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Abstract

Investigating and capturing the emergence of collective phenomena in cancer cell migration can advance our
understanding of the process of tissue invasion, which is one of the first steps leading to the formation of
metastases, or secondary tumours. By reconstructing the trajectories of lung cancer cells populations from
microscopy image sequences, we were able to analyse their collective two-dimensional dynamics and measure the
system spatial correlation function in different density conditions. This revealed that cancer cells, similarly to
other recently studied biological systems, can exhibit a form of collective dynamics without global order. However,
the observed density dependence of the correlation function differed completely from the theoretical predictions
of standard models of moving particles with mechanisms of local alignment. We propose an explanation for
this unexpected finding, supported by an analysis of the role of density in the ability of cells to communicate
through the micro-environment (stigmergy), which revealed the emergence of a network-like structure of trails
when the system density was sufficiently low.

1 Introduction modelling, driven by the massive amount of data
produced in molecular and cellular biology experi-

ments, is increasingly regarded as capable of provid-

Increasing experimental and theoretical evidence
suggests that malignant tumours can exhibit a
range of collective patterns similar to evolved adap-
tive behaviour found in other biological systems,
including collective decision making and collec-
tive exploration of the micro-environment [1]. A
strongly multidisciplinary approach is required to
cope with such a complex and self-organising bio-
system, composed of individual mutated cells in-
teracting by some local and stochastic mechanism
and giving rise to a seemingly emergent collective
intelligence [2]. The long-term process of cancer

ing valuable qualitative insight into the evolution
of this disease as well as predicting its quantitative
behaviour. This would ultimately translate into
new experiment design guidelines and eventually
into innovative therapeutic applications [3, 4, 5].

The single most lethal aspect of cancer, respon-
sible for about 90% of cancer-related deaths world-
wide [2] is the formation and growth of secondary
tumours, also known as metastases. Metastasis
formation is an extraordinarily complex process in
which a sequential series of steps has been identi-
fied, starting with the separation of cells (isolated



or in groups) from the primary tumour. These cells
then invade the surrounding tissues, intravasate
or enter the lymphatic system, arrest in a dis-
tant target location, extravasate and then survive
and proliferate in a new microenvironment, while
avoiding apoptosis or anoikis and immune system
response [6, 7, 8.

In recent years it has been proposed that collec-
tive cell migration could be the main mode of tissue
invasion in a wide range of malignant tumours, and
many advantages residing in such collective inva-
sion modes over the dissemination of individual
cells have been identified [7, 8]. However, little is
known on the mechanisms triggering such collec-
tive patterns, and although there are few therapies
specifically designed to target the motility of can-
cer cells [9], the possibility of specifically targeting
their ability to migrate collectively remains unex-
plored.

The level of complexity in cancerous bio-systems
is further increased by heterogeneity in the mu-
tational profiles of cells, which reflects in differ-
ent morphologies, growth, mobility, adhesiveness
and even mutability within the same tumour mass.
Some mutations are currently known to exist in
specific systems of cells, with various effects [10,
11]. Moreover, both examples competitive and
cooperative behaviour, through commensalism or
mutualism, have been observed in genetically het-
erogeneous tumours, with different effects on the
aggressiveness of the colony [12]. Investigating and
ultimately modelling the emergence of collective
properties in the interactive dynamics of heteroge-
neous cancer cells are extremely challenging goals,
which could shed light on the coupled physical
and biological processes leading to the evolution
of different metastatic potential in different sub-
populations. Ultimately, this would allow us to
predict the overall behaviour of a colony under
various scenarios of mutational and environmental
changes.

In this project image sequences of lung can-
cer cells in vitro were processed into quantitative
datasets (Section 2) and analysed (Section 3), in
order to identify and quantify collective patterns in
the cells’ motion (Section 4) with the help of con-
cepts derived from statistical mechanics. A hetero-
geneous system of cancer cells was also processed
into a dataset and a simple classification algorithm
was implemented to distinguish between trajecto-
ries of cells with different mutational profiles.

2 Methods

Available data

The available data consist of a set of 2D time-lapse
microscopy image sequences of PC9 non-small lung
cancer cells, incubated at 37°C in 5% Co2/Air in
a humidified chamber. Four single-population se-
quences, denoted by SP1, SP2, SP3, SP4, show
stained cancer cells appearing as white objects on
a dark background (Fig. 1). In sequence HP2,
instead, a heterogeneous population was stained
with different fluorescent dyes according to the
cells’ mutational profiles, and appear as green and
red objects on a dark background (Supplementary
Material Fig. S1). The main features of the anal-
ysed data, including number of frames, total time
and magnification, are summarised in Table S1.

Figure 1: Snapshot from time-lapse sequence SP4. Back-
ground removed and contrast enhanced. Scale bar 100um.

Cell number and size estimation

In order to estimate cell size and density in the
systems under investigation, images were first con-
verted into binary using Li’s Minimum Cross En-
tropy thresholding method (Li et al. [13]), which is
included in the built-in Auto Threshold methods in
Fiji [14]. This algorithm works by iteratively find-
ing the threshold value which minimises the cross
entropy of the original image and its corresponding
segmented version, and was observed to produce
the best output among the available thresholding
methods.

Next, a watershed segmentation algorithm (also
available in Fiji) was applied to automatically sep-
arate touching objects. Watershed segmentation
works by first computing the Euclidean distance



map of a binary image, i.e. by replacing white pix-
els (corresponding to an object) with grey pixels
whose intensity is proportional to their distance
from the nearest black pixel (corresponding to the
background). Then, the centres of the resulting
grey objects, called the ultimate eroded points, are
expanded until the edge of the object is reached
or they touch a neighbour, and in the latter case a
watershed line is drawn in the meeting point.

Finally, the segmented objects were automati-
cally counted using the Analyse Particles function
in Fiji (see for example Fig. S2), which also mea-
sures the area of all detected objects and their
circularity. To a first approximation, cells can be
considered as spherical objects, with an estimated
radius of r. = (11.3 £1.2) pm. The initial and
final density of cells in sequences SP1, SP2, SP3,
SP4 are summarised in Fig. 2, whereas the full
density time-series of all sequences is reported in
the SM.
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Figure 2: Initial and final cell density in single-population
sequences.

Feature point tracking

In order to analyse and model the collective dynam-
ics of the cells under investigation, their trajecto-
ries have to be reconstructed from the microscopy
image data. This process is called single-particle
tracking or feature-point tracking, and it is usually
composed of two independent steps. First, the
target object (in this case, the cell) has to be de-
tected in the image and its precise location has to
be determined (detection phase). Then, the dif-

ferent locations have to be linked in time (linking
phase). If multiple objects are detected in sub-
sequent frames, the linking process is nontrivial
and corresponds to solving an assignment problem,
with a cost function depending on some features
of the object under investigation. Commonly used
features in this combinatorial optimisation prob-
lem are the degree of overlap between two objects
in consecutive frames, their relative displacement,
and the similarity of their size.

After testing several 2D tracking software with
our image sequences and observing their output,
we decided to use the Particle Tracker tool included
in the MOSAIC plugin suite for Fiji (based on a work
by Sbalzarini et al. [15]). After a preliminary im-
age filtering phase, this algorithm computes a first
estimate of the feature point locations by finding
local intensity maxima: all pixels in the upper i-th
percentile (where i can be specified by the user)
of intensity in each frame are considered as candi-
dates for object locations. These candidates are
then accepted if no other pixel within a distance
r (where r is also an input parameter) is brighter
than the candidate point. This first guess is then
refined by iteratively calculating and minimising
the intensity moment of order 0 within a distance r
of the candidate location (intensity centroid estima-
tion). Possible spurious objects are then identified
by using a classification algorithm which assigns
to each particle a score, based on the intensity
moments of order 0 and 2, and discards particles
with score lower than a user-provided threshold
value 6.

In the linking phase, the algorithm assigns a cost
to each link based on the relative displacement
of the two linked objects and on the difference of
their intensity moments. The relative weight of the
object dynamics and features can be set by the user,
and the cost is set to infinity if the displacement
is larger than a certain threshold value L, also
user-provided. The algorithm then finds an overall
optimal association between the object locations by
minimising the total cost of all links, using either
a greedy optimiser, or the Hungarian optimisation
method. This latter algorithm was observed to
considerably improve the linking accuracy over
the greedy method, and was therefore chosen in
this work. Several sets of values were tested for
the Mmosa1c Cell Tracker input parameters. The
chosen set of values is shown in Table S3, and the
resulting trajectories for sequences SP2 and SP4



Figure 3: Trajectories reconstructed by tracking cells in single-population sequences SP2 (a) and SP4 (b), discarding

trajectories with 5 time-points or less.

are are respectively plotted in Fig. 3a and 3b (see
the SM for SP1 and SP3).

Overall, this tracking procedure produced re-
markably good results, given the low frame rate
of available image sequences (from a minimum of
3 to a maximum of 6 frames per hour, see SM
Table S1). However, in all datasets the observed
number of time points per trajectory exhibited a
large variance, and a short! trajectory is usually
a sign of poor tracking accuracy. This is not a
major problem as long as the analysis of the cells’
dynamics is restricted to instantaneous or local
trajectory statistics. Nevertheless, extremely short
trajectories (i.e. with 5 time points or fewer) were
discarded and not considered in the following anal-
ysis of dynamics, except for the determination of
nearest neighbours. In other words, the detection
output of the algorithm is assumed to be opti-
mal, whereas the linking output is rejected when
trajectories are shorter than 5 time-points.

The tracking algorithm described above is de-
signed for grey-level (8-bit) images, thus being
unable to distinguish between cells with different
staining. In order to automatically classify trajec-
tories extracted from H2 according to their mu-
tational profile, a simple classification algorithm
based on the analysis of RGB spectrum of the
original images was implemented in MATLAB (see
Algorithm 1 in the Supplementary Material for
the pseudo-code). The set of trajectories obtained

'The term short, in this context, refers to the number of
time points in the trajectory, and not to the total covered
distance.

from sequence H2 after automatic tracking and
classification is shown in Fig. 4.

Figure 4: Trajectory data set after tracking and classifica-
tion (Seq. H2).

3 Analysis of dynamics

Following the procedures described in the previous
section, datasets of 1718 and 620 trajectories were
respectively obtained from sequences SP2 and SP4.
The analysis of dynamics and collective behaviour
is focussed on these two datasets, as they both
correspond to cell cultures observed for a period of
14 h, but with very different densities. The average
observed density in sequence SP4 is over 3 times
higher than that of SP2, thus allowing to consider
negligible the density increase over time due to
cell duplication, when compared to the relative
difference in the two datasets.



Preliminary analysis

Cell migration appears to be highly stochastic, due
to its dependence on complex biophysical mecha-
nisms, tightly coupled with environmental chemi-
cal (e.g. chemotaxis) and physical phenomena (e.g.
exchange of momentum and shear stresses) [16].
This leads to considering the reconstructed trajec-
tories as realisations of a stochastic process. In
this framework, the motion would be completely
characterised by determining the conditional prob-
ability density function f(x | o, dt), also called
transition density of the process, quantifying the
probability of finding a cell at position x after a
time 0t has passed from its previous observation
at position xg.

The standard method for single-particle trajec-
tory analysis is based on the calculation of the
second moment of displacement or mean square
displacement (MSD):

p2(0t) = (|2 (6t) — z(0)13)ar - (1)

where the average (-),s is taken over an ensemble
of M independent realisations of the same pro-
cess. The time-dependence of the MSD can be
analytically derived for stochastic processes whose
transition density is known (e.g. normal diffusion
or directed motion), thus allowing to identify the
type of motion by comparing experimental and
theoretical curves (see for example Saxton [17]).
In fact, given a dataset of M trajectories observed
at discrete time steps An =1,..., N;, where IV; is
the (finite) length of trajectory j, an experimental
estimate of the MSD time-dependence can be ob-
tained by computing the following time-average [18,
19]:

N;—An
Y. lz(n+an)—zm)]3,

n=1

(2)
for each trajectory j. This corresponds to calculat-
ing the mean of a set of non-independent random
variables, whose statistical uncertainty must be
corrected accordingly. Assuming that all M trajec-
tories are samples coming from the same generating
process, these values can then be averaged to ob-
tain an experimental estimate of the MSD curve
for the process.

This approach was attempted with poor success,
as the MSD curves obtained from the reconstructed
datasets (see Fig. S5) were not particularly infor-
mative about the cells’ motion. This can be in

1
pa(j)(An) = N, —An

part explained by the limited length of the origi-
nal image sequences and the low frame rate, both
leading to high experimental uncertainty. More
importantly, however, two implicit assumptions
are made when using equation (2), namely that
the generating stochastic process is stationary and
ergodic. Such assumptions can not be considered
valid in this case, as cell density is constantly in-
creasing and micro-environmental conditions are
likely to being modified by the cells themselves over
time. Therefore, this and other standard analytical
methods based on global trajectory statistics can
not be applied in this context.

Local trajectory statistics are in this case more
informative. For example, observing the distri-
bution of the turning angle between consecutive
observation of cells’ velocity revealed that the mo-
tion can not be modelled as a Markov process. In
fact, the probability of observing a cell moving with
a similar directionality in two consecutive frames
is statistically much higher than that of observing
extreme turns (see for example Fig. 5, correspond-
ing to sequence SP2). This effect is damped, as
expected, when the frame rate decreases, but is
still statistically relevant even for the lowest frame
rate sequences (SP3 and SP4).
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Figure 5: Distribution of observed cell turning angles,
measured in rad, between two consecutive frames (sequence
SP2).

Contact inhibition of locomotion

One of the key features of cancer cells, strongly
correlated with tumour invasiveness, is the partial
or total loss of contact inhibition of locomotion



(CIL), which is the ability of a healthy cell to
avoid collision with a nearby cell [20, 21]. This
phenomenon was investigated by measuring the
instantaneous acceleration of each cell ¢ as
@i(t) = (1) — Tt — 1) (3)
and then projecting all these values onto the direc-
tion of the nearest cell in frame t. By doing this,
we obtained a set of vector components anc(i,t)
containing information on how each cell 7 is in-
fluenced by its nearest neighbour, denoted by the
subsctipt nc. A positive value here means that cell
i is moving away from its neighbour. From these
values, the following quantity was computed:

_ Ziv ZZM anc (i, t) 0(r — ruc(i, t))
TSN (r = (i b))

F(r) (4)

where

. 1 ifr <rpe(iyt) <r+dr
Or = (i 1)) {O otherwise
and 7c(,t) is the distance between cell ¢ and
its nearest neighbour in frame ¢, whereas dr is the
space binning factor. In Fig. 6, this quantity is
plotted for sequences SP2 and SP4 against r/r,
where r. is the previously measured average cell
radius, also used as binning factor.
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Figure 6: Repulsive force between cells, calculated using
Equation 4, for sequence SP2 (blue dots) and SP4 (red
squares). The vertical dashed line marks estimated contact
distance.

The interpretation of this plot is not straightfor-
ward, as the net force producing motion is the sum
of a large number of phenomenologically different
components. However, a remarkable fraction (15%
and 10%, respectively) of the 34784 and 7065 data
points used to produce the plots lies below the es-
timated contact distance 2r.. This clearly suggests
that contact inhibition of locomotion has partially
been lost by these cells, although a positive (i.e.
repulsive) force is observed at short range, which
may be due to a partial conservation of CIL or to
purely physical (e.g. elastic collision) effects.

Correlation function

For the aims of the project, however, the most in-
teresting statistics are those revealing the existence
of collective patterns in the cells’ behaviour. The
standard method to characterise the emergence
of collective phenomena is usually based on the
identification of an order parameter able to distin-
guish between ordered and disordered phases in the
system. The concept of emergent collective order
is in fact commonly identified as the hallmark of
collective behaviour, as it is observed in a variety
of biological systems over a huge span of spatial
and temporal scales, from the formation of bird
flocks and fish schools to the aggregation of bacte-
ria colonies moving in an ordered and synchronised
fashion. However, it has been argued that even
seemingly disordered systems can exhibit impor-
tant collective properties, and that strong spatial
correlation, rather than order, should perhaps be
considered as the true hallmark of collective be-
haviour. Attanasi et al. [22] recently studied col-
lective patterns in swarms of midges, showing that
a strong spatial correlation allows information to
propagate rapidly in the swarm, despite the lack of
collective order, thus enabling it to quickly react
to external perturbations.

In order to estimate the spatial degree of corre-
lation in our swarms of cells, we applied the same
statistical methods used by Attanasi et al. to our
trajectory datasets. First, it is convenient to trans-
form the measured cell velocities into dimensionless
quantities, as this allows to easily compare experi-
mental data with numerical simulations. This can
be done by defining the following vectors:

_ Ui (t) '
Vi S T(t) - T (t)

The spatial correlation function can then be

Gi(t) (5)
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Figure 7: Correlation function calculated using Eqn. 6 for cells in SP2 (blue dots) and SP4 (red squares). Dashed lines
are least-squares exponential fits to the data. Green diamonds: correlation function of a set of 2000 simulated random
walk trajectories. Values below r = 2r. are not considered, as more complicated repulsive effects occur below the contact

distance (see Contact inhibition of locomotion).

calculated as

_ SN Sy Bilt) - Bi(t) 6(r —rij(t))
Zz]ev Zz]'\;/[éj 8(r —1i(t))

C(r) , (6)

where

1 ifr <r(t) <r+dr
Or =rij(1)) {0 otherwise
and 7;;(t) is the distance between cells i and j
in frame ¢, whereas dr is again the space binning
factor. The obtained experimental correlation func-
tion for datasets SP2 (in blue) and SP4 (in red)
are reported in Fig. 7, alongside the average corre-
lation function of a simulated set of 2000 random
walk trajectories. The plot reveals the existence
of unexpected correlation in the alignment of cells,
decaying exponentially but persisting up to a dis-
tance 4 times greater than the contact distance
2r., for dataset SP2.

Some exploratory modelling attempts seem to
suggest that short-range repulsion and noise in
directed motion are not sufficient to produce such
strong correlations, which actually recall the well
known curves typically exhibited by systems of
particles with some form of local alignment mech-
anism. It has been proposed that migrating cells
could actually exhibit a tendency to align their
travel direction with neighbours, due to adhesion

and exchange of shear forces between cells in con-
tact [1]. However, such a mechanism would imply
an increasing correlation length as the density of
the system increases, as predicted by statistical
mechanics for systems of locally interacting parti-
cles and experimentally observed, for example, in
nematics [23] and biological systems with active
alignment mechanisms, such as midges [22] and
birds [24].

Remarkably, the experimental data extracted
from these swarms of cells appear to be against the
hypothesis that orientational correlation is mainly
due to a contact alignment mechanism, since the
measured correlation function is much stronger
when the cell density is relatively low. This rather
unexpected behaviour, for which no match exists in
the literature to the best of the author’s knowledge,
is further investigated in the next Section.

4 The role of stigmergy in

cancer cell swarming

From a quick look at the acquired sets of trajec-
tories (Fig. 3a and 3b) it is clear that cells are
not moving randomly in the space. In low density
populations (SP1, SP2, SP3), cell tracks have a
tendency to travel through paths that have already
been explored, drawing structured network-like
patterns. This phenomenon, however, vanishes



when the density is considerably higher (SP4).

Several well-known signalling mechanisms, ei-
ther chemical (haptotaxis, chemotazis) or mechani-
cal (durotazis, mechanotazxis, plithotaxis) may be
responsible for the formation of these patterns.
Understanding and characterising the underlying
microscopic mechanism leading to the observed
phenomena falls outside the goals of this project.
However, a quantification of the emergence of this
complex collective phenomenon would provide a
basis for claiming that there exist a relationship
of cause and effect, and not just a correlation, be-
tween stimergic communication between cells and
the observed density dependence of orientational
correlation.

Intensity standard deviation maps

A first step in this respect can be made using a
method introduced by Yang et al. [25] in a recent
study of trail networks formed by brain immune
cells. In this work, the authors analysed time-lapse
microscopy sequences by computing the standard
deviation of the local (pixel) intensity time-series,
arguing that a pulse-like signal is introduced in the
time-series of a fixed site every time a cell passes
through, thus allowing to use the intensity stan-
dard deviation as an estimator of the cell transit
frequency.

This method was used on image sequences SP2
and SP4, producing Figures 8a and 8b, respectively.
Indeed, a clear network-like structure emerges in
the low density case, but not when the density is
higher. Note that the colorbar scale is the same in
the two cases. The distribution of the measured
values in the two systems is summarised by the his-
togram in Fig. 8c, which shows that the maximum
observed intensity SD is below 100 for sequence
SP4, whereas a large number of observations lie
above 140 for sequence SP2.

Transit frequency maps

The intensity standard deviation method can be
used regardless of the tracking process, as it is
designed to quantify the cell transit frequency in
each region of the 2D space from the raw image
sequence data. However, since in this case the cell
positions in each frame have been tracked, transit
frequency maps can also be constructed using the
obtained trajectory datasets. This was done by
dividing the space into a discrete square lattice,

with a step size equal to the estimated cell radius
re, and by counting the number of times that each
trajectory intersects each site. All reconstructed
trajectories were used regardless of their length, as
the linking accuracy is in this case irrelevant.

The obtained maps, presented in Fig. 9a and
9b, match the intensity SD maps remarkably well,
showing that trail structures only emerge in the
low density case. This is further confirmed by com-
puting the fraction of sites visited at least f times
for all observed values of f (Fig. 10a and 10b).
The experimental curve resulting from the recon-
structed cell trajectories can then be compared
with numerical simulations of randomly moving
cells, obtained by iteratively randomising the in-
stantaneous angle of the velocity vectors in the real
data. The visit frequency curve of high density
trajectories (SP4) is statistically indistinguishable
from the corresponding curve obtained from simu-
lated random data, whereas the difference between
experimental and numerical data is significant for
the low density cell population.

At this stage, there is enough evidence support-
ing the hypothesis that cancer cell dynamics is
highly regulated by stigmergy (i.e. communication
through perception and modification of environ-
mental conditions) and that the formation of a
network-like trail structure is suppressed when cell
density is high enough. A reasonable explana-
tion for this behaviour can be inferred from the
argument that the ability of a cell to successfully
sense a signal, regardless of the particular signalling
mechanism, can be modelled as some increasing
function of the signal gradient in the portion of the
micro-environment directly accessible to the cell’s
sensing apparatus. With this natural assumption,
the inter-cellular signalling effectiveness would be
hampered by a high cell density or, in other words,
increasing the system density would correspond
to an increased level of noise in the cellular sig-
nalling network, which directly affects the system
correlation.

5 Conclusions and further work

The analysis of the reconstructed trajectories of
lung cancer cells revealed the emergence of a form
of collective behaviour without order, characterised
by a relatively long-range spatial correlation, al-
beit exponentially decaying, in the alignment of
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Figure 8: In (a) and (b), intensity standard deviation maps obtained from the original image sequences SP2 and SP4,
respectively. In (c), comparison of intensity standard deviation distribution. Frequency y-axis is in logarithmic scale.
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cell motion. Such correlations are not believed to
be solely explainable in terms of contact inhibition
of locomotion or other contact interactions. Fur-
thermore, contrary to what is normally observed
for interacting self-propelled particles, the correla-
tion length of the system was observed to decrease
as the density of the population increases. A nat-
ural explanation for this behaviour followed from
the observation that the cells’ ability to communi-
cate through the micro-environment also exhibits
a strong dependence on the system density. In
particular, we claim that the reduced level of noise
in inter-cellular stigmergic communication at low
density, which reflects in the emergence of trail
network-like patterns, may be the main cause of
the observed strong correlation.

Further steps are required in order to under-
stand the role of the observed phenomenology in
the ability of cancer cells to collectively invade sur-
rounding tissues, known to be directly related to
tumour invasiveness. These steps could include a
thorough comparison with systems of healthy lung
cells, but also with cultures of cancer cells treated
with drugs known to hamper specific growth factors
or other specific pathways correlated with tumour
metastatic potential. All the developed analytical
methods could then be integrated with the parallel
creation and simulation of (agent-based) mathe-
matical models of cancer cells, which in recent
years proved invaluable in providing new perspec-
tives on the complexity of this bio-system and in
predicting its evolution.
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Supplementary Material

Figure S1: Snapshot from time-lapse sequence H2, in Figure S2: Segmentation of image in Fig. 1 with Li’s Min-
which cells with two different mutational profiles are imum Cross Entropy thresholding method (Li et al. [13])
stained with a green and a red fluorescent dye. Back- and analysed with Fiji’s Analyse Particles tool. Objects
ground removed and contrast enhanced. Scale bar 100um. with a radius lower than 6um were considered as noise

particles and therefore ignored. Scale bar 100um.

Number N Time At Total Resolution  Image scale Number of
of frames  between frames time T (pixel) (um/pixel)  sub-populations
SP1 62 15 min 15 h 15 min 1344 x 1024 1.61 1
SP2 85 10 min 14 h 1344 x 1024 1.61 1
SP3 43 20 min 14 h 1344 x 1024 0.644 1
SP4 43 20 min 14 h 1344 x 1024 0.644 1
H2 181 15 min 45 h 1344 x 1024 0.644 2

Table S1: Main features of available time-lapse microscopy sequences.

Estimated cell Initial density  Final density = Average density
radius (um) (106 cells/m?) (10° cells/m?) (107 cells/m?)

SP1 12+ 3 121 £5 190 £5 15+ 2
SP2 12+3 94+1 158 £ 2 12£2
SP3 11+2 169+ 7 175+ 11 17.1£0.8
SP4 11+3 329 £8 4207 37+3
HP2 11+3 145+ 6 372+ 14 287

Table S2: Estimated size and density evolution of cells.
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Figure S3: Time series of cell number density in analysed image sequences.

Object radius r Absolute Cutoff Max displace-

(pixel) percentile i (%) threshold § ment L (pixel)
SP1, SP2 10 0.05 0 50
SP3, SP4, HP2 24 0.05 0 60

Table S3: Parameters used for cell tracking.

(a) SP1 (b) SP3

Figure S4: Trajectories reconstructed by tracking cells in single-population sequences SP1 (a) and SP3 (b), discarding
trajectories with 5 time-points or less.
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for ¢ from 1 to N do
load i-th image as a 3D array;
\\where 3-rd dimension contains the RGB spectrum of the image
for each trajectory j do
if j has a point P at time ¢ then
compare R intensity and G intensity at point P of current image;
if R > G then
‘ color(i, j) = 1;

else
‘ color(i, j) = 0;
end
end
end
end

average color array over rows (i.e. time), removing index i;
for each trajectory j do
if color(j) > threshold then
‘ trajectory j is considered red;
else
‘ trajectory j is considered green;
end
end

Algorithm 1: Trajectory red/green classification algorithm. The threshold value can be set by the
user (a value of 0.9 was found to produce good results for sequence H2).
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Figure S5: Mean square displacement calculated as an ensemble and time average (see Eqn. 1) using the reconstructed
trajectories for sequences SP1 (blue circles), SP2 (red stars), SP3 (green dots) and SP4 (purple squares). Values are
corrected according to image scaling. Error bars are ensemble standard deviations.
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