poisson process, and the claim sizes are
independent of the claim number process, is known as the Cramer-Lundberg Model. With this extra information,
one can get a renewal equation for the ruin probabilities as given by the next theorem.

Theorem 2.3.4. Assuming that P(X; > 0) = 1, and defining, ¥(t) = 1 — ¢(t), we have

_ L
0lt) = 2=+ 1= [ et —o)iFx

where

and c is the premium rate, p = E(X1), and X is the rate of Poisson process. Fx 1(.) is the integrated tail
distribution. This is called a defective renewal equation, since Fx 1(.) is not a total probability distribution.
Also, the solution to the above renewal equation is given by

o0

__P 1 x(n)

This is called the Pollaczek-Khinchin fromula.

Also, in this special case one can find the exact asymptotic results. The major advantage of this is that, we
need no longer assume that the claim sizes are light tailed. This is very important in practical cases. We get
the following result.

Theorem 2.3.5. Assume that the net profit condition holds, and p = (; — 1), then
n

e In the case where claim sizes are light tailed, and if we assume the so called cramer-Lundberg condition
r oo
C=— 2™ (1 — Fx(z))dr < oo
PH Jo

where r is the Lundberg coefficient., then

lim e ¢(t) = !

t—o0 o 6
That is the ruin probability decays exponentially.

e In the case where the claim sizes are sub-exponential, then

lim 7¢(t) = l
t—)oolfoJ(t) p

The above theorem is quite powerful in real world applications, since the claim sizes are usually sub-exponential,
like Pareto, log-normal, or heavy-tailed Weibull distributions. In these cases we do not have that the ruin
probabilities reduce exponentially, but as the integrated tails of the claim size distributions. This is expected
because, we have seen that the light-tailed distributions have tails which are exponentially reducing thus giving
an exponential decay for the ruin probabilities.

2.3.3 Infinite Profit Probabilities

We have earlier seen that the probability of ruin, with initial capital defined as
¢(z) = P(T < oo|R(Ty) = ) = 1 = P{R(Tn) > 0,Yn}[R(Tp) = x)
One the same lines one can also define probability of infinite profits as
x(x) = PUR(T,) = oo} R(To) = x)

As an insurer, one would be interested in the latter probability since this ensures that the company makes
infinite profits. As the following theorem shows, under some situations, we have



Theorem 2.3.6. Suppose {Z,} are all bounded, that is the aggregate loss in a time interval (Tp,, Tp41] is
bounded. Then
{R(T,) > 0,¥n} = {R(T},) — oo}

Proof. Note that

n

R(T,) = 2+ p(T,) — S(T,) = R(To) = Y _ Z;

i=1

We can rewrite this as

R(T,) — R(To) = — (Z(Zi ~ElZ])+) E[Z¢]>

=1 i=1

ItY; = —(Z; — E[Z;]), then (Z Yi> is a martingale with bounded increments, and since {R(T},) > 0,Vn}, we
i=1

have (Z Y;-) is bounded below. Hence,
i=1

n
(ZK) —Y, asn— o0
i=1
Also, we have that E[—Z;] > ¢ > 0,Vi. Hence
ZE[—ZA =00 asn— o
i=1

Hence, we have
{R(T%) > 0,Yn} = {R(T},) — oo}

O

The above theorem gives a way to connect the probability of no ruin to probability of infinite profits. if we also
include the assumption that the insurer is able to invest the premiums, then one can obtain a similar result.
See lemma 5 in reference (Gaier et al., 2003) for details.

2.4 Premium Principles

We previously saw the effect of initial capital on the ruin probabilities. One of the other key control parameter
of an insurer is the premium amount. A premium is a series of regular payments from the policy holder to
the insurer in exchange for the protection against random events. Thus, stating a premium principles involves
assessing the risk of a random event and framing a suitable deterministic function to compensate for the losses.
The amount of premium collected till time ¢ by the insurer is denoted by p(t). Also, if we assume that there
are no further policies taken after the start, then we have p(t) = ct, where c is the rate of premiums.

It is intuitively clear that the amount of premium collected till time ¢, must be greater than or equal to the
total claim till time ¢, and should depend on the total claim till time ¢, S(¢). A premium principle is de-
noted by II(S(¢)) . There is, however, no unique method to do so. Thus, there are a lot of ways to state a
premium principle. All the premium principles can be broadly categorised into three methods - the Ad-hoc
method, Characterisation method, and the Economic method. In this section we review the basic ideas of the
premium principles, and also few of the principles used. See (Landsman & Sherris, 2001),(Wang & Dhaene,
1998),(Goovaerts et al., 2010),(Young, 2006),(Wang et al., 1997),(Yaari, 1987) for details.

The ad-hoc method involves framing a premium principle intuitively, and looking at its properties. For example
the Net Premium Principle stated below. The characterisation method needs the insurer to state his properties,
and find a premium principle to satisfy these properties. In the Economic method, the constraints of a premium
principle are stated as a economic condition. For example the principle of Zero-utility. Although, the methods
stated above are different, a particular premium principle can be derived from more than one method. One
such principle is the Proportional Hazard’s Premium Principle.

The advantages and disadvantages of a premium principle are characterised by the properties of the premium
principle. We state a few of the common properties an actuary is interested in.
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e Independence: If a principle satisfies that II(S(¢)) depends only on the distribution of S(t), Fg(), then
the principle has the property of independence. All the principles stated in this article have this property.

e Risk Loading: If we have that II(S(¢)) > E[S(¢)], then the principle is said to have risk loading. In case
the equality holds, for all constant risks, then the principle has no unjustified risk loading.

e Invariance: One of the properties actuaries are interested in are the scale and translational invariance.
Scale invariance states that I1(aS(t)) = alI(S(¢)), and translational invariance states that that II(S(¢) +
a) =TI(S(t)) + a.

e Additivity: If a principle satisfies II(S(t1) + S(t2)) = II(S(¢1)) + II(S(¢2)), then it is said to be additive.
Similarly, if TI(S(¢1) + S(t2)) < II(S(¢1)) + II(S(¢2)), then it is said to be sub-additive, and if II(S(t1) +
S(t2)) > T(S(t1)) + (S(¢2)), then it is said to be super-additive.

e Preserving Stochastic order: A principle is said to preserve first stochastic dominance if, Fgq,(x) <
Fs,)(x), Yz, then II(S(t1)) < II(S(t2)). Similarly, a principle is said to preserve stop-loss order if,
E[S(t1) — d]y < E[S(t2) — d]+,¥d > 0, then TI(S(t1)) < TI(S(t2)).

Apart from these properties, an actuary might be interested in other specific properties like continuity, which
arise depending on the situation. See reference (Young, 2006) for more details. We now state a few of the
commonly used premium principle, along with the properties. Before that, note that if there is no risk loading,
that is II(S(¢)) = E[S(¢)] then the insurer almost always ends up in bankruptcy.

Thus, the premium principle must be such that the E[Z;] < 0, to avoid bankruptcy. In the case of the Net
premium principle, we have E[Z;] = 0. This is known as the Net Profit Condition (NPC).

Our aim in this section is to combine all the existing premium principles into a single principle. Since, checking
the result for all the possible premium principles is impossible, we take a few principles covering all the methods
- the Ad-hoc method, Characterisation method, and the Fconomic method, and show it for these principles.

e Expected Value Premium Principle : It states that
I(5(t)) = (1 +a) E[S(?)]
It is the most widely studied premium principle. In case a = 0, we get the Net Premium Principle.
e Variance Premium Principle: This principle states
II(S(t)) = E[S(t)] + aVar[S(t)]

If we replace Var[S(t)] by the standard deviation /Var[S(t)], we get the Standard deviation Premium
Principle. It is shown that this principle approximates a premium principle that one obtains from the
economic method.

e Exponential Premium Principle: This principle states that
1

T(s(t)) = ~logEle™5®)
a

This principle can also be derived from the principle of zero-utility, by taking the utility function to be
exponential. (See 35,36).

e Wang’s Premium Principle: This principle states that

H(S(t)) = / " 91 = Fo(@))de

Where g(.) is a concave, increasing function mapping [0 1] — [0 1]. g(1 — Fg()(z)) is called the distorted
tail. If we take g(s) = s° for 0 < ¢ < 1, then we get the Proportional Hazards Premium Principle. This
principle can be derived using the characterisation method.

e Principle of Equivalent Utility: It states that, the premium II(S(¢)) solves
u(0) = Elu(II(S(t)) — 5(1))]

Where u(.) is a utility function. This can be derived from the economic method by using theory of
expected utilities.

The above list is by no means complete, but it covers all the basic types of premium principles. Our aim is to
show that all these premium principles are special cases of the risk function premium principle.

13



2.4.1 Premium principle using risk functions

As mentioned before, a premium principle is fundamentally assessing the risk of a random event and giving a
suitable deterministic form to it, to avoid losses. Here we propose a new method using risk functions. Risk
functions are functions which assess the risk of a particular amount. In classical statistics these are referred to
as loss functions, but we use a more appropriate term risk functions here.

Some of the typical properties of the risk functions are

e The first thing to note is that r(.) is strictly increasing. This is reasonable because a higher amount would
draw more risk than a lower amount.

e Every single unit of currency would give a higher risk than the previous unit of currency. Thus, the risk
of 1 pound after 10 pounds is less than or equal to 1 pound after 100 pounds. This tells us that the risk
functions are convex.

e The risk of zero should be zero, that is »(0) = 0. This is a intuitive assumption.

e The risk function depends on the insurer. If the insurer can take large risks, then the risk function has a
smaller second derivative.

It is not always the case that risk functions have all the above properties. For example in case of re-insurance,
where the insurance company is insured for all claims above a certain amount M (say), we have that the risk
function is actually zero for values greater than M. The following is the main assumption in this section

Every insurer has risk function r(.), which would depend only on the amount of possible loss and
not on the probability of the loss.

We now state the risk-function premium principle.

Definition 2.4.1 ( Risk Function Premium Principle). Given the total claim amount till time t to be S(t), and
a suitable risk function r(.) for the insurer, the Risk function premium principle states

T(S5(t) = Elr(S(1))]

Thus, we have

p(t) = Elr(S(t))] (9)
The most important observation is to note that all the previously stated premium principles are special cases
of the risk function premium principle.

e (Expected Premium Principle) If we consider the risk function r(z) = (1 4+ a)z, then we have
E[r(S®)] = E[(1+a)S(t)] = (1 +a)E[S(1)]
Thus, giving the expected premium principle.
e (Variance Principle) Consider the risk function of the form
re(z) = az? + (1 — aE[S(t)])z

This risk function gives us the variance principle. Note that, unlike the expected principle, the risk
function here also changes with time. But this is still deterministic.

e (Exponential Principle) The exponential principle states that
1
T(S(t)) = —log(E[e*™])
a

Note that If, £ [eas(t)] is less than 1, then the premiums are negative, which is absurd. Thus, this principle
is only valid in the region where E[e®*®®] > 1. The corresponding risk function is given by

1 eaw

= 71/,—]1
7”(93) afo BaIdFs(t) (l‘) [xg o0)

Where Fg()(.) is the distribution function of S(t) and where z¢ is such that

Zo
/ eaxdFS(t) (3?) =1
0

Note that, as in the variance principle the risk function depends on time, but is still deterministic. Also,

/ e"*dFg)(r) should exist and be non-zero for all = for the above formula to make sense.
0
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e (Wang’s Premium Principle) Wang’s premium principle states that

H(S(t) = / " 91— o (a))de

where g(.) is a concave function. If we assume that there exists a density, f(.) for the distribution of S(t),
and that f(.) is non-zero on the real line, then

r(z) — g(l— FS(t)(I))
(=) 7o)

gives the corresponding risk function.

e (Principle of Equivalent utility) This states that, given a utility function u(.) of the insurer, II(S(t)) is a
solution to

u(0) = Elu(II(S(t)) — 5(1))]

Usually it is not possible to find the exact closed form for the risk function, for a general u(.). However,
note that in the special case where .
—axr
u(z) = al e

gives the exponential utility principle, for which we already found a corresponding risk function. Also,
we have that the variance principle approximates approximates the utility premium principle for small
risks. It is thus reasonable to say that we can find a suitable risk function corresponding to the principle
of equivalent utility.

Thus, risk functions generalize the notion of existing premium principles. Rephrasing all the existing premium
principles as risk functions allows us to compare various premium principles and efficiency of each of those
principles.

The following theorem provides a way to calculate the probability of ruin based on the premium principle.

Theorem 2.4.1. Given a risk function r(.), and assuming the premiums are calculated using the risk functon
premium principle, we have

P({R(T,,) > O} R(Tp) = ) > 1 — m (10)
Proof. Firstly note that,
R(T,) =z +p(T,) — S(T,)
which, when using the risk functio premium principle reduces to
So,
PAR(T,) > 0}) = P({z+ E[r(S(Ty))] - S(Tn) > 0})
= PH{S(T,) <z+ E[r(S(Tn))}) (. S(T,) > 0,by markov inequality)
E[S(T0)] () g
> 1 Er(S(T))] 17 (.o r(.) is convex)
E[S(T»)]
> T EE@)) o
O

The above gives a bound on the probability of ruin in a particular interval [T,,,T,+1) in terms of the risk
function. For example, if the risk function is order n, then the ruin in time interval [T}, T}, 11) reduces as
o(E[S(t)]"'). This is expected, since higher order risk function gives higher premiums and hence lower risk of
bankruptcy.

The power of the risk function premium principle comes from the fact that many known premium principles

are special cases of the risk function premium principle. In this subsection we mention few of the advantages of
this new method.
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Figure 1: Risk Functions For Some Premium Principles

The first major advantage of this principle is that it offers a way to compare the premium principles. For
instance, in figure 1 we plotted the sample graphs for the risk functions corresponding to the variance principle
and the expected principle. One observation we can make is, if the distribution of S(t) is heavy-tailed then
the variance principle gives high premiums than the expected principle. Thus, risk functions offer a common
ground to compare various premium principles.

In a competitive market, the insurers fight to offer lower premiums. Sticking to the usual rules, the limited
number of premium principles do not offer a wide range of possibilities for premiums, which, the use of risk
functions can solve. To offer lower premiums, all the insurer has to do is to make sure his risk function is
less than his competitors. Thus, the risk function premium principle offers more choices for framing premium
principles.

Also, since we now can compare the premium principles on a common ground, the question of optimal premiums
can be answered. The optimal premium depends on the risk function of the insurer.

3 Multi-dimensional models

In the previous section we looked at the basic models of insurance. Note that all of them assume a single type
of policy, and hence one-dimensional models were sufficient, In general, a insurance company would deal with
multiple kind of insurance policies. Also, sometimes there could be treaties between insurance companies to
reduce the ruin probabilities. All these situations require a more complicated multi-dimensional models.

One of the way to deal with multiplt kind of insurance policies is by looking at Multivariate Poisson Process
with interacting intensities. Here the interactions model the correlations between various lines of business. See

16



section A.2 in the appendix for more details.

In some situations, an group of insurance companies would have a contract to help the company on verge of
bankruptcy by loaning an amount at a lower interest rate compared to the market rate. These are called risk
reducing treaties. Multidimensional models are apt for such situations. It is intuitively clear that such treaties
reduce the risk of bankruptcy.A practical question which arises in such situations is how much must each of the
companies agree to lend? Every company wants to reduce the amount it pays, but maximize its benefits. This
would lead to a nash equilibrium. A suitable formulation of this problem is in terms of the skorokhod problem.
See (Ramasubramanian, 2006) and (Ramasubramanian, 2007) for details.

4 Reinvestment in Insurance models

The final source of randomness is when the insurance companies decide to invest the excess amount obtained
from premiums in the market. It is important for the insurance company to invest, since otherwise there is
not much reason as to why the policy holder must buy a insurance policy from the insurer. It is clear that the
better investment strategies an insurer has, the lower rate of premiums he can offer and attract a huge portion
of the market. This topic has attracted a lot of researchers in recent years. There are a lot of ways, one can
model the investment strategies, and the optimal approach depends too much on the exact situation.

In general investment strategies are usually very complex, and the optimal strategy is tough to find. Investment
strategies usually aim at making as much profits as possible. However in case of investment for insurance
companies , the main aim is to reduce its ruin probabilities, and remain capable of paying the claims. There
are a huge number of questions one can investigate in this area.

e How much fraction of the premium amount must be invested in the risk-free bonds, and how much must
be invested in the risky assets?

e What kind of assets are suitable for investing for an insurance company?

e How can one mathematically formulate the problem of reinvesting in general?

e How are investment strategies effected by the kind of policies the insurers offers?
e How exactly are ruin probabilities effected by the investment strategies?

These are but a few of the many questions of practical importance to the insurance company. Our main aim in
this section is to try and answer the above questions, and review few of the ways adopted for answering these
questions.

Before we begin answering the questions above, it is important to have a model for the investment for risky
assets. The model we consider is the Black-Scholes model which is very popular in the area of finance today.
See (Hull, 2011) for a general overview of the financial markets. See (Shreve, 2004) and (Shreve, 2005) for more
mathematical aspects of financial modelling. The model states that, suppose X (¢) denotes the price of an asset
at time ¢, then the future prices can be modelled by a stochastic differential equation

dX (t)
X(t)

= adt + bdW (¢) (11)

Where W (t) is the standard weiner process. For more details on the aspects of stochastic differential equations,
refer (Dksendal, 2003).

Intuitively from the point of view of the insurer, we expect to invest in such a way that the risk from the policy
is reduced by the risky asset we invest in. In other words, we would like to hedge the risk from the policy.
Since the risk from the policy usually arises from a event like an accident, or a epidemic, it is tough to find
the right asset for hedging our risk. None the less, we can investigate the extent of offset of the risk using this
understanding. It is equally difficult to find two assets whose risks are purely uncorrelated as much as to find two
assets whose risks are completely correlated. Thus, investing in a risky asset will reduce the ruin probabilities.
This is also observed in various models. For example, in reference (Gaier et al., 2003) the authors observe that
with investment the ruin probabilities reduce with a faster rate than from non-investing in a Cramer-Lundberg
model. They also find that, in this case, the optimal strategy is to invest a constant proportion of money at
all times in the risky asset. In reference (Hipp & Plum, 2000) the authors, solve an optimal control problem
where a risky asset is used for investment. The solution to this is used to find an optimal investment strategy
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in case of a compound Poisson process. For more on stochastic optimal control in insurance see (Schmidli, 2008).

It is usual for insurers to consider reinsurance, especially if the insurance company is small. There are various
methods of reinsurance. For example a proportional reinsurance contract states that the reinsurer pays a pro-
portion of the claim, and a excess loss reinsurance contract states that the reinsurer pays all the claims above
a certain threshold. For more on the types of reinsurance contracts, see (Rolski et al., 2009). It is intuitively
clear that reinsurance definitely reduces the ruin probabilities. However, it is not clear on how to make a choice
between reinsurance and reinvestment. The author of (Schmidli, 2002) consider this question in detail.

In addition to these, there are various extensions and different models investigated, This is a area of current
research. See (Liu & Yang, 2004) for a particular extension of the model presented in (Hipp & Plum, 2000).

5 Summary

Insurance plays a crucial role in protecting the society from random events. In the working of an insurance
company there are three sources of randomness- The times of arrival of claims, the claim sizes, and the returns
on the investment of premiums. We have seen that the arrival times are modelled by a Poisson process, or a
Renewal process, and examined them in detail. The claim sizes could either be light-tailed or heavy tailed. Light
tailed distributions are ideal for mathematical treatment, but not always practical. We identified a subclass
of the heavy-tailed distributions- sub-exponential distributions, which are observed in practise and also offer a
advantage of mathematical treatment to a certain extent.

The main aim of a insurance company is to avoid bankruptcy. We introduced a notion of the probability of
ruin. We combined the models for the claim sizes and arrival times, to have two basic models- Cramer-Lundberg
Model and Sparre-Anderson Model, to obtain a working model for the insurance company. The probability of
ruin is calculated in both these cases. One of the new results here is to see that the probability of no ruin is
infact probability of infinite profits under some conditions.

One of the key control factors of insurance is the premiums. We have seen a few methods used to calculate the
premiums. It is observed that all these methods could be combined into a single principle using risk functions
known as “risk function premium principle”. We used this principle to give bounds on the ruin probabilities in
a time interval between two claims.

There are some situations in real life not covered by the basic models. It is thus important to consider a bit
more complicated models. One of the ways is to consider the multi-dimensional models. We discussed in detail
a multi-dimensional model for interacting intensities. Another way to reduce the ruin probabilities is by having
a risk-reducing treaties between many companies. We mentioned briefly about the risk-reducing treaties and
the ways to model such situations.The third source of randomness- returns from the investment of premiums, is
a currently active field of research. There is no one optimal approach to this problem, and forces us to consider
different situations separately. We mentioned briefly the active research in these areas in recent times.

On the whole, insurance is a typical example of a complex system, where many processes act on their own,
and also have complex interactions with other processes. It is a very practical subject, and also a source of
rich mathematics. The natural randomness makes probability and statistics an invaluable tool in analysing the
working of the insurance companies.
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A Appendix
A.1 Regularly Varying Distributions
Definition A.1.1. Let L(.) be a function on (0,00) such that

lim L(cx)
T—r00 L(a:)

=1 forallc>0

Then L(.) is called a slowly varying at co function.
The following theorem is useful in dealing with the slowly varying functions.

Theorem A.1.1. Let L(.) be a slowly varying function. Then for any a > 0

Ili}rrgox L(z)=0 Ilgroloas L(z) =

That is L is small compared to any power-function x®.

This theorem allows us to give bounds on the moments of the claim-size distributions which are slowly varying.
The proof the above theorem follows from a result of Karmata known as Karmata Representation Theorem.

Theorem A.1.2 (Karmata Representation Theorem). Let L be a slowly varying function at oo and is positive
measurable. Then it is of the form

L(z) = e(w)el o O} vy s g (12)
where
o 25>0
o c(x) is a function such that lim c(x) =¢ >0
T—r 00
o tliglc e(t) =0

e ¢(.) and €(.) are measurable.

It is easy to check that (12) gives a slowly varying function. The proof of the other side uses another result
about slowly varying functions, which states

. L(cx)
AT

=1 uniformly over c € K(:= compact set)

The complete proof can be found in (Ramasubramanian, 2009).

We now define what are called the Regularly Varying distributions, and provide the asymptotic results on the
moments of such distributions. Such results would give us an insight into how bad the heavy tailed claims would
effect the company.

Definition A.1.2. A measurable function on (0,00) defined as f(x) = x’L(z),( L(.) is a slowly varying
function) is called a regularly varying function with index §. A non-negative random variable, X , with its tail
distribution

P(X >z)=a2"%L(x)

1s called a regularly varying distribution with tail index a. That is, the tail distribution is a regularly varying
function with index —«. The class of all distributions with tail index o are denoted by R, .

The following result extends the uniform convergence of slowly-varying functions to regularly varying functions.

Theorem A.1.3. Let f be a regularly varying function with index —a, a > 0. Then for any A > 0

lim f(Ax) = i
A5 F@) A

uni formly over X € [A,o0)

The following theorem gives the asymptotic results on the truncated moments of regularly varying distributions.

Theorem A.1.4. Let f be a regularly varying function, and locally bounded on [K,o0), with index 6. Let

Tp(x):/mtpf(t)dt lp(x):/ootpf(t)dt

K

Then the following are true.
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e Ifp>—(6+1) then I,(z) diverges and

lim 7xp+1f(x)

T—00 ]p(x)

=(p+d+1)

That is, I,(z) is a regularly varying function.

e Ifp=—(0+1) then I,(z) may converge or diverge, and

: Tp(x) _
:vhanolo Pt f(x) =

and I,(x) is a slowly varying function.

e Ifp<—(6+1) then I,(z) converges, and

lim Lﬂ_lf(m)
Z—00 lp(x)

=—(p+d+1)

and L,(z) is a regularly varying function with index (p + 6 + 1).
e Ifp=—(6+1) and I,(x) converges, then

lim lpi(ﬂﬂ) =00
woe ()

and L,(x) is slowly varying.
The proof of this theorem uses a lemma known as the potter’s bound.

Theorem A.1.5 (Potter’s bound). If L is a slowly varying function at oo, then for any A > 1 and n > 0 there

exists a K(A,n) such that
L(y) v\ (="
—= < = - > K.
L(x) _Amaa:{(x> 3 Ve, y > K

Our main aim for above theorems, is to understand the moments of the heavy-tailed distribution. The following
theorem interprets this result for claim-size distributions.

Theorem A.1.6. Let X denote a claim-size distribution with reqularly varying tails, with index o, that is
X eR_,. Then for alla >0

E(X?) < o foral0<p<a
o0 forall p>a

and for all a > 1,and F denoted the distribution, then , Fy , the integrated belongs to regularly varying distri-
butions with index (o — 1), that is Fr € R_(q_1)-

One of the most important distributions, which is found to fit the data in actuarial context is the Pareto(a, k)
distribution. Its distribution is given by

K:CM

F(x):l—m

forz >0
a is the tail parameter, and « is the scale parameter. Also Pareto(a, k) € R_,. Also, it is important to note
that R_,, is closed under convolutions, for av > 0. One of the other most important properties of the regularly

varying distribution is

. P(S,>1)

lim ————= =

t—oo P(M,, > t)
Where, S,, is the partial sum to n terms, and M, is the partial max of the first n terms. This means that
The tail behaviour of partial sum is essentially the same as tail behaviour of partial maximum. In actuarial
context, this means that a few larger claims in the set would make up for most of the claim amount paid by
the company. This property explains the notion of “ heavy-tailed” in the distributions.
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A.2 Interacting Intensities

The first of the multi-dimensional models we discuss is as given in (Bauerle & Grubel, 2008) . It supposes a in-
surance company with d lines of business. A business line could be a sub-company or more appropriately a type
of policy the insurance company offers. If each line is independent, then ofcourse the above analysis holds. In-
stead, if the lines of companies are dependent on the other lines, then we have to use a multi-dimensional model.

The exact model is as follows:-

e Each business line is denoted by j = 1,2,---d. Let N(t) = (Ny(t),Na(t), -+, N4(t)) be the vector
containing the counting process of each of the d business lines.

e [N(t)]i>0 is a time homogeneous markov chain. At each point of time only a single claim of any type is
possible. So, the possible jumps are {ej, e, -+, eq}, where e, denotes the kth type of claim.

e Also, The transition probabilities are given by
P(N(t+h)=Fk+¢e;|N(t) =k)=pj(k)h+ o(h)
Where 8 = (81, B2, ,Ba4) are appropriate rate functions.
e The dependence is modelled by making 3;(.) depending on the number of claims in other lines of business.

The above assumptions completely specify the model. Note that N(¢) can be treated as a pure-birth process.
However, we need further assumptions to get the results. The first assumption we make is

n:= sup [|(k)] = sup Zﬂj
ke

The aove assumption avoids {N;(t) — oo} in finite time.

Also, N(t) is a continuous time markov chain. Thus we have a corresponding embedded chain X (¢), which is
discrete and consists of the sequence of the visits of N(t). We can also define a chain called Uniformised chain,
X (t) which has the transition probabilities

Bi (k)

pk,k+ej = n

and

Pk =1— ZPk,kJrej
J
This construction is useful to simulate this model. If we have a Poisson clock L, with rate ||5(k)||, then we have
that N(t) = X (L(t)). This is found useful in proving few result, and also provides a way to construct such
process.

Corresponding to the above counting process, we also have the risk-reserve process. We assume that in j*" line

of business, the claims are {U; ;}, i.i.d, with distribution given by @;. Then if R(t) = (Ry(t), R2(t),--- , Ra(t))
is the vector of risk reserves in each line of business, with premium rates ¢ = (¢, ¢a,- - ,¢q), then

;
Ri(t) = Rj(0) + ¢t — > Ui
i=1
and the ruin probability for individual components is given by same formulae as before, with appropriate terms.

We are interested in what are called the fluid limits of the above process, which gives useful results. It is defined
as

Jim Wy (N (2))
where L
Uy (f)(t) = f(0) + ;(f(vt) - f(0))

The fulid limit consists of rescaling the time and space by the same factor and taking the limit. As the name sug-
gests, these limits are commonly taken for fluids, to identify the few local properties. We write N7 = U, (N(t))
and R” = U, (R(1)).
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Define
W, = {(xl,n-,:Ed)GRiZ$1+$2+"'+1'd:1}

We assume that S(k) — 3 : Wy — R?, as k — oo in the sense that, for all sequences {z,, }

lim =o0and lim — =z = lim B(zn) = B(z)

where the norm (|.||) is I* norm.

Theorem A.2.1. Let 3(.) be as above and, Q; has finite second moments with mean p;. Then every sequence
(v(k))keny with (k) — oo, has a subsequence (y(k(l))) such that

NORO) 4y 4 pGHo) 4, ,

Also, the paths of ¢ and r are almost surely absolutely continuous and they satisfy

4 / B((s) — 6(0))ds

r(t) = r(0)+ct = (mer(t), -, pada(t)))

It follows from the above theorem that, under further assumption that B( ) is Lipschitz,

Ni(t) o 5(1) — ;(0)
N,<>_>¢z<> @(0)

Thus this gives a way to approximate the total number of claims of each type on the average.

<
—~

~
=

N;(¢)
Tt

25 (1) — ¢;(0) and
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