
.

.

On the Translation of Linear Genetic Programs into
Tree Genetic Programs and Vice Versa
Robyn Ffrancon1*

Abstract
In this project two schemes were introduced for translating from LGP to TGP and vice versa. As a result of these translation
schemes intron instructions could be identified in LGP programs. By translating TGP programs, LGP programs could be
formed which were composed entirely of exon instructions.
It was shown that intron instructions were formed from applying the crossover mechanism to a population of purely exon
LGP programs over successive generations. After around five generations approximately 80% of the instructions within the
population were introns. This percentage of introns has been observed in applying LGP to classifying medical data and also
within the DNA sequences of some biological organisms.
A method of parallelising the execution of a single LGP program was outlined. It was estimated that the probability of
decreasing the computation time of executing a 25 exon instruction program at least somewhat was between 87% and 90%.

Keywords
Linear Genetic Programming — Tree Genetic Programming — Introns — Parallel Processing

1University of Gothenburg, Sweden
*Corresponding author: rffrancon@gmail.com

Contents

1 Introduction 1
1.1 Tree Genetic Programming 2
1.2 Linear Genetic Programming 3

2 Translation 4
2.1 Translation from TGP to LGP 4
2.2 Translation from LGP to TGP 5
2.3 Insights into TGP and LGP from translation 7

3 Introns in LGP 8

4 Parallel Processing of LGP 9

5 Conclusion 11

Acknowledgments 11

References 11

1. Introduction
Linear Genetic Programming (LGP) and Tree Genetic Pro-
gramming (TGP) are two well known and well studied forms
of Genetic Programming (GP). GP algorithms are Evolution-
ary Algorithms where the methods for finding a satisfactory
answer to some problem are inspired from biological evolu-
tion. The extent to which biological evolution inspires the
practical implementation of GP is limited by the computa-
tional architecture available and the complexity of biological
evolution itself. Most popular evolutionary algorithms that
have been inspired from biological evolution can, in their most
simplistic form, be understood intuitively. A good example
would be a simplistic, yet practically useful, TGP scheme.

The practical limitations of imitating the complex processes
of biological evolution have contributed to the design of evolu-
tionary algorithms that contain some purely artificial features.
Parallel Linear Genetic Programming (PLGP) is an example
of a scheme which contains purely artificial features; it will
be discussed later on.

In general, GP is a method of generating a computer
program for solving a particular problem. But instead of
a programmer explicitly composing a program using a pro-
gramming language, a ”population” of programs undergo
evolution.

Biological evolution is a complicated subject. Wikipedia
gives an an eloquent definition of evolution which, although
incomplete, is useful in and of itself for our purposes: “Evolu-
tion is the change in the inherited characteristics of biological
populations over successive generations.” We can expand on
this by noting that genetic material is the information which
is inherited by successive generations. Additionally, the char-
acteristics of individuals within biological populations are
expressions of genetic material. Crudely, we could say that
evolution is the optimisation of a population’s genetic material
over successive generations. The objective of this optimisa-
tion is to improve the ability of the individuals in the next
generation to propagate their genetic material into future gen-
erations.

The environment of an individual is its restrictive adver-
sary to the successive propagation of its genetic material. The
environment can effectively be seen as the measuring tool
against which the performance of an individual’s genetic ma-
terial is measured. In other words, individuals in a biological
environment are evaluated based on their ability to generate

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 2/16

the most optimised genetic material.
In GP a population of programs (individuals) are evaluated

based on their problem solving abilities. This is analogous to
the evaluation of an individual based on it’s ability to cope
with it’s environment whilst attempting to propagate it’s ge-
netic material. In GP, once each individual has been evaluated
the next generation of offspring is generated. In forming the
next generation a positive correlation exists between the prob-
ability of reusing the genetic material of an individual and the
performance of an individual.

For our purposes, GP is a method of finding an unknown
mathematical function which is composed of the operators:
addition, subtraction, multiplication, and division. An individ-
ual’s fitness (performance) is simply the inverse of an error
evaluation based on the differences between an individual’s
proposed mathematical function and the actual mathematical
function that is to be found. In other works GP techniques
have been used extensively as classifiers and optimisation
methods [1, 2].

LGP and TGP are two different methods of expressing
and evolving programs for GP. Both schemes share evolu-
tionary methods which are inspired from the same biological
evolutionary processes. One example of such an evolution-
ary process is crossover, which will be discussed later on.
Both schemes have some evolutionary methods which are
procedurally similar. However, the resultant effect of their
implementation in both schemes is usually very different.

We will briefly recap some of the basic principles involved
with TGP and LGP which are important for our purposes.
Literature such as Wahde (2008) give a more in depth and
thorough overview of both GP schemes.

1.1 Tree Genetic Programming
TGP is probably the most commonly used GP technique. Of-
ten when people refer to GP they mean TGP. In many ways
TGP is much simpler than LGP. TGP lacks some of the sub-
tleties present in LGP such as structural introns which will be
discussed later.

The TGP method uses a forest (population) of trees (pro-
grams, also called chromosomes). A single population is
known as a generation. Using evolutionary inspired meth-
ods (described below) subsequent populations are generated,
these are the subsequent generations. For our purposes each
new generation will contain a new forest derived from the old
forest. Generations will be generated within a single discrete
time step.

TGP trees (programs) for our purposes are best repre-
sented as tree structures composed of a single node of degree
two (root node), some nodes of degree one (leaf nodes), and
usually some nodes of degree three (tree branch nodes).

Figure 1 shows an example of a single TGP tree program.
The red node is the root node, the green nodes are the leaf
nodes, and the light blue nodes are the tree branch nodes. Di-
rected edges exist between the nodes. The blue and red nodes
are each labeled by some operator from the set {+,−,/,∗}.

Figure 1. This figure shows a tree graph representation of a
simple TGP program. The red node is the tree’s root node,
the light blue nodes are branch nodes, and the green nodes
are the leaf nodes. The root and branch nodes have been
labeled with operators. Each leaf node has been labeled with
a constant memory register.

The green leaf nodes are labeled by the names of constant
memory registers: c1,c2,c3 The value of these constant
memory registers are used as operands. These constant mem-
ory registers are set once before the start of the program
execution (evaluation) and are not modified during execution.

In order to understand the method of executing a TGP
tree, consider a node p which is not a leaf node. Node p is the
target node of two directed edges where the source nodes of
those edges are the children, c1 and c2, of node p. Suppose
that c1 and c2 are leaf nodes. The tree can be evaluated at
node p by applying the operator associated with node p on the
operands associated with nodes c1 and c2. Note that when the
operator is division the ”left” child node gives the numerator
and the ”right” child node gives the denominator. Memory
is associated with node p so that the ”left” and ”right” status
of the child nodes are noted and are not changed once they
are first set. If the denominator is zeros when the division
operator is used in the tree the performance (fitness) of the
entire tree is set to zero (lowest possible performance).

Once the arithmetics derived from node p and its child
nodes have been calculated the resultant answer is kept in
memory associated with node p. This answer will be used as
an operand if node p itself was a child node.

At this point it should be clear how the entire tree can be
evaluated with the calculation associated with the red root
node performed last. The first calculations to be made are of
those nodes which have two leaf nodes as children.

Within the context of TGP, mutation is an evolutionary
method where the operand or operator of a node within a tree
is changed probabilistically. In the simplest case, a mutation
probability is defined and each node is mutated with this
probability. If a non-leaf node is to be mutated a random
operator is chosen from the possible set of operators. If a leaf
node is to be mutated, it’s associated constant memory register
is changed to another random constant memory register from

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 3/16

the set of all constant registers.
Crossover is another evolutionary method which is es-

sential to TGP. For our purposes we will only consider the
simplest form of TGP crossover. During crossover in TGP
two trees are selected. Then, one node from each tree is se-
lected at random, we will name these nodes n and m. Finally,
the edge between node n and it’s parent (the edge is directed
towards the parent) is removed. An edge is created between
node n and the parent of node m. Similarly, the edge between
node m and it’s parent is removed and an edge is subsequently
created between m and the previous parent of node n. In this
way the nodes of the TGP tree can move between separate
trees.

The processes of mutation and crossover effectively create
new trees. This new forest will constitute the next generation.
During the creation of a new generation the trees of the old
generation are not overwritten or deleted. This means that a
tree can be used twice in forming the new generation with
crossover.

In describing the crossover method above it was said that
two trees are ”selected”. The method of selection is called
tournament selection. Tournament selection is used so as to in-
crease the probability of using high fitness trees in generating
the trees of the next generation.

1.2 Linear Genetic Programming

Figure 2. This figure shows a diagram of a simple LGP
program. Each blue box represents a separate instruction.
Within each blue box two operand registers are seen to the
left of the arrow along with an operator. The arrow points
towards the memory register which will store the resultant
value of the left hand calculation. Each instruction would be
executed in order from top to bottom.

Figure 2 shows a depiction of a simple linear genetic pro-
gram. For our purposes, a single program in LGP is composed
of an ordered list of instructions. Each instruction includes:
references to three memory registers, and an operator from the
set {+,−,/,∗}. As with the TGP scheme, the LGP scheme

uses populations of programs which are separated into gener-
ations.

There are two possible types of memory registers in the
LGP scheme, variable memory registers and constant memory
registers. A single instruction within an LGP program deals
with three memory registers. The contents of two of the three
memory registers are used as operands, in analogy with the
child nodes in a TGP program. The remaining memory regis-
ter is used to store the answer of the arithmetic calculation. In
the figure an arrow within each instruction points towards this
variable memory register. We will call this memory register
the destination memory register.

There are no restrictions on which memory registers can
be used as operands, these registers may be the same or dif-
ferent, of constant or variable type. However, only a variable
type memory register can be used to store the resultant value
of the arithmetic calculation.

In the simplest scheme for the execution of a single pro-
gram, each instruction is executed in order. Before the ex-
ecution of any program within a population the contents of
the constant and variable memory registers are set. The val-
ues stored in the constant memory registers do not change
once set. The initial values of all memory registers before the
execution of any program is always the same.

The constant memory registers can be used to store any
values which are suspected to be important in calculating
the correct desired answer. These values will not be over-
written and are therefore not lost during the execution of a
program. The values of the variable memory registers are
usually initially set to random values. There is much to say
about choosing the number of registers and setting their initial
values.

At this point, it should not be difficult to see that a LGP
program modifies the values stored within registers during the
course of it’s execution. The final value given by a program
is read from the same variable memory register for any given
program. This is usually the first variable memory register:
register 0. The fitness (performance) of a program is based on
this value similar to the TGP scheme.

A simple implementation of the mutation evolutionary
method within the context of LGP is similar to that seen in
TGP. A mutation probability is set which gives the probabil-
ity of modifying which register is used by an operand, the
operator used, or which register is used as the destination
register.

In this project the crossover mechanism used in the LGP
scheme is two point crossover. In performing two point
crossover the first step is to select two programs using tour-
nament selection, we will refer to these two programs as A
and B. Secondly, two random instruction are chosen within
each program. We will refer to the instructions chosen within
program A as a1 and a2; similarly for program B as b1 and
b2. Thirdly, two new chromosomes are created for the next
generation by copying programs A and B but swapping all of
the instructions between and including instructions a1 and a2

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 4/16

with all of the instructions between and including b1 and b2.
In this way a new generation of chromosomes (programs)

can be generated. Further more, due to the use of tourna-
ment selection it is likely that the chromosomes of the new
generation will include a disproportionate proportion of the in-
structions from the best performing individuals of the current
generation.

2. Translation
2.1 Translation from TGP to LGP
Now that the basics of TGP and LGP have been outlined, we
can discuss some similarities and differences between them.
These differences and similarities are best highlighted when
translating programs from one scheme to another.

In its most basic form the scheme for translating TGP pro-
grams to LGP programs is very simple. Firstly, an instruction
should exist in the complementary LGP program for each
arithmetic calculation that is performed in executing a TGP
program.

Consider again Fig. 1, but supposed we removed all of
the green leaf nodes. The remaining network would represent
the instruction dependency network of the complementary
LGP program. In this new network nodes would represent
instructions and directed edges would represent instruction de-
pendancies. For a given directed edge, the target node would
represent an instruction which would depend on the instruc-
tion represented by the source node. An instruction may well
only immediately depend on one other instruction, in which
case the second operand would be provided by a constant
memory register and not from a calculation. Of course, the
only other case is that both operands of an instruction would
be provided by instructions. This is the trivial case of a single
instruction program.

In an LGP program the variable memory registers are
used in transferring information for processing from one in-
struction to another. This allows a program to compound it’s
calculations. A TGP program does not make use of memory
registers in the same way as LGP programs. In fact, TGP
programs only make use of a set of constant values which are
set before the beginning of executing a TGP program and are
not changed afterwards.

A TGP program does not use any variable memory reg-
isters. What then is the best method of assigning variable
memory registers to a TGP program during its translation into
a LGP program? One simple scheme would be to have as
many variable memory registers as calculations. In this way
the result of any calculation would be stored in a variable
memory register and used again during any dependant cal-
culations. Each register would be written to and read from
once. One drawback of this approach is that a large amount
of memory would be use. Another drawback of this scheme
is that it does not provide flexibility in the number of different
registers used. The number of registers used is completely
dependant on the number of instructions (calculations).

An alternative scheme would be to use the minimum pos-
sible number of different memory registers whilst preserving
the functionality of the original TGP program. This scheme
would allow additional memory registers to be used at the
users discretion. Alternatively, other memory registers could
become functional later from mutation. This formation would
present the LGP equivalent program of the TGP program in
it’s most concise memory form. In this project an algorithm
was devised for assigning the minimum number of different
variable memory registers to a TGP program.

The algorithm is best thought of in two parts. The first part
leaves a ’trace’ on each node in the TGP tree that is stored as a
node property. The ’trace’ information allows the second part
of the algorithm to identify the order of assigning memory
registers to the nodes.

The ’trace’ information stored in each node is an array of
two elements. Figure 3 shows a flowchart that describes how
the ’trace’ is calculated for each node in the TGP program
network. The first step in setting the ’trace’ is to calculate the
depth of each leaf node. The depth of a node is the minimum
number of edges between itself and the root node. That is
to say, the depth of a node is the shortest edge path length
between itself and the root node. The root node has a depth
of zero.

Initially, the elements of the ’trace’ array of every node
are set to zero. The first element of the ’trace’ array will be
referred to as the ’max depth’ and the second element will
be referred to as the ’cumulative depth’. Once the leaf node
depths have been calculated the next step is to process each
leaf node.

I will refer to the current unprocessed leaf node under
consideration as the node L. For a general node N, the parent
of node N will be denoted as P(N) and the grand parent of
node N will be donated as P(P(N)) and so on. Node C is the
current node under consideration.

The first unprocessed leaf node L is selected and the ele-
ments of it’s ’trace’ array values are both set to the leaf node’s
depth. We set the current node under consideration to the
leaf node, C = L. Next the node P(C) is considered, at this
point node P(C) is the parent of the leaf node. If it’s ’max
depth’ value is greater than the ’max depth’ of node C, the
’max depth’ of node P(C) is set to the ’max depth’ of node
C. Otherwise the ’max depth’ value of node P(C) remains
unchanged. The ’cumulative depth’ of node P(C) is increased
by the depth of the leaf node L (not necessarily node C). Fi-
nally, the current node under consideration is set to C = P(C).
The process is repeated with the modification of node P(C)
until C is the root node and no longer has a parent.

Figure 4 shows a flowchart of the second part of the algo-
rithm which assigns the minimum number of variable memory
registers to a TGP program. Note that a variable memory reg-
ister may provide an operand for an instruction and also serve
as a destination register for the same instruction.

The second part of the algorithm starts by ordering the
nodes of the network into a list A which is sorted by depth

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 5/16

from minimum to maximum. The root node is at the minimum
depth. Initially, the chosen variable memory register of each
node is set to 1. The current node C is chosen as the first
unprocessed node in the list A. The child nodes of node C will
be referred to as node X and node Y . If node C has no children
it is simply marked as having been processed. In general the
variable memory register assigned to the node N is given by
R(N).

If the ’max depth’ of node X is greater than the ’max
depth’ of node Y we set R(X) = R(C) and R(Y) = R(C)+1
and the node C is marked as processed. Alternatively, if the
’max depth’ of node X is smaller than the ’max depth’ of node
Y we set R(X) = R(C) + 1 and R(Y) = R(C). If the ’max
depth’ values of nodes X and Y are equal we compare their
’cumulative depth’ values. If the ’cumulative depth’ of node
X is greater than or equal to the ’cumulative depth’ of node Y
we set R(X) = R(C) and R(Y) = R(C)+1. Otherwise we set
R(X) = R(C)+1 and R(Y) = R(C).

At this point the node C is marked as processed and a new
node C is chosen as the first unprocessed node from the list A.
The new C node is processed as described above and the next
C node is chosen until there are no more unprocessed nodes
in the list A.

Figure 5. This figure shows a tree representation of a TGP
program. The nodes have been labeled by the memory
registers assigned to them during the TGP to LGP translation
process.

Figure 5 shows an example tree where the minimum num-
ber of variable memory registers have been assigned. In this
figure the variable memory registers are numbered from 1 to
3 and the nodes are labeled by their assigned memory regis-
ters. The green leaf nodes have also been assigned variable
memory registers by the algorithm. The final step in assigning
memory registers to the TGP program is to change the mem-
ory registers of the leaf nodes from variable type to those of
constant type. This is easy to do as the original TGP program
already had constant memory registers assigned to the leaf
nodes that can be reused.

Having assigned memory registers to the TGP program,
the final step in the translation process is to construct and
order instructions for the LGP program. The algorithm for
determining the order of the instructions makes use of which
memory registers were assigned to which nodes in the TGP
tree. The algorithm begins by finding the unprocessed node of
maximum depth starting from the root node (the root node has
the minimum depth). In moving down the tree from parent
to child, the unprocessed child node is chosen first. If both
child nodes are unprocessed, priority is given to the child node
which has the lowest memory register ID number. If a node
has no children it is simply marked as processed and the next
node is searched for. If an unprocessed node is found where
both child nodes have been processed an instruction is formed
using the assigned memory register information of the parent
and two child nodes in addition to the operator information
associated with the parent node. This instruction is appended
to the chromosome and the parent node is marked as processed.
This process is repeated until all nodes are processed. The
root node will be the final node to be processed.

2.2 Translation from LGP to TGP
Unlike LGP programs, TGP programs do not use variable
memory registers to facilitate the flow of information through
a program. Instead, the flow of information through a TGP
program is implicit in it’s tree like structure. Therefore, in
order to translate a LGP program into a TGP program we must
examine how information flows through that LGP program.
In analysing the LGP program we must form a tree structure
which would facilitate the transfer of information through the
equivalent TGP program.

In investigating the information flow in a LGP program we
are only concerned with access to writing or reading memory
registers. We purposely neglect whether the act of writing to
a memory register actually changes its value. As a result, the
information flow network that is produced from this analysis
will not depend on the operators of any instructions or the
initial value of any memory register. This is important as
we do not know how mutation might change the instruction
operators. Additionally, we do not know how the initial values
of the memory registers will be set.

Figure 6 shows the memory register access network of a
LGP program. Each node signifies a memory register access
event (read or write) within the LGP program. Directed arrows
exist between the nodes. For any particular edge, the source
node represents a read event and the target nodes represents a
write event.

When a memory register is read it’s stored value is being
used as an operand by an instruction. A writing operation
on a memory register means that an instruction is storing the
resultant value of some calculation in that memory register.

The nodes of the network are labeled by the memory
register ID and the instruction ID in which the access event
occurs (in brackets). The instructions of an LGP program are
ordered and their ID values are simply incremental integers

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 6/16

Figure 6. This figure shows the memory register access
graph for an LGP program. The white nodes are intron
instruction access events. The coloured nodes are exon
instruction access events. For a given directed edge, the
source node is a register read event and the target node is a
register write event. The fitness value of the LGP program is
derived from only considering the value stored in the 0
memory register.

starting from 1. Some nodes have outgoing and incoming
edges. These nodes represent memory registers which were
written to and then read from. The bracketed instruction ID
value for these nodes are the last instructions to write to the
associated memory registers. The two pieces of information
which are used in labeling the nodes are sufficient for uniquely
identifying the memory register access events.

Sometimes a single node may have multiple outgoing
edges. These source nodes represent multiple read events
which have occurred for their associated memory registers.
Every node has either two inbound edges or none. This is
because all instructions use exactly two operands. Some
nodes have two outgoing edges to the same target node. This
corresponds to an instruction which uses the same memory
register for both operands.

Before executing an LGP program memory register(s) are
designated as the final read out register(s). The number of
final read out registers is the same as the number of objective
function outputs. In this project the objective function had
a single output. Register 0 was chosen as the final read out
register for all LGP programs in every generation. After the
execution of an LGP program is completed the value stored in
the final read out register is used to evaluate the performance
of the LGP program using the method that has been previously
described.

In Fig. 6 we can see that the final read out register has been
written to several times in several different subgraphs. This
means that the content of the final read out register has been
overwritten several times. We are interested in the final value
stored in register 0 after the execution of the LGP program
finishes. The instruction ID value of each node determines
which node represents the last write event to register 0. Of
the nodes which write to register 0, the node with the highest
instruction ID value signifies the last write event. We will
name this node the final read out node.

If an LGP program does not contain a final read out node
there does not exist an equivalent TGP program.

Once the final read out node has been determined, we can
gather the nodes which will be used in generating the final
TGP program. These nodes will be gathered in the unique
set S. The procedure for gathering these nodes is similar to a
breadth-first search [3]. The search starts at the final output
node and moves along the edges from neighbour to neighbour
gathering nodes. We restrict our movements along the edges
so that we only ever move in the opposite direction of an edge.

The coloured nodes in Fig. 6 are the nodes of set S for
this particular LGP program. We have seen examples of TGP
trees with this colour scheme before. The red node is the final
read out node and is equivalent to the root node of a TGP tree.
The light blue nodes are equivalent to the branch nodes, and
the green nodes are equivalent to the leaf node. The rest of the
nodes in the figure are coloured white and are not present in
the set S. These nodes are ignored by the translation scheme
and can be deleted from the graph.

It is easy to see how the subgraph formed by the colour
nodes can correspond to a TGP tree. The functionality of the
registers is replaced by the use of directed edges. The leaf
nodes can take on constant memory registers whose values
correspond to the values of the variable memory registers
previously assigned to them. Each node has an associated
instruction and therefore operator. If a node signifies a write
access event then it’s label can be changed to it’s associated
operator.

In this way the corresponding TGP tree of a LGP program
can be created. However there is one caveat which we will
address using Fig. 7. This figure shows an example memory
access network of a different LGP program where all nodes
absent from the set S (white nodes) have been removed. In
this figure we can see that the node labeled ”2 (4)” has two
outgoing edges. But, in a TGP tree each node has one outgo-
ing edge with the exception of the root node which has zero.
How then can we rectify the graph seen in Fig. 7 so that it
complies with the criteria of a TGP tree?

The solution is simple once operators and constant mem-
ory registers have been assigned to the nodes as described
above. The solution is best thought of as a four step process.
Firstly, identify any node J which has h outgoing edges where
h > 1. Secondly, identify the subgraph which constitutes
the nodes that can be reached from the node J (this can be
easily achieved using a modified breadth-first search proce-

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 7/16

Figure 7. This figure shows the memory register access
graph for an LGP program. This figure is included to
highlight the presence of multiple outgoing edges in the
access graphs of some LGP programs. Note that the node
labeled ”2 (3)” and the node labeled ”2 (4)” has two outgoing
edges.

dure). Again, we restrict ourselves to only travelling along
the reverse direction of the directed edges.

Thirdly, duplicate this subgraph h−1 times. As a result
we will have h− 1 nodes which are duplications (with the
exception of outgoing edges) of node J. We will label the
node J and its duplications as J1,J2, . . .Jh where node J1 is the
original J node. The final step is to reassign the source nodes
of the h outgoing edge of node J to the nodes J1,J2, . . .Jh so
that each node has exactly one outgoing edge. This procedure
is repeated until each node has either one or no outgoing
edges.

This completes our procedure for translating LGP pro-
grams into TGP programs.

2.3 Insights into TGP and LGP from translation
Whilst translating LGP programs to TGP programs we came
across the problem of some nodes having more than one outgo-
ing edges. In solving this problem we duplicated some nodes
of the graph. This problem exemplifies how LGP programs
can reuse the resultant values of their instruction executions
multiple times. TGP programs do not share this property.
Once a calculation is made in the execution of a TGP program
its resultant value can only be used again once.

It is possible to imagine at least one advantage and one
possible disadvantage of reusing calculations. One advantage
is an increase in execution speed. One disadvantage is that
less nodes are used in comparison to a network where the

TGP scheme is used. This means that the number of different
states the graph can occupy is smaller. The number of states
of a graph is dependant on the number of nodes and their
labelings, the number of edges, and the graph structure among
other things. As a result it should be more difficult for the
evolutionary processes (e.g. mutation) to make small changes
to a program. Or in other words, it is more likely that even a
small change made to the program will result in large change
in the output value of the program. Programs should in effect
become less pliable.

The white nodes in the memory register access graph
produced during the LGP to TGP translation process need
closer inspection. These white nodes represent instructions
whose executions did not affect the final value of the program.
We can say this with confidence as our purely access based
analysis was independent of which operators or values were
used in the arithmetic calculations. Instructions which do
not affect the final value of the program are called introns.
And the white nodes which represent them are called intron
nodes. The other coloured nodes represent instructions call
exons. These instructions do affect the final program value.
Or, to be more correct, they may affect the final program value
given the right operator and memory register values. Exon
instructions are represented in the graph with exon nodes.

Introns and exons will be discussed further in the next
section. However, there is one more comment on introns that
should be included in this section: There are many possible
ways of defining intron instructions which will be detailed
later. For our uses we will define an intron instruction as an
instruction which may never modify the final program value
regardless of operator type or memory register value used in
its calculation. The inability of an intron instruction to affect
the final program value is due to access rights.

From our definition of introns it is clear that TGP trees
can never feature introns. LGP memory access subgraphs can
not exist as part of a single TGP program. Furthermore, it is
always possible to create a path from any node in the graph
to the root node whilst always moving in the direction of the
edges. Every node in the TGP tree will eventually contribute
to effecting the final program output if the operators and
memory registers allow.

Therefore, it is possible to represent intron instructions
under the LGP scheme but not using the TGP scheme. If
introns exist in a LGP program, that program’s translation
into a TGP tree will be lossy. Intron instructions will be lost
during the translation.

As a final remark for this section, a further comment on
the translation from TGP to LGP: None of the nodes in the
memory register access networks of the generated LGP pro-
grams have more than one outgoing edge. This of course
means that those LGP programs have no access introns. Con-
sequently it may be the case that these programs do not make
full use of all the features the LGP scheme provides. That
is to say, none of the instructions reuse a calculation more
than once. This could be seen as a drawback in the translation

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 8/16

scheme proposed. However, there is no requirement for LGP
programs to reuse any calculation more than once.

3. Introns in LGP
In the previous section we specified how introns are defined
in this project. To reiterate: An instruction within an LGP
program is an intron if it’s execution could not affect the final
value of the program output regardless of the operators or
memory register values used.

Other works have specified different definitions for in-
trons. In Brameier (2001) two types of introns are specified:
structural introns and semantical instrons. Structural introns
are instructions which manipulate variable memory registers
that are not used in formulating the final program output. Se-
mantical introns are instructions which manipulate memory
registers that may be used in formulating the final program
value but they do so in such a way so as to not change the
values of those memory registers. This paper also identifies
introns in TGP based on operator and memory register values.

The definition of structural introns in Brameier (2001) is
equivalent to the definition of introns as used in this project.
In Brameier (2001) an algorithm was used for identifying
introns which had a worst case linear runtime of order O(n).
Where n is the number of instructions.

According to Nordin (1996) and Brameier (2001) introns
provide structural protection to high fitness instruction blocks
within a population. In effect, intron instructions can act as
buffers between groups of high fitness instructions. In doing
so intron instructions provide points where crossover cutting
can occur without separating the instructions within the high
fitness instruction groups. In the presence of introns, crossover
cutting points are less likely to be chosen so as to disrupt
high fitness instruction groups. This means that high value
instruction groups are more likely to be intact during their
inheritance into the next generation because of the presence
of introns.

Hence, introns serve a protective mechanism against the
destructive process of crossover. Note that in some trivial
cases the objective program is not complicated enough to
warrant the existence of groups of high fitness instructions. In
these cases the presence of introns may not be beneficial at all.
Introns therefore waist processing time during the execution
of a single individual but can quicken the process of finding
the best solution over successive generations [2].

However, things are not so clear cut. It was hypothesised
in Nordin (1996) that introns may well assist individuals in
getting stuck at local minima. An excessive number of introns
can provide over protection from crossover. It is reasonable to
suggest that the optimum number of introns should depends
on the sizes of high fitness instruction groups.

In Nordin (1996) introns were artificially introduced into
programs. Successful speedups have also been achieved in
genetic algorithms via the insertion of introns [4].

In this project introns were not injected. Instead, introns
were created within successive generations by the application

of crossover. An initial population of LGP programs were
generated which did not have any introns. This was done so
as to ensure that any introns present in successive generations
must have been generated by the evolutionary mechanisms.

The population of intron-less LGP programs were gener-
ated from the translation of a population of TGP trees. This
is because TGP trees can not feature any structural introns,
a point which has already been discussed. The translation
scheme has also been introduced in a previous section. During
the evolutionary process, tournament selection was replaced
by uniformly random selection. This meant that the fitness of
programs did not matter and no particular objective function
was specified.

Figure 8. For each generation, this figure depicts the
percentage of exon insturctions present in a single LGP
program as averaged over a population of 500 programs. The
gray shadow gives the standard deviation upper and lower
boundaries. The iteration took place over 100 generations.
The initial population of LGP programs were entierly
composed of 50 exon instructions. TGP trees were translated
into their LGP equivalent in forming the first generation.
Crossover occoured with a probability of 20%. Three
variable registers and two constant registers were used.

With successive generations, the percentage of introns
present within the individuals were measured. Figure 8 shows
the mean percentage of exon instruction within the programs
of each generation. The figure shows that initially all of the
instructions within the first generation were exons. Within the
next five generations the mean percentage of exons has fallen
to around 20%. For the remainder of the 100 generations the
mean percentage of exons fluctuates around 20%.

This figure shows that introns are generated by the crossover
mechanism. It also shows how the mean percentage of introns
remains relatively consistent with successive application of
crossover. It is not unreasonable to suggest that the crossover

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 9/16

mechanism has a self regulating aspect. It generates a type
of instruction which limits its effect. The accumulation of
introns are commonly referred to as ”bloat” [2].

The figure shows that soon after the first few generations
around 80% of the instructions within an individual are introns.
As an interesting comparison within biology, up to 70% of the
DNA sequence of eucaryotic cells are not expressed in amino
acids [2]. The paper Brameier (2001) provides several other
observation of introns whilst detecting six different medical
disease using six different LGP instances. The paper states
that typically the percentage of introns was around 80%. The
paper goes on to state that by ignoring these intron instructions
during execution a decrease in classification runtime by a
factor of around 5 was achieved.

Figure 8 shows fluctuations both upwards and downwards
in the percentage of exons. This suggests that instructions
change state from intron to exon and back again as the crossover
mechanism is applied over successive generations. In investi-
gating this the intron status of each instruction was recorded
as they were copied and moved through the generations.

Recording the status of each instruction is a nontrivial
process because instructions can be overwritten by other in-
structions and therefore cease to exist in the population. Ad-
ditionally, several copies could be made of an instruction so
that the original instruction may now exist as an intron and an
exon. To overcome these difficulties only the status histories
of the instructions which survived into the final generation
were analysed. Also, if an instruction was copied, its copies
would be treated as different instructions that would have the
same status histories as the original instruction up until the
copying event.

Figure 9 shows the results of examining the intron status
histories of instructions within a population over successive
generations. In generating this figure, the same random fit-
ness and crossover mechanism was used as for Fig. 8. This
figure shows the probability distribution of the status group
lengths. A status group length is the number of consecutive
generations an instruction exists as either an intron or an exon.
The figure shows that an instruction had around a 11% prob-
ability of remaining either an intron or an exon for a single
generation only. An instruction had a probability of around
1% of consecutively remaining in the same state for 25 of the
50 generations.

4. Parallel Processing of LGP

There are many forms of parallel processing possible with
both the LGP an TGP schemes. The most computationally
intensive part of GP is evaluating the performances (fitness)
of individuals. The aim of most parallel processing methods
is to decreasing the computational burden of this aspect of GP.

One method which is applicable to both schemes, is to
parallelise at the population level. In this way, each core
(node/CPU) within the parallel processing architecture per-
forms GP on separate populations. This formulation provides

Figure 9. This figure shows the probability distribution for
the instruction status group lengths. The iteration took place
over 50 generations. The initial population of 500 LGP
programs were randomly generated. Crossover occoured with
a probability of 20%. Three variable registers and two
constant registers were used.

more opportunity for avoiding local minima and discovering
an acceptable answer quicker.

In Cantú-Paz (1998) this type of parallelization is dis-
cussed in the context of genetic algorithms and referred to as
multiple-population coarse grained parallelisation. The paper
discusses a formulation which allows individuals to migrate
between populations.

Another method, that is applicable to both LGP and TGP
schemes, is to parallelise at the data level. It is usually the
case that an individual program is evaluated based on it’s over-
all performance in dealing with multiple input data sets. In
addition, a single input data set can be dealt with by an indi-
vidual completely independently of any other input data sets.
In executing a single individual, every core executes the same
individual simultaneously but different input data sets are used
by each core. In Cantú-Paz (1998) this type of parallelization
is called single population fine-grained parallelization.

Yet another method that is again applicable to both LGP
and TGP schemes, is called global single-population master-
slave parallelization. In this formulation each core has a copy
of the entire population and one input data set. In this way the
fitness of each individual is partially computed by each core.

The method that will be discussed in this project involves
parallel computation at the level of a single individual. That
is to say, the execution of a single individual for a single input
data set is performed over multiple cores. LGP programs
are normally difficult to execute in parallel as their memory
components exhibit complicated dependencies. In Downey
(2011) a scheme called Parallel Linear Genetic Programming

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 10/16

(PLGP) is introduced.
In PLGP a single program is composed of multiple ordered

lists of instructions which are called factors. The memory
registers of each factor during execution are distinct and inde-
pendent. These factors can in effect be seen as separate and
distinct conventional LGP programs. As there are no depen-
dencies between factors, each can be executed on separate
cores. The output of the program as a whole is then simply
the sum of the outputs from the subprograms.

PLGP showed significant speedup on LGP specifically for
larger programs (typically greater than 25 instructions). The
speedup during program execution from parallelization is not
surprising. However, some speedup in finding a reasonable
answer also came as a result of using factors with the crossover
mechanism. The use of the factors in effect serve the same use
as introns by keeping the destructive crossover mechanism
in check. Only some factors of a program were subjugated
to crossover and mutation. This limited the effect of those
evolutionary mechanisms.

It is easy to see that the execution of a single TGP tree can
be parallelized. Separate branches of the tree never have any
interdependencies and can therefore be executed by different
cores. Two seperable branches join at a node which will be
called the split point. A tree can have multiple split points.

In this project, the idea of splitting simultaneously ex-
ecutable branches at split points has been applied to LGP
programs. As we have seen before, if we were to take a TGP
tree and convert it into a LGP program, the structure of it’s
memory register access graph would look identical to the orig-
inal TGP tree. Every LGP program created using this method
would be composed of branches that lacked any interdepen-
dence. If two branches do not have any interdependencies
they are said to be separable.

However, as we have seen before, in randomly generated
LGP programs it is possible for memory register graph nodes
to have multiple outgoing edges. This means that the branches
of these memory register graphs may have interdependencies.

We make the assumption that when branches are separable
the shortest of both branches (least number of instructions)
always has a shorter computational time. In effect, we are
assuming that the computational time of executing a set of
instructions is linearly proportional to the number of instruc-
tions in that set. It is therefore always possible to execute
two separable branches within the time it takes to execute
the longest branch when threading is used. Note also that
branches can stem from other branches. Therefore, the ef-
fective computational length of a branch can be reduced by
identifying further separable branches (split points) lower
down the branch (closer to the leaf nodes).

Figure 10 shows a simple memory register graph where
the nodes have been labeled by integers for convenience. The
leaf nodes of this memory register graph have been removed;
the nodes represent instructions. The red nodes labeled 3
and 4 are split points. Consider the split point at node 4 first.
The orange nodes represent the nodes of the longest branch

Figure 10. This figure depicts a memory register access
graph of a simple LGP program where the node represent
instructions. For any given directed edge the source node
instructions are the dependancies of the target node
instruction. The red nodes represent split point instructions.
The orange nodes represent the largest set of instructions
which must be executed in sequence on the main thread.

for this split point. The shortest branch for this split point is
composed of the nodes 1, 2, and 3.

The effective length of this shortest branch is actually two
nodes (nodes 1 and 3 say) and not three (nodes 1, 2, and
3). This is because a second split point exists on the shortest
branch of node 4’s split point. The second split point is at node
3. At the second split point, one branch (they are both the
same length so it does not matter which one) can be executed
at the same time as the other branch. Or more explicitly, node
1 and node 2 can both be executed simultaneously in different
threads.

Therefore, in executing the program depicted in Fig. 10
the nodes 5, 6, and 7 would all be executed in the main thread.
Nodes 3 and 2 would be executed in another thread. And node
1 would be executed in yet another thread. The computational
runtime would be given by the longest runtime of the three
threads plus the runtime of node 4.

If a node is not part of the longest runtime thread then
that node represents an off main thread instruction. Off main
thread instructions do not contribute to the computational
runtime of the largest thread. The off main thread instructions
can be executed during the execution time of the largest thread.
In Fig. 10 we can see that there are three off main thread
instructions, nodes 1, 2, and 3. In the best case scenario,
at most 50% of the instructions could be off main thread
instructions (bar the last executed split point instruction).

Figure 11 shows another example memory register access
graph but this time with leaf nodes. The nodes in this graph
therefore represent memory access events. The dark blue, light
blue, and red nodes can be treated as representing instructions.
Effectively, the red node represents the final exon instruction
and the dark blue nodes represent split point instructions. This
figure shows two off main thread instructions.

Figure 12 is a flowchart of the algorithm used for identi-
fying all the possible split point instructions within an LGP
program. Before running this algorithm all intron instructions

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 11/16

must be, at least temporarily, removed. In identifying the split
point instructions the algorithm tests each memory register
access graph instruction node (nodes which are not green leaf
nodes) for two necessary split point conditions. Firstly, a
split point instruction node must be the parent of two other
instruction nodes. Secondly, there may not be an edge path
from one child instruction node to the other without including
their parent instruction node (the potential split point) in the
path.

The computation time of the off main thread instructions
can be ignored when calculating the effective execution time
of the LGP program. Figure 13 shows the probability distribu-
tion for the number of split points found in LGP programs of
various exon instruction lengths. Figure 14 shows the probabil-
ity distribution of the number of off main thread instructions
found in exon LGP programs of different lengths.

Both figures shows that there is approximately a 10% to
13% probability that a 25 exon instruction length program
would not benefit from this proposed parallelization method.
There is therefore a 87% to 90% probability that at least some
speedup can occur. In some cases up to 11 of the 25 exon
instructions (44%) could be executed off the main thread.

Applied to ordinary LGP this parallelization method has
several downsides compared to PLGP. The split points have to
be refound within every individual at every generation. There-
fore the proposed method is only beneficial if it is assumed
that the sum computational time of executing the instructions
over all input data sets is significantly greater than the com-
putational time of finding the split points. This is not an
unreasonable assumption.

However, this proposed parallelization method can be used
with the PLGP scheme. We have previously mentioned the
concept of factors within PLGP programs. During execution,
factors are effectively LGP programs with distinct and inde-
pendent memory registers. These factors could benefit from
this proposed parallelization method.

In future work it would be necessary to investigate the pos-
sibility of tracking split points. Faster algorithms for testing
the second split point criteria could be developed by specifi-
cally investigating branch nodes which have multiple outgo-
ing edges. Testing the second criteria as it currently stands is
somewhat computationally intensive as it effectively involves
performing a modified breadth-first search.

5. Conclusion
In this project the basics of LGP and TGP were discussed.
Then two schemes were introduced for translating from LGP
to TGP and vice versa. As a result of these translation schemes
intron instructions could be identified in LGP programs. By
translating TGP programs, LGP programs could be formed
which were composed entirely of exon instructions.

It was shown that intron instructions were formed from ap-
plying the crossover mechanism to a population of purely exon
LGP programs over successive generations. After around five
generations approximately 80% of the instructions within the

population were introns. This percentage of introns has been
observed in applying LGP to classifying medical data and
also within the DNA sequences of some biological organisms.

The different methods of GP parallelization were briefly
discussed with special attention given to the PLGP scheme. A
method of parallelising the execution of a single LGP program
was outlined. Estimations were made of the potential speedup
that such a scheme could provide. It was estimated that the
probability of decreasing the computation time of executing a
25 exon instruction program was between 87% and 90%.

Acknowledgments
I would like to thank my supervisor Professor Mattias Wahde
(Chalmers, Sweden) for helpfull discussions and advice through-
out this project.

References
[1] Brameier, M. and Banzhaf, W., A Comparison of Linear

Genetic Programming and Neural Networks in Medical
Data Mining, IEEE TRANSACTIONS ON EVOLUTION-
ARY COMPUTATION, VOL. 5, NO. 1, 2001.

[2] Nordin, P., Francone, F., Banzhaf, W., Explicitly defined
introns and destructive crossover in genetic programming,
Advances in genetic programming, Pages 111 - 134, MIT
Press Cambridge, 1996.

[3] Knuth, D. E., The Art Of Computer Programming Vol 1.
3rd ed., Boston: Addison-Wesley, ISBN 0-201-89683-4,
1997.

[4] Levenick, J. R., Inserting Introns Improves Genetic Algo-
rithm Success Rate: Taking a Cue from Biology, Proceed-
ings of the Fourth International Conference on Genetic
Algorithms, 1991.

[5] Downey, C., Explorations in Parallel Linear Genetic Pro-
gramming, Victoria University of Wellington, 2011.

[6] Cantú-Paz, E., A survey of parallel genetic algorithms,
Calculateurs paralleles, reseaux et systems repartis, Vol.
10, 1998.

[7] Wahde, M. Biologically inspired optimization methods,
WIT Press, 2008.

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 12/16

Figure 3. This figure shows a flowchart of the first part of the algorithm that is used in translating TGP programs to LGP
programs. The algorithm associates each node in a TGP tree with ’max depth’ and ’cumulative depth’ statistics. These statistics
are used by the second part of the algorithm in forming the node processing order.

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 13/16

Figure 4. This figure shows a flowchart of the second part of the algorithm used in translating TGP programs to LGP
programs. The algorithm assignes memory registers to each node in the tree. The minimum possible number of different
memory registers are assigned to the tree.

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 14/16

Figure 11. This figure shows a memory register access network for a LGP program. Each node represents a memory register
access event. The instructions represented by dark blue nodes have been identified as split points.

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 15/16

Figure 12. This figure shows a flowchart of the algorithm used in identifying split point instructions for the parallel execution
of individual LGP programs.

On the Translation of Linear Genetic Programs into Tree Genetic Programs and Vice Versa — 16/16

0 1 2 3 4 5 60.0

0.1

0.2

0.3

0.4

0.5
number of exon instructions : 10

0 1 2 3 4 5 60.0

0.1

0.2

0.3

0.4

0.5
number of exon instructions : 15

0 1 2 3 4 5 60.0

0.1

0.2

0.3

0.4

0.5
number of exon instructions : 20

0 1 2 3 4 5 60.0

0.1

0.2

0.3

0.4

0.5
number of exon instructions : 25

fre
qu

en
cy

number of parallel processing split instructions

Figure 13. This figure shows four probability distributions of the number of split points identified in LGP programs which are
composed of 10,15,20, and 25 exon instructions. 500 LGP programs were used in creating each probability distribution.

0 1 2 3 4 5 6 7 8 9 10 110.0

0.1

0.2

0.3

0.4
number of exon instructions : 10

0 1 2 3 4 5 6 7 8 9 10 110.0

0.1

0.2

0.3

0.4
number of exon instructions : 15

0 1 2 3 4 5 6 7 8 9 10 110.0

0.1

0.2

0.3

0.4
number of exon instructions : 20

0 1 2 3 4 5 6 7 8 9 10 110.0

0.1

0.2

0.3

0.4
number of exon instructions : 25

fre
qu

en
cy

number of "off main thread" instructions

Figure 14. This figure shows four probability distributions of the number of off main thread instructions in LGP programs
which are composed of 10,15,20, and 25 exon instructions. 500 LGP programs were used in creating each probability
distribution.

