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Abstract

In order to distinguish different morphogenic fields automatically, frac-
tional Brownian motion is used in this paper and the Hurst parameter is
used as an important measure to distinguish different morphogenic fields
in embryo of zebra fish.

1 Introduction

It is known from embryology that cellular differentiation is one of the principal
characteristics of the early development of an animal. In the later stages of
the life of the animal this differentiation is evident, as seen by the formation of
different tissues and organs with different functions and organizations. However,
the identification of different types of cells in the beginning of its lifetime, and
specially during its formation, is a complicated activity whose complete details
are yet unknown. What is presently possible to do is to obtain images from
the whole development of the embryo and to follow this differentiation step by
step, having continuous access to the whole formation of tissues. This allows
the identification of cellular types, but it is currently done in a complicated and
laborious way.

In the BioEmergences platform, from where we have access to a large database
of microscopy of in the vivo development of the Zebra fish embryo and to the
data of the tracking of cells, this procedures currently mainly by backtracking.
The different morphogenetic fields are separated visually by a biologist at the
end of the development of the animal visually and the tracking data is used to
come back to the past and see the initial position of these different fields. This
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procedure is clearly not predictive and demands a heavy load of manual work,
without going deep on the origins of the separation of morphogenic fields.

In this project we want to study an automatic procedure that allows the iden-
tification of different morphogenic fields (e.g. organs) coming from the tracking
of the cells done by the BioEmergencies platform that can be used in a predictive
way.

2 Segmentation model

Our approach to this problem is to have a model for the relative movement of cells
(that is, the movement that is independent of the hydrodynamic flow of cells)
that depends on a given parameter, and to use this parameter to differ different
groups of cells.

Some previous evidence from unpublished work internal to the laboratory
shows that the relative movement of neighboring cells, that can be considered as
stochastic, is subdiffusive. For this reason, the model we choose for this project
is fractional Brownian motion(fBm), this being a minimal generalization of usual
Brownian motion having an index which measures diffusion.

When two cells are in the same morphogenetic field, they tend to move in
similar behavior, that is, have a similar hydrodynamic flow. This phenomenon
inspires us to use the assumption that the relative movement of neighboring cells
represents a purely stochastic process, which will follows a fractional Brownian
motion with a given Hurst parameter H. Different morphogenetic fields are going
to be found by local similarity of these Hurst parameters.

The assumption that the relative movement of cells is purely stochastic is
clearly broken in the case where two neighboring cells correspond to two differ-
ent morphogeinc fields, these having two deterministic destinations that are not
similar. In this case, high variations are going to be identified, with large Hurst
parameters, that correspond to balistic movement. These large variation should
allow us to identify the boundary between different fields.

The software we used in this paper is R. We also use the package ”dvfbm” in
the simulation and modified functions in the real data.

3 Model and parametric estimation

3.1 Fractional Brownian motion

Let BH(t) be a Gaussian process on [0, T ] which has expectation zero for all t
and it satisfies

E[BH(s)BH(t)] =
1

2
(|t|2H + |s|2H − |t− s|2H)
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where H is the Hurst parameter in (0, 1). Then we call BH a fractional Brownian
motion of parameter H. The form of this correlation function shows easily that
is increments are stationary and that:

E[(BH(t)−BH(s))2] = |t− s|2H

which is the main interest of this process. This property allows us to classify the
movement for different parameters:

• For H < 1
2
, the behaviour is subdiffusive with non-independent increments.

• For H = 1
2
, it is a standard Brownian motion whose increments are inde-

pendent.

• For H > 1
2
, the behaviour is superdiffusive with non-independent incre-

ments.

Here we show some simulations of fBm for different parameters. It is worth to
remark that low Hurst parameters represent steps that are negatively correlated,
and high ones present positive correlation, with the extremes of H = 0 (equivalent
to an alternating process) and H = 1 (equivalent to balistic movement).

Figure 1: Comparation of different realizations of fBm for the cases H = 0.125,
H = 0.5 and H = 0.875 respectively.

3.2 Estimation of Hurst parameter

There are many possible methods of estimation of the Hurst parameter in the
literature. Some examples are:

3



• Discrete variation method, with a rate of convergence of O( 1
N

);

• Whittle’s method, with a similar rate of convergence, but that is very sen-
sitive to additive noise and outliers;

• Log-periodogram method, whose rate is O( 1
log(N)

).

The comparison of various different methods composed a first part of this project,
which finished by the choice of the first method, due to its good convergence rate,
adaptability to different conditions and robustness to noise.

3.2.1 Discrete variation method

We assume the process is sampled on {0, 1
N
, · · · , N−1

N
, 1} and BH denote a path

of fBm. A vector a of length l + 1 is a filter of length l and of order p if it
satisfies

∑l
j=0 j

raj = 0 and
∑p

j=0 j
raj 6= 0, where 0 6 r < p. Denote V ( i

N
) =

a ∗BH =
∑l

q=0 aqBH( i−q
N

), namely V is the convolution of a and BH . For exam-

ple, a = (1,−1) that is a filter with order 1, we have V
(
i
N

)
= BH

(
i+1
N

)
−BH

(
i
N

)
,

a discrete variation.

The empirical k-th absolute moment of discrete variations is defined by

SN =
1

N − l

N−1∑
i=l

‖V
(
i

N

)
‖k

Let πH denote the covariance function of V , given by πH(j) = E[V ((i+ j)/N)V (i/N)].
From the stationarity of V , we have

E(SN) =
1

NkH
πH(0)Ek

where Ek = 2k/2Γ(k + 1/2)Γ(1/2).
Then we denote function g(t) = 1

NktπH(0)Ek. Using SN as an estimator for
E(SN), we obtain the estimator:

Ĥ = g−1(SN)

Remark 3.1. In fact, the behavior of this estimator in terms of different k has
been studied by Coeurjolly[2] and the results underline the optimality of the value
k = 2 since it has smaller variance. In the following work, we always use k = 2.

In practice, it is not possible to get an analytical expression for Ĥ when p > 1.
We use a numerical procedure to get it by minimizing g(t)−SN . It is proven the
result that [2]:

ĤN
a.s.−−→ H. as N → +∞
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In general, the process we want to model is not a pure fBm, it is modu-
lated by an scale coefficient. We define the data vector D(i) = C · BH

(
i
N

)
for

i = 0, · · · , N − 1, where BH

(
i
N

)
is a process as the one estimated before.

Firstly, we introduce new filter am which is defined by:

ami =

{
aj, i = jm

0, otherwise.

In the case m = 2 and a = (1,−2, 1), we get am = (1, 0,−2, 0, 1).
Then, the second empirical moment of the corresponding discrete variations is

SN(am) =
1

N −ml

N−1∑
i=l

‖V am
(
i

N

)
‖2

where we defined V am = am ∗D.
Noting that:

ESN(am) = m2HESN(a)

We get that logE(SN(am)) is linear in H. Then we use the regression method to
estimate H.

3.3 Different filters for standard model and its robustness

The result that is proven is independent of the filter that is used, so the question
in practice is that if there is a filter that is more suitable than others.

Figure 2: log(mean square error) and different data size corresponding to different
Hurst parameter
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We use several kinds of filters:
i1 = (1,−1)
i2 = (1,−2, 1)
i3 = (1,−3, 3,−1)
d4 = (−0.09150635,−0.15849365, 0.59150635,−0.34150635)
d6 = (0.02490875, 0.060416105,−0.9546721,−0.3251825, 0.57055846,−0.235232605)
where i-th are the increment filter of order i. d4 and d6 are Daubechies wavelet
filters of order 4 and 6 respectively.

Effect of the use of different filters is on the same data set. Although i1 works
only when H < 3

4
[6], the filter i1 has been chosen as the Hurst parameter we get

from real data is less than 3
4

and the error is the smallest one. When we calculate
the boundary cells, we need to change filter and d4 can be used that is good as
well from our result.

3.4 Robustness of this model

The robustness of this model and its convergence has been tested on the literature
on the presence of an additive gaussian noise and also on the presence of outliers
[4][6]. The convergence is kept unchanged in the N → ∞ limit, and is verified
computationally to keep very well in practice.
We studied the robustness of this model in terms of different filters. Three kinds
of noisy model are discussed:

• Model with additive outliers
the model used here comes from [4](Beran (1994))

Figure 3: model with additive outliers B0 andB1
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• Model with additive noise
X(i) = BH(i) + σB0(i)
X(i) = BH(i) + σB1(i)
where B0 is a standard Brownian motion and B1 are i.i.d standard Gaussian
variables.

Figure 4: different filters for model with noise AO, B0 andB1

The result [Figure 4] shows in the model with additive noise this method works
well. Due to the high presence of noise in our data, the robustness is a very
important property.

4 Application to microscopy data

When using the data coming from the microscopy of the embryo, many difficulties
appear. The first point to be noted is that the quantity of data that is available
for one single cell is very limited, which restrains a lot the quality of results to
be obtained. This is one of the principal reasons for the deep study on different
methods of estimation, since we need as much quality on the analysis as possible.
In a more practical sense, there are problems of identification of trajectories. For

Figure 5: Example of the selection made by the biologists on the BioEmergences
platform.

a given pair of cells, it is necessary to find the exactly the time interval where
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both cells are alive, that is, from the moment they are born to the moment where
they divide, which can be computationally costly.

Another point that is worth noting is that even if the tracking quality is very
high (going up until 99% of precision for each time step), any error in the tracking
costs a lot, as this may interfere with our first assumption, that says that the two
cells that are being analyzed follow the same hydrodynamics flow.

In this first study of segmentation by Hurst parameter estimation, that data
that is going to be used is a gold quality one that has been verified by hand
for the tracking, minimizing the errors coming from this source. Moreover, some
families of cells have been marked as corresponding to given fields by eye by a
biologist, which give a parameter to compare to when finding the results.

4.1 Methodology and results

The fields we select are colored in red and yellow[Figure 5]. We select two sets
of the cells in the same field and each set has five cells. We calculate the Hurst
parameters of each pair and average them. The data size we used is around 50.
From the result of Figure 6, in the field 21 the average Hurst parameters are 0.469

Figure 6: average Hurst parameter of two sets of cells in two fields

and 0.479, that is, they are very similar. Inside field 22 the values are 0.392 and
0.415, very similar between them, but different enough from the other field. This
is a first indication that goes in the direction of our expectations. Then, we do
more detailed work, calculating the Hurst parameter of a cell and its neighbors in
different fields.. We used fields 1, 2, 6 pre-selected by biologists in BioEmergences
platform and calculate the Hurst parameters between the center cells and their
neighbors. Since in this step, different neighbors have different lifetime steps, the
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Figure 7: Average Hurst parameter in three different fields in terms of different
time steps

quantity of data is different for each pair of cells. For this, we use the classical
average pondered by variance, given by:

H =

∑
1
σ2
i
Ĥi∑
1
σ2
i

and the fact that the algorithm gives a variance that is inversely proportional to
the number of time steps that are used. This given in the end:

Ĥ =

∑
TiHi∑
Ti

where Ti is the time steps we use when calculating Hi.
From the numerical results in Figure 7, we find H in fields 1, 2, 6 are different.

For field 1, it always has highest H that decreases in time. Field 2 has similar
trend with field 1 in this period but H2 is always less than H1. The difference
between them is around 0.13. In field 6, the Hurst parameter is stable, around
0.32. Thus we see that these measures we do are dependent on the moment of
the lifetime of the embryo, and as such, this should be considered when doing
the analysis.

Once more, we remark that the effect of hydrodynamical movement between
two cells is always positive in the sense of H, so that if the dominant behavior
of the movement between two cells is of this form, we should find values that
are very close to 1. In order to test also this hypothesis, we calculate Hurst
parameters of cells in the boundary of different fields and compare the difference
between them [Figure 8].

What we find is that indeed, when we take two cells that are neighbors, the
simple fact that they are in the same field or not change a lot, and cells in
different fields always have Hurst parameters that are very high. This is the kind
of reasoning that can allow us to find the boundary between two fields using
Hurst parameters.
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Figure 8: Comparison with H of cells in same field and in different fields

5 Conclusion

In this last part or the report, we showed that the analysis of Hurst parameter
can be used as one important measure to distinguish different morphogenetic
fields. Of course, this is a first evidence of the efficiency of this method, and
does not allow yet the effective segmentation of the embryo. For this goal, a
further study about the establishment of thresholds for the distinction of cells in
the same and in different fields. An important point about this methodology is
that it is independent of the subtract where it acts. That means that it can be
applied to different embryos without being changed. While we can expect that
this same application will work for other zebra fishes, it is difficult to foresee the
results for other animals.

A natural way to continue this work would be to obtain the whole map of
the embryo, with the representation of Hurst parameters point by point. This
would already give more precise results, as the quantity of cells would improve
and the there would be the possibility of using larger ranges of neighbors. With
this map, it would be possible to work together with biologists in order to find a
way to get thresholds that are connected with their expectations.
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