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Abstract

We study the transport properties of a driven Lorentz channel. De-
spite the breaking of the energy shell, we show that the system reaches a
non-trivial non-equilibrium steady state. We study in detail the steady
state that arises in the configuration space by means of the Fokker-
Planck equation. Our analytical results are in good agreement with
the numerical on the condition that the velocity of the injected parti-
cles into the system is at most comparable with the maximum velocity
of the driven scatterers. We also show that as the kinetic energy of
the injected particles increases, the steady state approaches the one
exhibited by the static Lorentz channel.

1 Introduction

In dynamical systems, a billiard is a model in which a point-like particle
moves along straight line within a region that has a piecewise smooth bound-
ary [16]. The specular refection happens when particle hits the boundary and
the collision is elastic. Billiards give many natural models in optics, statisti-
cal mechanics and kinetic theory. Billiards also demonstrate all the possible
behaviors of Hamiltonian systems from integrability to chaotic motions.

A particular billiard with smooth and everywhere dispersing boundary is
called Sinai billiard, also known as Lorentz gas [Fig.1]. Lorentz gas was first
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Fig. 1: Lorentz gas with periodic boundary and one trajectory of particle

introduced by H.A.Lorentz to explain the self-diffusion of electrons in metals
in metals [1]. This model was no longer in use to study electric motion since
physicist use quantum theory to learn it. However it was still very important
in statistical mechanics and kinetic theory.

In Lorentz gas, as the mass of particle is far smaller than that of scatter,
the interaction between particles was neglected. This model can be con-
structed in different ways depending on different placements and shapes of
scatters.

In the system of 2D periodic configuration with strictly convex scatters,
i.e. [Fig.2], it has been proved that such system has strong mixing properties,
positive Lyapunov exponent and the autocorrelation of velocity decays expo-
nentially with the number of collisions [2]. However, the general properties
of ergodicity in higher dimensional and finite systems are still unclear.

Due to these properties of infinite 2D model, there are many analytical
results explaining the diffusion behavior. For instance, Machta and Zwanzig
have obtained the analytical expression of diffusion coefficient in the 2D
Lorentz gas with periodic placed scatters [3]. When the gap between cells
[Fig. 2,3] is much smaller than the radius of scatters that allows the average
trapping time of particle to be much longer than the average collision time,
the jump between cells is then assumed uncorrelated. In this case they have
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obtained good agreement between numerical and analytical results. This
method also has been used to study 3D Lorentz gas [9].

Recently, some different geometric shapes of scatters such as oval scatters
and polygonal scatters have been studied [10][15]. It has been found that
these systems have different statical properties. For instance, the mixing
rate of system depends on the shapes of scatters.

In this paper, we fucus on one particular direction. All scatters are circu-
lar and non-overlapping. The scatters are allowed to oscillate instead of being
static which is also known as time dependent Lorentz gas. The discussion is
restricted in 2D and 1D.

In time dependent Lorentz gas model, a particle can gain or lose energy
when it hits the oscillating scatters. One can find the result from [5], the
mean velocity of Lorentz gas increases in the model of 2D triangular placed
scatters. Such a model is connected with Fermi acceleration. Fermi accel-
eration Fermi acceleration consists in the increase of the mean energy of an
ensemble of charged particles due to random collisions with moving magnetic
inhomogeneities. It has been used to explain the acceleration of cosmic rays
by Fermi [4].

The paper is organized as follows. To study the diffusion behavior in con-
figuration space, we starts from Karlis’s result [5] that is the velocity density
function ρ(V, n) follows a Maxwell-Boltzmann-like distribution, where n is
the number of collisions of particle. The velocity density functionρ(V, t)
with respect to time t is calculated. After that, under the approximation
from Machta and Zawanzig that is the motions of particles can be replaced
symmetric random walk [3], a super-diffusion process is established in con-
figuration space and the steady state is obtained. In the last section, we
firstly present the numerical result of static model that is a linear profile in
the channel. Then, we compare the analytical and numerical results based
on different parameters. Finally, some conclusions and further discussion of
this model are presented.

2 Lorentz Gas

There are many ways to construct lorentz gas models based on different
placements of scatters. The scatters can be placed either randomly [Fig.2] or
periodically [Fig.3] in the region. The scatters are either static or oscillating.
We study the model with triangle placed and oscillating scatters.
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Fig. 2: Randomly placed scatters

In our model, since this dynamic depends on oscillation amplitude A,
frequency ω and the distance of centers of two neighboring scatters α. In
order to eliminate non-relevant parameters, we introduce a dimensionless
quantity ε = A

α
. Using α as unit length and 1/ω as unit time. The velocity

of oscillation scatter can be described by

u = ε(̂ısin θ + ̂cos θ)cos(t+ η)

where u is the velocity of the scatters, ε is the amplitude of the oscillation
of scatter, ω is the oscillation frequency, θ is the angle between vector u and
x-axis. η is a random number uniformly distributed in [0, 2π).

The probability density function(PDF) of the magnitude of velocity V and
collision times n are proposed as a Maxwell-Boltzmann-like distribution [5].
The following discussion is based on this result. The evolution of PDF in
momentum space can be described by Fokker-Planck equation.

∂ρ(V, n)

∂n
= − ∂

∂V
(A(V, n)ρ(V, n)) +

1

2

∂2

∂V 2
(B(V, n)ρ(V, n))

where the drift and diffusion coefficients are

A(V, n) =
1

∆n

∫
∆V d(∆V ), B(V, n) =

1

∆n

∫
(∆V )2P d(∆V )
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Fig. 3: Square (left) and triangle (right) placed scatters and corresponding
trapping cells (white region and that of within red triangle)

P is the probability of a particle being velocity V at that moment and being
velocity V − ∆V at time ∆n collision earlier. In discrete time scale, it is
convenient to use ∆n = 1. Then A(V, n) = 〈δV 〉 and B(V, n) = 〈(δV )2〉,
where δV is the mean increment of the magnitude of velocity. we use the
results in [5]

A(V, n) =

〈
δV

τ

〉
=

2ε2

3λ
,B(V, n) =

〈
δV 2

τ

〉
=

2ε2

3λ
V

and the solution of the F-P equation under reflecting boundary at V = 0 and
natural boundary ρ(∞, n) = 0 is

ρ(V, n) =

√
2

π

1

σ3
V 2e−V

2/2σ2

σ =

√
2ε2n+ V 2

0

3

For n � 1 numerical results show high accuracy with analytical results [5].

The mean velocity 〈V 〉 = 2σ
√

2
π
, that is 〈V 〉 ∼

√
n. In the following section,

we derive the velocity distribution with respect to time t and study the model
in Lorentz channel.
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Fig. 4: Density function of absolute value of velocity for time n = 2 × 105

and ε = 1/215

3 Velocity Density Function In Time t

As discussed in Ref. [5], the mean increase of the magnitude of the particle
velocity in the course of a single collision is

〈δV 〉 =
2ε2

3V
,
〈
δV 2

〉
=

2ε2

3

Since the mean velocity of particles is changing, one cannot use collision
number n to measure time t. To calculate the velocity density function versus
time t, one has to calculate the mean free path λ between two sequential
collisions. In the model with static scatter, λ only depends on the geometric
properties of models [14].

λ =
πQ

M

where Ω is the accessible region in one cell and M is the total perimeter of the
scatters in one cell. In triangle placed model, Ω =

√
3
4
− πR2

2
and M = πR,

where R is the radius of scatter and α = 1. As the oscillation amplitude
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of scatters is small, it is reasonable to assume that the mean free path λ
is fixed in oscillating model. We have the expressions of drift and diffusion
coefficients

A(V, t) =

〈
δV

τ

〉
=

2ε2

3λ
,B(V, t) =

〈
δV 2

τ

〉
=

2ε2

3λ
V

The corresponding Fokker-Planck equation is

∂ρ(V, t)

∂t
= − ∂

∂V
(A(V, t)ρ(V, t)) +

1

2

∂2

∂V 2
(B(V, t)ρ(V, t))

It can be simplified as

∂ρ(V, t)

∂t
=

ε2

6λ
· V ∂2

∂V 2
(ρ(V, t))

we solve this equation under reflecting boundary at 0 and natural boundary
in the infinity ρ(∞, t) = 0. The solution is

ρ(V, t) = (
ε2

3λ
)2
V

t2
e−

3λV
ε2t

Then one can find the mean velocity is linear to t

〈V 〉 =
ε2

3λ
t+ V0

One can also consider this in another way. Since 〈V 〉 ∼
√
n and the mean

free path is fixed, then ∆tn ∼ n−
1
2 . We sum these time intervals to get

t ∼
∑

∆tn ∼
∑
n−

1
2 ∼
√
n. From the relation between 〈V 〉 and n, one can

obtain 〈V 〉 ∼ t
In configuration space, as we are interested in the case of large the radius

of scatter R. This means the escape corridors between cells is narrow and
particles have to collide many times before it hops to another cell. We use
the approximation from Machta and Zawanzig [3]. That is the exact motion
of particle can be replaced by uncorrelated random walk between cells. As it
can be shown that any initial distribution of particle velocities quickly relaxes
to a uniform one in respect with the direction angle [13]. It is reasonable to
assume this random walk is symmetric that implies the drift coefficient in
configuration space is zero. One can find that the diffusion coefficient is not
constant but linear to time t which will be discussed in next section.
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4 Lorentz Channel

In general, there are three types of periodic placed Lorentz gas system. One
is that scatters are allowed to touch each other. In this case, particles are
trapped in one cell forever. One is infinite trajectory system in which there
exists infinite long trajectory without colliding scatters, e.g. squared placed
model. The last one is finite trajectory system in which no particle can pass
through system without any collision, e.g. triangle placed model with large
radius. They have different statistical properties (e.g. mixing rate). We only
consider finite trajectory system.
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Fig. 5: Lorentz channel. The blue scatters are static and the red scatters are
oscillating

There is a channel with length L in which scatters are placed in trian-
gular way [Fig.5]. Only middle scatters are allowed to oscillate with small
amplitude. The scatters on the top and bottom are static. The size of mid-
dle scatter is chose large enough so that no particle can pass through this
channel without collision. This system is open. There is a steady flux that
ejects from left boundary and particles can escape from both sides.

In this channel, the escape corridors in each cell is l0 = 2(1 − R). The

billiard accessible region Ω =
√
3
4
− πR2

2
. The total perimeter of scatters is

given by M = πR. Then, the diffusion coefficient with respect to x-axis
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direction is given by

Dx =
〈x2〉
2t

=
〈l2x〉N

2t

N =
A(V, t)t2

2H
=

ε2

3H
t2

H = λ
M

l0
=
πΩ

l0

Where H is the average length of trajectory of particle staying in one cell,
N is the number of passing cells of a particle, lx is the projection on x-axis
of the length of one cell. lx = 1

2
then 〈l2x〉 = 1

4
.

One find the diffusion coefficient

Dx =
ε2R(1− 2R)

3π(
√

3− 2πR2)2
t

The F-P equation in configuration space is

∂ρ(x, t)

∂t
= Dx(t)

∂2ρ(x, t)

∂x2

Denote Dx = kt,after changing parameter by t′ = t2, the F-P equation is
given by

∂ρ(x, t′)

∂t′
=
k

2

∂2ρ(x, t′)

∂x2

This is a Heat equation.
For open boundaries of finite channel, that is a source at left boundary,

absorbing boundaries ρ(0, t′) = ρ(L, t′) = 0 on the both sides and initial
condition ρ(x, t) = δ(x − x0)δ(t − t0). Solving this equation and changing
back the parameter t′ to t, one has the general solution

ρ(x, t|x0, 0) =
∞∑
n=1

2

L
e−

kn2π2

2L2 (t−t0)2sin(
nπx0
L

)sin(
nπx

L
)

Since there is a steady flux at left boundary, one has to integral ρ(x, t) with
respect to starting time t0 and let t goes to infinity. We derive the approxi-
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mate solution. The steady state is

ρ(x, x0) = lim
t→∞

∫ t

0

ρ(x, t|x0, t0) dt0

≈
iπ log(1−cos(π(x−x0)/L)

1−cos(π(x+x0)/L))

2π(πx0 − iL log(1+e
−iπx0
L

1+e
iπx0
L

)) + LG

Where G = 4Li2(e
−iπx0
L ) − 2Li2(e

iπx0
L ) + Li2(e

−2iπx0
L ) − 2Li2(e

−iπ(L+x0)
L ) and

Lis(z) =
∑∞

k=1
zk

ks
is the Ploylogarithm function. As ρ(x, x0) is the density

function, iπ

2π(πx0−iL log( 1+e
−iπx0
L

1+e
iπx0
L

))+LG

is a normalization factor

5 Analytical and Numerical Results

In this section, we compare analytical and numerical results based on different
parameters. The simulation was running for 107 time unites. At each time
unit, 10 particles are ejecting from left side of this channel. The initial
velocity of particles V0 are the same. The angle between the initial velocity
and y-axis are randomly chose from [0, π) that means all particles towards
right in x-axis.
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Fig. 6: Logplot of analytical and numerical density function ρ(x, 107) with
x0 = 0.5, L = 50, V0 = 0.004 and ε = 0.004
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Fig. 7: Plot of ρ(x, 107) of static (left) and oscillating (right) models
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Fig. 8: Small (left) ε = 0.002 and large (right) ε = 0.004 amplitude of
oscillating scatter with V0 = 0.004

The steady state is

ρ(x, x0) = lim
t→∞

∫ t

0

ρ(x, t|x0, t0) dt0

≈ log(
1− cos(π(x− x0)/L)

1− cos(π(x+ x0)/L)
)/Normalization factor

In analytical result, x0 is the starting point of particle which cannot be
zero. If x0 = 0, there is only trivial solution. So we choose x0 = 0.5 that is
less than one cell’s length. The total length of channel is L = 50.

In Fig.6, one can find the agreement of analytical and numerical results
is good. Then, we study the steady state based on different parameters.
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Fig. 9: The values of oscillating angle θ are 0.5π, 0, 0.25π,with ε = 0.004 and
V0 = 0.004
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Fig. 10: The initial velocities of particles V0 are 0.004, 0.04, 0.4, with ampli-
tude ε = 0.004.

First of all, we compare the numerical results between static and os-
cillating models [Fig.7]. There is a linear profile in static model while a
quantitative different profile is in oscillating model. The linear distribution
in static model has been discussed by Gaspard [17]. We represent his result
numerically.

Then, we use different oscillation amplitudes of scatters [Fig.8]. When ε
is small, the agreement is not good. After increasing ε, results show better
agreement.

After that, we run simulation with different oscillation angles θ of scatters
[Fig.9]. One can find that the steady state does not depend on θ.

Finally, we choose different initial velocities of particles [Fig.10]. When
V0 is very high, the agreement breaks. However, if we compare the oscillating
model with high V0 with static model. The oscillating model with high V0
gives a linear profile which shows good agreement with static model regardless
of some fluctuation [Fig.11].
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Fig. 11: Plot of ρ(x, 107) of static and high initial velocity (V0 = 0.4) models,
with amplitude ε = 0.004.

6 Conclusion and Further Work

One can find quantitative difference of the steady states between static and
oscillating models. We represent the result of static model that is a linear
profile in configuration space [17]. One can find different numerical result in
oscillating model [Fig.7].

In oscillating model, from the comparison between analytical and numeric
results, one can find that the steady state does not depend on the oscillation
angles θ. It depends on the oscillation amplitude of scatters ε and the initial
velocity of particle V0. When ε is comparable to V0, the agreement between
analytical and numerical results is good. If V0 � ε, one obtains a linear
profile in configuration space. This linear profile shows good agreement with
that of static model despite of some fluctuation. The reason is that when
V0 � ε, the relative movement of scatter is very small. We obtain a linear
result similar with the one exhibited by the static model [Fig.11].

In this paper, we did not consider different length of channel L. We
always use L = 50 units. However, L is an important parameter. It changes
the scale of this system. The time of reaching steady state depends on it.
The following work is to study how the time of reaching steady state varies
with L.
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