
Generalized competition interfaces for TASEP

C. Cioli1
1Center for Complexity Science, University of Warwick, Coventry CV4 7AL, UK

(Dated: August 31, 2011)

Competition interfaces have been studied recently in a number of papers for particular simplified solid on
solid growth model in connection with totally asymmetric exclusion process (TASEP). For a particular rule of
type propagation the competition interface is related to the location of a second class particle, which has been
studied extensively and is well understood. In this paper, we investigate several natural generalizations of the
type propagation, which can also be studied in the context of special particles in the TASEP different from
second class particles. A mathematically rigorous description turns out to be rather challenging.

PACS numbers:

I. INTRODUCTION

The capability to model a competing interface between two different growing media is a topic of high rel-
evance. This turns out to be the very basic step towards the understanding of many heterogeneous complex
systems studied in different disciplines as physics, chemistry and biology [1–7]. To understand the dynam-
ics and the statistics of such surfaces is in fact relevant to have an insight in segregation phenomena, clusters
evolution, phase transition that can be encountered in systems like liquid crystals, growing bacteria colonies,
growing crystals, spin systems [7–11]. Of fundamental importance are in these cases inheritance rules which
play the role of driving force in shaping competing interfaces.

Recently the study of competition interfaces using simplified models related to TASEP (totally asymmetric
simple exclusion process) processes has become a central issue. One dimensional TASEP has been widely
exploited to model growing surfaces belonging to 1+1 universality class of KPZ and in the last few years,
particularly in connection with the solid on solid growth model [12–17]. In this model while particles (called
also first class particles) in the TASEP lattice jump right with rate one towards neighbouring empty sites, each
successful jump determines the birth of one new brick on the surface in such a way that each brick has two
parents.

A so-called second class particle follows the same rules of a first class one, but can be overtaken by the
other particles. It has been shown [14–16] that the dynamics of the horizontal coordinate of a competition
interface is given by the location of a second class particle in the TASEP, which is directly related to last-
passage percolation [18, 19]. This connection comes from the inheritance law determining the dynamics:
the new individual always inherits the type of the younger parent. Last-passage percolation roughly consists
of finding a path of maximal weight in a given random environment and is strictly connected with directed
polymer theory [17]. The study of this class of simplified models has led to a very detailed understanding
of asymptotic properties such as speed or fluctuations [14] characterizing second class particle but the rule it
follows turns out to be quite strict when trying to reproduce the inherent and total stochasticity showed by real
complex systems (e.g: biological context of species segregation [7, 8]). It is then interesting to study and to
understand the dynamics and the statistics owned by competing interfaces resulting from different inheritance
laws. This leads to introduce a new type of particle in the TASEP context which has not been studied so far,
named sector particle. In the following we focus first on stationary initial conditions, a thorough understanding
of which is a first step to understand more general ones such as cones [18].

This work is organized as follows: in Section II we present the connection between solid on solid growth
model and TASEP model and we summarize the main features about second class particle in relation with
competing interfaces; in Section III we firstly explain our simulation choices, we then display results about
second class particle to test the validity of our numerical tools; we finally show numerical results obtained for
sector particle and two different attempts to explain analytically the behaviour of that; in Section VI we discuss
further results for sector/second class particle simulated using deterministic initial conditions and we briefly
present numerical data about several different generalizations of the two extreme cases of second class particle
and sector particle. Sec.V is devoted to conclusions and perspectives.
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II. THEORETICAL BACKGROUND

A. TASEP and solid on solid growth model

rate 1rate 1

rate 1rate 1 rate 1

FIG. 1: (Taken from [14]) TASEP and connection with solid on solid growth model (right panel: the surface above the
tasep should be shifted 1/2 lattice site to the right to be consistent with our notation)

The TASEP is a continuous-time ergodic Markov chain, where identical particles jump to the right with rate
one subject to an exclusion interaction (at most one particle per site) (see left panel of FIG. 1 ).

In this work we consider the TASEP on the integer lattice Z with state space X = {0, 1}Z. The dynamics is
defined by the generator

Lf(η) =
∑
x∈Z

ηx(1− ηx+1)
(
f(ηx,x+1)− f(η)

)
, (1)

where ηx,x+1 is the configuration where one particle was moved from x to x+1, i.e. ηx,x+1
y = ηy−δx,y+δx+1,y

for all y ∈ Z. L is defined for suitable cylinder test functions f : X → R, for a full discussion about domains
and the connection to Markov semigroups see the standard reference [24]. It is well known that this process
has a family of stationary product measures νρ with density ρ ∈ [0, 1] corresponding to the average number of
particles per site.

The dynamics of the TASEP can be coupled to the evolution of a solid on solid surface growth model [22, 23]
on the dual of the TASEP lattice. Let h(y, t) ∈ Z be the height of the surface for y ∈ Z+ 1/2, and the height
gradient is restricted to ±1 and connected to the TASEP configuration η(t) via

h(x+ 1/2, t)− h(x− 1/2, t) = 1− 2ηx(t) ∈ {−1, 1} . (2)

The total height of the surface is not fixed, and one can arbitrarily take h(1/2, 0) = 0 to fix an initial height
profile for a given η(0). A jump of a TASEP particle across the bond (x, x + 1) corresponds to the increase
of the height h(x + 1/2, t) by one or the addition of a diagonal square brick (see right panel of FIG. 1 ). A
stationary TASEP configuration with density ρ ∈ [0, 1] therefore corresponds to a tilted surface with angle
α ∈ [−π/4, π/4] against the horizontal and tanα = 1 − 2ρ. It is well known that the surface h(x, t) for this
model belongs to the KPZ universality class [23] and undergoes kinetic roughening with exponent 1/3 [10].
The macroscopic equation that governs the time evolution of height gradients is the Burgers equation for the
density of particles in the TASEP

∂τρ(u, τ) + ∂uj(ρ(u, τ)) = 0 . (3)

This reflects the conservation of mass in the TASEP, and can be derived rigorously in a scaling limit ϵ → 0 with
x = u/ϵ, t = τ/ϵ [22]. Here j(ρ) = ρ(1− ρ) is the stationary average current of the TASEP under distribution
νρ.

It is clear from the dynamics that a brick at site x + 1/2 can only be added if ηx(t) = 1 and ηx+1(t) = 0,
i.e. h(x− 1/2, t) = h(x+ 3/2, t) and the new brick has two ’parent bricks’ at x− 1/2 and x+ 3/2.

B. Second class particle

As mentioned before when two different media are growing competing with each other the competing inter-
face can grow according to different laws of inheritance. In the well studied case corresponding to last passage
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percolation growth model, each time a brick has to be grown in correspondence of the competing surface, the
brick type will be assigned based on the type of the younger parent. This evolution if mapped onto a TASEP
lattice corresponds to the evolution of a so called second class particle.

The ancestry of a brick at the surface at time t corresponds to a (downward) directed path on the dual lattice
(Z + 1/2)2, that connects its type to the original ancestor at time 0. The set of all such paths forms a family
of (upward directed) spanning trees on the set of all occupied bricks up to time t. A competition interface is
then an upward directed path on Z2 dual to the ancestral trees, and the set of all such paths form a family of
(downward directed) spanning trees of the grown part of Z2. Competition interfaces and ancestral lines are
statistically equivalent under time reversal, which has been shown in [18]. In a TASEP context we describe the
location of a second class particle by a hole-particle pair [14]. Its position can change in two ways: it can move
one step forward with rate 1 to an empty site, and it can jump backward one step with rate 1 when a first class
particle jumps over it (occupies the hole). The two cases are pictured below

. . 01 0 . . → . . 0 01 . . or . . 1 01 . . → . . 01 1 . . (4)

If the initial configuration of the lattice η(0) is distributed according to the Bernoulli product measure νρ
with density ρ for all the sites j < L/2 and product measure ρλ with density λ for all the sites j > L/2 then
for the position of the second class particle Xt is shown that [14–16]

lim
t→∞

Xt

t
=

{
1− ρ− λ if λ ≤ ρ

U if λ > ρ
(5)

and for the inclination of the competing interface

tanα =

{
λρ

(1−λ)(1−ρ) if λ ≤ ρ
1−U
1+U

2
if λ > ρ

(6)

where U is a random variable uniformly distributed in [1− 2ρ, 1− 2λ] and the angle α ∈ [0, 90o].

FIG. 2: ( Taken from [14]) Second class particle and competition interface: γ0 is the initial profile of the growing surface,
γt represent the growing surface at time t; ϕ is the competing interface between clusters 1 and 2, while (I(t), J(t)) is the
position of the second class particle at time t.

C. Generalization of the second class particle framework

As mentioned in the introduction the rule followed by a second class particle turns out to be too strict if we
are aiming to describe completely stochastic real systems. In this work, we will then study the rules reported
below and compare them, including second class one for completeness. The initial configuration η(0) of the
TASEP lattice will distributed according to the Bernoulli product measure νρ with density ρ for all L the sites,
unless it is stated differently.

• Let Xt be the interface generated by inheriting the type from the younger parent, it is known that Xt/t →
vX(ρ) = j′(ρ) = 1− 2ρ and V ar(Xt) = (Xt − tvX(ρ))2 ∼ t4/3. The fluctuations are also expected to
be non-Gaussian with heavier tails.

• Let Yt be the interface generated by inheriting the type from the older parent. The simulations suggest
that we have a law of large numbers for the speed Yt/t → vY (ρ), and the fluctuations are of order t and
Gaussian.
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• Let Zq
t be the interface generated by inheriting the type from the older parent with probability q, other-

wise the younger parent. This interpolates between Xt and Yt, and for q = 1/2 it is easy to see that the
interface performs a random walk without drift, i.e. Zt/t → vZ(ρ) = 0 for all ρ ∈ [0, 1]. Fluctuations
asymptotic behaviour turns out to be of order t with the same features displayed by a sector particle for
q < 0.5; to behave like t for all t in the case of q = 0.5 since the particle/competing surface is performing
a pure brownian motion; to have different asymptotic behaviours (proportional to t or t4/3) depending
on ρ for q > 0.5 .

Analogous to scheme 4 for the second class particle location Xt [14], we will describe the location of a
sector particle Yt by a hole-particle pair. This can change in two ways, the particle can hop forward or the
hole backward (i.e. another particle jumps on hole). Whereas Xt immediately moves forward or backward
following the first event (yielding a new hole-particle pair by construction), Yt only moves after both, the
particle and the hole have jumped, and it follows the second one. Thereby it undergoes an intermediate state
00 which results in an ultimate left move, or 11 resulting in a right move. In short

. . 01 . . → . . 00 1 . → . 01 0 . . or . . 01 . . → . 0 11 . . → . . 1 01 . (7)

where in the second transition the location of Yt marked by the box jumps to the left or right, and the dots
denote sites which are not determined after a jump.

III. NUMERICAL ANALYSIS

A. Simulation method

Our simulation results are obtained in a TASEP on the lattice Z/LZ with periodic boundary conditions
and typically L = 1024. The initial configuration η(0) is distributed according to a single Bernoulli product
measure νρ so that we are in the case λ = ρ of Eq. 5. This kind of initial conditions are called stationary
initial conditions: fixed ρ, n = ρL particles are positioned picking sites at random till each particle has been
set; the initial position of the special particles (second class or sector) X0 or Y0 is set to be equal to 0. The
surface is periodically extended at the boundaries, which leads to finite size effects when the lateral correlation
lengths reach the size of the system. This effect can be seen in the fluctuations behaviour for Xt, which turns
out to be asymptotically proportional to t rather than t4/3. The t behaviour is visible for early t as well. This
phenomenon is also due to finite size effects, as proved running some simulations for different system sizes
(L=512, 1024, 2000, 4000) and comparing the rescaled fluctuations for two different values of ρ (ρ = 0.1, 0.5)
(FIG. 5). The system is typically evolved for a time tmax = 100L and the ensemble used to average on,
ranges from 100 to 4000 repetitions of the experiment according to the eventual need to evaluate properly PDF
tails. This because eventual features of interest can be found on tails as for example in the case of second
class particle: tails are in fact expected to be non-Gaussian due to this particle dynamics to belong to KPZ
universality class.

The TASEP processes are simulated using a Monte Carlo algorithm based on random sequential update,
which corresponds to the simulation of the jump chain of the Markov model. At each time step, one non empty
lattice site i is chosen uniformly at random from the n = ρL non empty sites and two operations are performed

• Attempt to update selected first class particle position: if the right neighbour site j is empty the particle
jumps to the right and the current counter is raised of one unit

• Check if i or i + 1 corresponds to the hole or the particle of a second class/sector particle in their box
representation (ref); in which case the particle position is non/updated based on their dynamics rules 4
and 7

Since the system behaviour is symmetric about ρ = 0.5 and so is the second class and sector particles
dynamics, the choice of picking at random a non empty site instead of one of the L lattice sites has been
made observing that using values of ρ ∈ [0, 0.5] results to be computationally more efficient. This is easy to
understand if we take into account that the selection of an empty site does not lead to an update of the system
configuration. From this follows that the time counter t → t + Exp(n) is updated by adding an exponential
random variable with mean 1/n which is the waiting time of the Markov chain.

B. Analysys of Xt

As mentioned above second class particle dynamics is well known and studied in literature. In this section are
summarized the main numerical results about this particle behaviour in order to show the validity of our analysis
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tools and to easily compare results obtained for sector particle and all intermediate cases presented in Sec. IV;
the dynamics of intermediate cases results in fact from the mixing of the second class and sector particle
behaviour. Initial conditions used are as specified before stationary initial conditions distributed according to a
single Bernoulli product measure νρ with density ρ on the overall extension of the lattice: we then expect the
second class particle to follow a characteristic and to move with speed (from Eq. 5 and Eq. 6)

vX = lim
t→∞

Xt

t
= 1− 2ρ (8)

Fluctuations V ar(Xt) = (Xt − tvX(ρ))2 are expected to show a behaviour proportional to t4/3 [17] till
time t = βL3/2 where β is a prefactor depending on ρ and dictated by correlations among particles positions.
In FIG. 3 are compared numerical data produced for the asymptotic speed and fluctuations for a second class
particle with the analytical forecast. The agreement between the two results to be verified (regarding speed
data, error bars are smaller or equal to markers size); in FIG. 4 is stressed and made clearer the presence of
the two different regimes t4/3 for t ≤ βL and t due to finite size effects. FIG. 4 is also highlighting a peculiar
behaviour for the fluctuations at early time: this seems to be proportional again to t for some values of ρ. This
phenomenon is not reported in literature; it turns out to be not an artifact of our simulation methods but as
demonstrated in FIG.4 is again due to finite size effect: these plots show the rescaled fluctuations respectively
for ρ = 0.1 and ρ = 0.5 and for different system sizes (L=512,1024, 2000, 4000). The early time behaviour
not proportional to t4/3 is clearly fading out as the system size increases. Xt − vXt is further known to show
Gaussian PDF with heavy tails not belonging to Brownian motion universality class. Rescaled numerical data
for PDF (Xt − vXt) behave as expected if analysed for t falling in the t4/3 regime.
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FIG. 3: Comparison between numerical and analytical data: asymptotic velocity (Eq. 8: vX = 1 − 2ρ ) of a second
class particle as a function of ρ (left panel); simulated fluctuations for a second class particle (right panel). Data points are
obtained on a lattice with L=1024; for each value of ρ, simulations for Xt evolution are repeated 4000 times, each for a
time tmax = 100L.
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FIG. 4: Time rescaled fluctuations for a second class particle:t regime (left panel) t4/3 regime (right panel). Data points
are obtained on a lattice with L=1024; for each value of ρ, simulations for Xt evolution are repeated 4000 times, each for
a time tmax = 100L.
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FIG. 5: Rescaled fluctuations for several system sizes (L = 512, 1024, 2000, 4000): ρ = 0.1 (left panel) ρ = 0.5 (right
panel). Data points are obtained on lattices with L=512, 1024, 2000, 4000; for each value of L and ρ, simulations for Xt

evolution are repeated 100 times, each for a time tmax = 100L.
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regime. Data points are obtained on a lattice with L=1024; for each value of ρ, simulations for Xt evolution are repeated
4000 times, each for a time tmax = 100L.
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C. Analysis of Yt

In this section are presented numerical data used to have a first insight about asymptotic speed and fluc-
tuations displayed by Yt indicating the displacement in function of time for the particle we have introduced,
namely the sector particle. In FIG. 7 is shown the asymptotic speed (dots in black) for ρ ∈ [0, 0.5] and this is
compared with analytical curves derived as attempts to explain theoretically the asymptotic speed behaviour;
the ideas behind are reported in the following subsections.
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FIG. 7: Asymptotic speed for a sector particle: comparison against several trial analytical curves. Left panel: the analytical
form are the one of Eq. 13, 11; right panel: 16, 21. Data points are obtained on a lattice with L=1024; for each value of ρ,
simulations for vY evolution are repeated 4000 times, each for a time tmax = 100L.

1. Speed parallel to lattice dimension and bricks geometry

Our first attempt to find an analytical expression for the sector particle asymptotic speed vY , is to check if
this speed is equivalent to the horizontal component of the overall growing surface speed: it is then necessary
to evaluate the component of the growing surface speed parallel to the lattice dimension. The growth rate of
the surface is given by

G = AjL (9)

where j is the current, A is the area of a single brick; in the usual case A = 2 being bricks squares such that
their emidiagonal is h = 1. The component perpendicular to the surface of its growing speed is then

v
π
4

⊥ =
G cosα

L
= Aj cosα = Aρ(1− ρ) cosα (10)

and using trigonometric calculus we obtain for the component parallel to lattice dimension

v
π
4

Y (ρ) = v⊥ sinα = 2
(2ρ− 1)ρ(1− ρ)

1 + (1− 2ρ)2
(11)

where tanα = 1− 2ρ (see Sec. II Subsec. A)
The comparison between numerical and analytical curves is showed in FIG. 7 and turns out to be wrong.

Nevertheless the two curves have similar characteristics as sign, concavity and symmetry. This lead us to
investigate more deeply the features of solid on solid model used to mimic the growth of the surface. As
mentioned previously the bricks used to model the growing surface are square bricks and these bricks have
the property of having the emidiagonal h = 1 . To save our hypothesis of a sector particle moving parallel to
the lattice dimension we think to change the geometry of the bricks: maintaining the rhomboidal shape with
emidiagonal h = 1, we introduce the parameter γ as the opening angle of the characteristic brick. It implies
that the growth rate for the surface is now different and the tilt angle for it is given by

tanα = (1− 2ρ) tan γ (12)
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after some simple calculations we obtain

vγY (ρ) = 2
(2ρ− 1)ρ(1− ρ) tan2 γ

1 + (1− 2ρ)2 tan2 γ
(13)

The comparison between numerical and analytical data turns out to be still unsatisfactory: in FIG. 7 are
pictured analytical curves for three different values of γ chosen as the one fitting the maximum number of
numerical data. This approach leads to a weak agreement just ρ values close to ρ = 0 and ρ = 0.5 but for any
value of γ fails to predict the numerical points for intermediate values of ρ.

2. Local stochastic analysis

In this subsection we try to model analytically Yt by referring directly to the dynamics of the hole-particle
pair as we described in 7 and that we show again below

. . 01 . . → . . 00 1 . → . 01 0 . . or . . 01 . . → . 0 11 . . → . . 1 01 . (14)

We remember that dots denote sites which are not determined after a jump; if we integrate over these undeter-
mined sites w.r.t. the stationary measure νρ leads to a first (naive) guess of the speed of Yt. The time it takes to
make the transition is given by

T = max
{
Exp(ρ), Exp(1− ρ)

}
(15)

where Exp(ρ) and Exp(1 − ρ) are the (independent) jump times of the hole and the particle. A simple
computation yields that E(T ) =

(
ρ(1−ρ)

)−1−1. Since the hole and the particle jump according to independent
Poisson processes with rates ρ and 1 − ρ, respectively, the probability that the hole jumps first is ρ, and 1 − ρ
for the particle. Since Yt follows only the second jump this leads to an average displacement of 2ρ − 1 after
one jump and therefore to the estimate

v1Y (ρ) = (2ρ− 1)/E(T ) =
(2ρ− 1)ρ(1− ρ)

1− ρ(1− ρ)
. (16)

Comparing with the simulation we see that this is not accurate, in particular for densities close to ρ = 0.5.
The reason for that are the correlations introduced through the situations after a jump as given in 7. This is in
principle also the case for the second class particle Xt, but for Yt the situation is worse. Due to total asymmetry
of the hopping the empty site ahead (or the occupied behind) cannot be filled by another particle (or hole) before
Yt moves again. This introduces correlations for Yt which turn out to be not present for Xt, since in that case
there is either a particle ahead or a hole behind which are both free to move independently. Indeed it can be
shown rigorously that the simple argument above gives the right speed for Xt, while our simulation results
imply that for Yt the correlations have to be taken into account.

A first simple approach to do this is to keep track of the last jump direction of Yt. As can be seen in (7), after
a left (right) jump there is a hole in front of (particle behind) Yt, which makes it more likely that the next jump
is again to the left (right). Assuming that all other sites are distributed independently according to νρ, the jump
times TL, TR after a left and right jump are given now by

TL = max
{
Exp(ρ), Exp(1)

}
and TR = max

{
Exp(1), Exp(1− ρ)

}
(17)

which leads to expected values

ETL = 1 +
1

ρ
− 1

1 + ρ
and ETR = 1 +

1

1− ρ
− 1

2− ρ
. (18)

Furthermore, if we write pLR for the probability that a left jump is followed by a right jump, we can compute
all these probabilities with the Poisson process argument analogous to the above. This yields

pLL =
1

1 + ρ
, pLR =

ρ

1 + ρ
, pRL =

1− ρ

2− ρ
and pRR =

1

2− ρ
. (19)

Considering this as a two-state Markov chain we find that it has the stationary distribution

qR =
ρ(2− ρ)

1 + 2(1− ρ)ρ
and qL = 1− qR =

1− ρ2

1 + 2(1− ρ)ρ
, (20)
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which gives an estimate for the average fraction of right and left jumps of Xt for large t. This leads to a second
estimate for the asymptotic speed

v2Y (ρ) =
qR − qL

qRE(TR) + qLE(TL)
=

(2ρ− 1)ρ(1− ρ)

1− ρ(1− ρ)(1− 2ρ(1− ρ))
. (21)

As can be seen in the figure this is a better approximation than v1Y , but still slightly off for ρ close to 0.5. But
taking into account higher order correlations than the one-step transitions in directions becomes very compli-
cated, since they depend on the behaviour of the rest of the system.

Assuming that the variance is not influenced by the time, we get that it is proportional to t and

V ar(Yt) =< (Y 2
t )

2
> −(v2Y t)

2 (22)

where

< (Y 2
t )

2
>= t

qR + qL
qRE(TR) + qLE(TL)

= t
ρ(1 + ρ(1− 2ρ(2− ρ)))

1− ρ(1− ρ)(1− 2ρ(1− ρ))
(23)
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FIG. 8: Fluctuation for a sector particle (left panel); t rescaled fluctuations (right panel). Data points are obtained on a
lattice with L=1024; for each value of ρ, simulations for Yt evolution are repeated 4000 times, each for a time tmax = 100L.

Observing the right panel of FIG. 8 can be seen as fluctuations behaviour proportional to t is of course ρ
dependent via the prefactor changing with ρ values but also time dependent. In FIG. 9this phenomenon is
stressed. The analytical curve dashed in black is the analytical solution obtained taking in account first order
correlations that drive the dynamics of the system (Eq. 22): for early time the curve well fits the numerical
data, while for later time numerical data depart from this solution due to correlations arising in the system and
not incorporated in the theoretical derivation. As clear in the right panel of FIG. 8 dependence of V ar(Yt)
with time ends after a time of order L2. Fluctuations do not show then the typical behaviour proportional to
t4/3 displayed instead by second class particle but an asymptotically diffusive and time independent one while
superdiffusive behaviour is displayed for early times. Another difference is clear from second class particle
fluctuations: while for the latter for different values of ρ fluctuations points look shrinked spanning less than
one orders of magnitude, in the sector particle case they turn out to be spreaded in function of ρ spanning almost
two order of magnitude. Since the interfaces Yt do not follow a characteristic in the system, its fluctuations
are expected to be dominated by the fluctuations of the initial conditions of the population height and since
we start with stationary initial conditions νρ for the TASEP, these are expected to be dominated by the usual
CLT, i.e. Gaussian with variance of order t. The behaviour proportional to t has been discussed before; the
study of PDF for Yt − vY t leads to conclude reasonably that fluctuations own a Gaussian distribution at list
asymptotically. It is clear following the evolution as time grows of the renormalized PDF (Yt − vY t ) in FIG.
10: while for early time t = 0.1L (first panel) and t = 10L (second panel) distributions display non-Gaussian
tails being in the regime for which fluctuations show a strongly time dependent and superdiffusive behaviour
(subdiffusive for ρ ≤ 0.1), for t = 100L where for each value of ρ fluctuations are proportional to t in a nearly
time independent way (we approach t ∼ L2), tails start to lay on the analytical normalized Gaussian curve.
Referring to first panel of FIG. 10, the asymmetry in the distribution for t = 0.1L and for small densities is
caused by asymmetric trajectories performed by sector particle. Due to geometric constraints of a largely tilted
surface it can do only isolated jumps to the right, separated by several consecutive jumps to the left.
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FIG. 10: PDF for Yt: t= 0.1 L, t= 10 L, t= 100 L. Data points are obtained on a lattice with L=1024; for each value of ρ,
simulations for Yt evolution are repeated 4000 times, each for a time tmax = 100L.

IV. SPECIAL PARTS

A. Deterministic initial conditions

An important issue is the one related to the link existing between competing surface statistics and the statistics
of the overall growing surface. Since the asymptotic shape of the overall growing surface is deterministically
related to the particular choice of the initial conditions configurations of particle on the TASEP lattice, we
investigate asymptotic speed and fluctuations behaviour for the second class particle and the sector particle
using deterministic initial conditions. Deterministic initial conditions correspond to fill one lattice site every
1/ρ as follow (for ρ = 1/3)
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. . 0 0 1 0 0 1 0 0 1 0 0 1 . . (24)

Three different choices for ρ are investigated: ρ = 1/4, 1/3, 1/2. Comparing numerical speed and fluctua-
tions data obtained for stationary initial conditions with the one obtained using deterministic initial conditions,
it turns out that both second class particle and sector particle display the same behaviour (FIGG.11, 12 ).
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FIG. 11: Asymptotic speed and fluctuations for a second class particle: stationary and deterministic initial conditions. Data
points are obtained on a lattice with L=1024; for each value of ρ, simulations for Xt evolution are repeated 4000 times,
each for a time tmax = 100L.
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FIG. 12: Asymptotic speed and fluctuations for a sector particle: stationary and deterministic initial conditions. Data points
are obtained on a lattice with L=1024; for each value of ρ, simulations for Yt evolution are repeated 4000 times, each for a
time tmax = 100L.

B. Analysis of Zq
t

So far we have studied the two extreme inheritance laws that can drive the dynamics of a competing interface
between two media: the one corresponding to inheriting the type of the younger parent and related to second
class particle in a solid on solid TASEP context, and the one corresponding to inheritate the type of the older
parent and modelled by the new sector particle. In this section we present the results obtained for Zq

t being the
interface generated by inheriting the type from the older parent with probability q, and from the younger parent
with probability 1− q.

In FIG. 13 are displayed asymptotic speeds as functions of ρ for different values of q where q = 0 corre-
sponds to the case of sector particle and q = 1 to the case of second class particle. Zq

t interpolates between
Xt and Yt, and for q = 1/2 it is easy to see that the interface performs a random walk without drift, i.e.
Zt/t → vZ(ρ) = 0 for all ρ ∈ [0, 1].

Fluctuations asymptotic behaviour turns out to be of order t with the same features displayed by a sector
particle for q < 0.5; to behave like t for all t in the case of q = 0.5 since the particle/competing surface
is performing a pure brownian motion; to have different asymptotic behaviours (proportional to t or t4/3)
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depending on ρ for q > 0.5 . The shrinking phenomenon for fluctuations data points as function of ρ is visible
and become more and more accentuated as q approaches 1 meaning a pure second class particle nature.
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FIG. 13: From second class particle to sector particle: asymptotic speeds (left panel); zoom in of the left panel (right panel).
Data points are obtained on a lattice with L=1024; for each value of ρ, simulations for Zt evolution are repeated 4000 times,
each for a time tmax = 100L.
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FIG. 14: Fluctuations for several value of q: from top to bottom, left to right q = 0.25, 0.50, 0.75, 0.95. Data points are
obtained on a lattice with L=1024; for each value of ρ, simulations for Zt evolution are repeated 4000 times, each for a
time tmax = 100L.

V. CONCLUSION AND PERSPECTIVE

In this work we have done a first attempt to generalize the study of competing surfaces between different
media introducing in a solid on solid- TASEP context a new kind of particle different from the well known in
literature, second class one. This particle has been draw to mimic the dynamics a competing surface growing
according to the law of inheritance by which the new brick inherits the type of the older parent. So far we
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investigated numerically the behaviour of asymptotic speed and fluctuations using in particular stationary and
deterministic initial conditions. It turned out that sector particle displays an asymptotic speed with a convex
functional shape (for ρ ranging from 0 to 0.5), opposite sign respect to second class particle one and non
monotonic. Fluctuations do not show the typical behaviour proportional to t4/3 displayed instead by second
class particle but a diffusive one being asymptotically proportional to t. Superdiffusive (subdiffusive for ρ =
0.1 or less) behaviour is displayed for early times. Various attempts to find out analytical results explaining
our numerical data have been carried out but they result to be not satisfactory. In the last part of this work the
behaviour of particles resulting from the combination of second class and sector particle inheritance laws has
also been investigated. This particles turn out to show intermediate features between the one owned by the two
extremes second class and sector particle.

A wide range of analytical and numerical perspectives are still open for this work: to find an analytical model
explaining the behaviour of the particles introduced; to study the dynamics of this particles using different kind
of initial conditions, like cones one.
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