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Abstract

The study of DNA molecules confined to nanochannels is becoming more popular. A
lack of precise theories and difficulties with model parameters have lead to an absence of
quantitative analysis. A recent new theory for the extension in the extended de Gennes
regime fills this gap. In this paper we evaluate the new theory by considering various
theories for the model parameters of DNA, analyzing experimental data and comparing
it to the predictions. We obtain qualitative agreement between the experiments and the
theory with only minor issues. The remaining discrepancies might be caused by imper-
fections of existing theories for the model parameters or by the fact that the conditions
for the extended de Gennes regime are only partially satisfied.
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1
Introduction

Nowadays polymer nanoconfinement has many practical applications. It is a powerful
tool to study single DNA molecules [1], which makes it possible to stretch the molecule
and linearly unscroll its genome for analysis [2]. In addition to this, DNA separation
and gene mapping rely on the change of molecular properties induced by the polymer
confinement [3] and development of this area may lead to single-molecule analysis devices,
which do not require cloning and molecular amplification [4]. Moreover, polymers in
living systems usually are found in confined environments [5], thus, understanding of the
influence of confinement is important for studying more complex biological systems [6].
For more applications one may see Ref. [2].

Such a variety of applications leads to substantial activity in this area, but at the
same time many challenges remain. The main difficulty is caused by the small per-
sistence length of DNA molecules (`P ≈ 50 nm), which is smaller than the diffraction
limit of visible light, i.e. one can not study microscopic configurations using fluorescence
microscopy [6]. In addition to this, so far all proposed models use a number of inter-
dependent parameters, for most of which we do not have well established theories and
whose role in some cases is not studied at all. Notwithstanding all these difficulties, one
still can connect large-scale observables such as the extension R of the DNA molecule
in the channel direction with microscopic conformations and study the former, making
various assumptions about the model parameters.
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2
Background

A DNA molecule confined to a nanochannel exhibits different behaviors, depending on
the channel size and the chemical composition of the solution in which the molecule is
immersed [2]. The different regimes are classified into regimes in the literature. They are
the Odijk regime [7], the extended de Gennes regime [8], and the de Gennes regime [9].
Here we will not discuss the fourth regime, the so-called backfolded Odijk regime [10]
because it was only very recently developed. For all these regime there are theories for
how the extension R depends on the conditions. Therefore, at first we have to define the
extension R of the DNA molecule in the channel direction. One may see an illustration

r

R

Figure 2.1: An illustration for the extension R of the DNA molecule in the channel direction
and end-to-end distance r. The molecule is shown as a series of joined segments (in black).
Its ends are represented by filled circles. The channel is shown in light gray as well as a
projection of the molecule’s segments on the channel’s side.

on Fig. 2.1. It shows a simple model of a DNA molecule in a channel. The model consists
of a series of joined segments and is projected on the channel’s side. Then the end-to-end
distance r is the distance between the polymers’s ends along the channel. In contrast
to the end-to-end distance, the extension R is a distance along the channel between the
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CHAPTER 2. BACKGROUND

leftmost and rightmost points of the polymer, which might not correspond to the two
ends of the polymer.

Before considering the theories for the extension we need to discuss the physical
parameters which describe the molecule. The contour length L is the length of the
molecule, if it were stretched end-to-end and thermal fluctuations were ignored [2]. The
persistence length `P quantifies the stiffness of the molecule, namely it is the contour
distance over which correlations in the tangent direction decay [11]. The Kuhn length
`K is a theoretical concept, so that one can consider the molecule as a group of freely
joined rigid segments with length `K each [12]. In the case of DNA, `K = 2`P [12]. The
effective width w is the effective interaction range of the molecule. The channel with
square cross-section is described by its side size D.

We describe the regimes in order of decreasing channel size D. At first the channel is
so big, that the molecule is not influenced by the walls, and thus, it just forms one blob.
If the channel size is much smaller than the size of this blob, but still obeys D � `2K/w,
then the molecule is in the de Gennes regime, and the average extension is expected to

scale as R ∼= L (w`K)1/3

D2/3 [2]. In this regime, the molecule is described as a series of blobs
with an unconfined self avoiding random walk in each of them. If we decrease D further
to the region `K � D � `2K/w, we encounter the extended de Gennes regime, which is
similar to the de Gennes regime and has the same prediction for the extension, but at
the same time differs, for instance, it has different scaling for the chain free energy [2, 8].
This regime is still described with a series of blobs, but here they become elongated
[13]. Decreasing D further first leads to a transition between the extended de Gennes
and the Odijk regimes and then, under D � `K, the molecule enters the Odijk regime,

where R = L

[
1−A

(
D
`K

)2/3
]

and A is a numerical constant that depends on a channel

geometry [2]. Here the molecule does not have enough space to form the blobs and the
polymer just deflects from the walls.

In this thesis we focus on the the extended de Gennes regime. It was recently shown
[14] that in this regime it is possible to derive rigorous expressions for the mean and
variance of the extension, yielding

µR/L = 0.9338(84)(`Kw/D
2)1/3, (2.1)

σR/(L`K)1/2 = 0.364(17), (2.2)

where µR is an average extension and σR is its standard deviation. The uncertainties
correspond to rigorous bounds for the prefactors, which have been derived by mapping
the statistics of the polymer to a one-dimensional model known as the weakly self-
avoiding random walk.

In order to compare experimental results to Eqs. (2.1) and (2.2) one needs to estimate
the physical parameters of the molecule. They are highly dependent on the environment
(the buffer) due to electrostatic interactions. First, the buffer is defined by the concen-
tration of its components, which is usually denoted by a number before the buffer’s name
(for instance, 5×TBE). Using concentrations of components one can calculate the ionic
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CHAPTER 2. BACKGROUND

strength Is of the buffer, which defines the salt level in the solution. If buffer contains
ions with valences z1, . . . , zn and at concentrations c1, . . . , cn then its ionic strength is

Is =
1

2

n∑
i=1

ciz
2
i .

The dependence of the model parameters on the ionic strength is not thoroughly studied,
which makes it harder to do quantitative analysis.

As for `P, according to Dobrynin [15] “the problem of the electrostatic persistence
length in solutions of charged polymers is one of the most controversial subjects of
polymer physics”. In Ref. [16] he obtains a new expression by fitting experimental
results:

`P = 46.1 nm +
1.9195 M1/2

√
Is

nm . (2.3)

Another expression for `P was given by Odijk [17] and Skolnick and Fixman [18]:

`P = 50 +
0.0324 M

Is
nm . (2.4)

A comparison of both are given in [3].
As for effective width w, Stigter [19, 20] developed a theory based on excluded volume

between two infinite cylinders. The expression is [3, 19]

w = κ−1

(
0.7704 + log

2πv2
eff

kBTεε0κ

)
,

where κ is the inverse Debye length κ2 = (2NAe
2Is)/(ε0εkBT ); veff is an effective DNA

line charge; ε is the dielectric constant of water; ε0 is the permittivity of free space; e is
the electronic charge; NA is Avogadro’s number; kB is Boltzmann’s constant and T is
the absolute temperature [3].

Furthermore, the way the experiments can be conducted introduces more difficulties.
Since DNA is not fluorescent, it is invisible for fluorescent microscopy. Therefore, the
molecule must be labeled with a dye (such as YOYO-1 or TOTO-1 [21]), which might
change the characteristics of the molecule. In addition to this, it is difficult to assure a
uniform distribution of dye among the molecule [1]. Regarding the impact on contour
length L there is some disagreement regarding how much one dye molecule extends
the contour length (0.52 nm [22], 0.44 nm [23]). As for the effect of the dye on the
persistence length the question is more controversial: Ref. [22] finds that YOYO dye
does not change the persistence length, but according to Ref. [24] `P decreases with
increasing dye concentration. The effect on effective width w is insufficiently investigated.
In addition to this, experiments require nanochannels with nanoscale (∼ 100 nm) sizes
made without defects, which may influence the molecule.

Because of these uncertainties it is important to test the theoretical expressions for
the parameters against experiments. A good overview of many of the experiments that
have been performed can be found in the review by Reisner et al. [2]. The comparisons
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CHAPTER 2. BACKGROUND

between experiments and theory shown therein are complicated by the fact that the
classical predictions for the extension of DNA in the extended de Gennes regime are
depend on an undetermined prefactor.

In this thesis we make use of the fact that the recent theory [14] for the extension
statistics in the extended de Gennes regime provide also the prefactors for the extension
statistics, given in Eqs. (2.1) and (2.2). This allows us to make quantitative comparisons
between theory and experimental results, and thereby to test the theoretical predictions
for the parameters `K and w.
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3
Method

The experimental measurements that we compare with theory were obtained by Nyberg
et al. [1]. The dataset consists of 2388 time series, each corresponds to a λ-DNA molecule
(48500 basepairs) and contains 200 measurements of the extension at different moments
of time (see an example on Fig. 3.1). These values were obtained in the following way.
First, for each molecule a series of pictures was taken with a microscope (the exposure
time is 100 ms and the lag between frames is 84 ms, which overall gives 5.4 frames
per second). Then the series was analyzed and numerical values of observables were
extracted. The channel’s cross section is ≈ 100× 150 nm2. The samples were immersed
in a TBE buffer and stained with YOYO-1 dye (under various concentrations of both).
Originally, the dataset was used for studying dye staining, that is why for each molecule
its luminosity was measured. In addition to this some molecules were heated, namely
they were kept under 50 ◦C for 3 or 24 hours before the measurements. For more details
about the experiments and the dataset one may refer to the original paper [1].

One notable property of Eqs. (2.1) and (2.2) is that while the mean µR explicitly
depends on the effective width w, the standard deviation σR does not. In the dataset
there are series with 4 different buffer concentrations. Since the effective width w depends
on the ionic strength Is, which depends on the buffer concentration, the effective width
w varies in the dataset. Therefore, it should be possible to notice this difference in the
experimental data. But in order to do so we need to calculate the effective width w for
the buffer concentrations in the dataset.

As it was discussed before, there is no perfect agreement in the literature regarding
dependence of the effective width w on the ionic strength Is, but many studies [2, 3,
10, 23] used the theory by Stigter [20]. In our analysis we will use it too, namely we
use tabular data from Ref. [20] with linear interpolation in between. Lacking a better
estimate, we ignore the effect of the dye on w.

As for ionic strength Is, we calculate it by obtaining equilibrium concentrations for
all ions in the solution. The technique is described in great detail in Appendix B.
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CHAPTER 3. METHOD
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Figure 3.1: An example of a series from the dataset. Red points show the measured
extension at a given frame. Consecutive points connected with light grey line for clarity.
The molecule was not heated, its luminosity is 182810, the buffer is 0.05×TBE.

Except for the effective width w we also need values of the Kuhn length `K and
contour length L, since the theory expressions for both mean µR and standard deviation
σR depend on them. As for the Kuhn length `K, we will use that `K = 2`P [12], and
Dobrynin’s expression for `P then becomes

`K = 2

(
46.1 +

1.9195 M1/2

√
Is

)
nm .

As for the contour length, the height of one base pair of a DNA molecule is 0.34 nm [25].
The number of base pairs in a λ-DNA is 48502, thus L = 48502×0.34 nm = 16490.7 nm.

One should note that in the dataset the conditions `K � D � `2K/w of the extended
de Gennes regime are not well satisfied. According to the theories above, the values of
`K in the data are between 100 and 150 nanometers and the values of w lie from 5 to 26
nanometers. Therefore, we cannot expect quantitative agreement.

In order to do the comparison, we need to estimate the mean µR and the standard
deviation σR using the series from the dataset. The difficulty is that consequent mea-
surements in each series may be correlated, that is the series may be autocorrelated. If
we do not take this into account, this may lead to biased estimations.

Therefore, we need to start with checking how autocorrelated the data is. We use
the initial positive sequence (IPS) estimator [26] in order to calculate an autocorrelation
time τ , that is a time after which measurements become uncorrelated. The main idea of
the IPS estimator is that we calculate τ as

τ = 1 + 2
∞∑
k=1

ρk, (3.1)
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CHAPTER 3. METHOD

where ρk is the autocorrelation function. Since we have only the series, we can estimate
ρk only for small lags k as

ρ̂k =
1

ns2

n−k∑
i=1

(Xi − X̄)(Xi+k − X̄), (3.2)

where n is a number of measurements in the series, Xi is the i-th measurement, X̄ is a
sample mean and s2 is a sample variance. Finally, we truncate the sum in (3.1) when
ρ̂i + ρ̂i+1 becomes negative, that is why the estimator called positive.

ρ̂
k

lag k, frames lag k, frames

(a) (b)

Figure 3.2: The estimation of the autocorrelation function for the molecule from Fig. 3.1.
Points are the estimated values of the autocorrelation function ρk according to (3.2), line
is a ak fit, where a = 0.584. Panel (b) is a close up for lags k from 0 to 15 frames. The
autocorrelation time τ is 4.11 frames (0.757 seconds). Note, that the values were normalized
ρ̂0 = 1.

As for the mean, the series were obtained using different molecules, that is they are
pairwise uncorrelated. Therefore, sample means of each series are uncorrelated as well.
Since we have enough data, we can just calculate a mean of these values as an estimation
of the extension mean, that is to find a sample mean of all measurements. The standard
error of this estimation is a sample (over the series means) standard deviation divided
by the number of series.

As for the standard deviation, this approach will not work, since an estimation for
each timeseries will be biased by itself. Using [27, p.284, (4.6)] we can correct the bias:

E[s2] = σ2

(
1− 2

n− 1

n−1∑
k=1

(
1− k

n

)
ρk

)
,

where E[s2] is an expected value of the sample variance, n is a number of measure-
ments and ρk are theirs autocorrelation function values. This expression was obtained
using covariance-stationary model, that is under an assumption that the values are from
covariance-stationary stochastic process. For such a process the mean and variance do
not change over time and covariance between two observations depends only on the time
between them, but not on the actual time values [27, p. 280]. A potential problem of
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this assumption in our case is that the DNA molecule may damage itself during the
experiment, changing the mean. We did not observe these changes in the data and,
therefore, ignore it.

Thus, in order to find an unbiased estimation of the sample variance, we just need
to divide the sample variance by the expression in brackets. Then we take a square root
of it to obtain an estimation for the standard deviation. Unfortunately, with such an
approach we cannot estimate the standard error, and are obliged to disregard it. Note
that later the analysis was redone using a random-coefficient model. The results were
similar to the approach described above. In addition to this, this model provided the
standard error for the standard deviation. The results are in Appendix A, for the model
description one may see Appendix B.

In order to calculate expression in brackets we need to know the autocorrelation
function ρk. So far we can just estimate it using (3.2). This will add a bias, but due to
the lack of better approach we will ignore it. Therefore, we assume that ρk = ak, where
a is a constant.

Now we need to estimate a. As you can see on Fig. 3.2 our assumption about the
form of ρk disagrees with obtained values due to noise, that is the estimation for each
molecule independently gives unstable results. As a solution, we will consider a group
of molecules obtained under similar conditions (for instance, same buffer concentration
and close luminosities). More formally, for given lag k we find ρ̂k for each sequence
independently and then take average as an estimate for the entire group. Using this
estimate we can find a by fitting ak.

On Fig. 3.3 you can see an example of the autocorrelation function values estimated
on a group of molecules. This group includes the molecule from Fig. 3.2 and 10 molecules
which are in the same buffer and are the closest by luminosity. As you can see we obtain
much better agreement.

ρ̂
k

lag k, frames lag k, frames

(a) (b)

Figure 3.3: The estimation of the autocorrelation function for a group of 11 molecules:
the molecule from Fig. 3.2 (its luminosity 182810) and 10 molecules which are the closest
by luminosity (their luminiosities are bounded by 182160 and 183600, maximal value in the
dataset is 589750), all are in 0.05×TBE buffer. Points are the estimated values, the curve
is a fit in form ak, a = 0.682757, the autocorrelation time is 5.35 frames (0.98 seconds).

Now we can start our analysis by checking the dependence on effective width w and
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CHAPTER 3. METHOD

heating time. Note that both w and `K depend on the ionic strength Is, but we invert
this relation and consider them as functions of w. So far we ignore dye intercalation.
The corresponding plots are shown on Fig. 3.4. There we can see a good agreement
between experiments and the theory, but not perfect. In addition to this we see the
difference in dependance on effective width w, namely the mean increases almost twice
with increasing w, but the standard deviation changes less than 20 %. Note that the
theory expression for standard deviation is not a constant due to dependence of `K on
Is. Finally, results under different heating times are similar, thus, we will ignore heating
time in further analysis.

(a)

µ
R

,
µ

m

w, nm

(b)
σ
R

,
µ

m

w, nm

Figure 3.4: Mean and standard deviation as functions of effective width w for different
heating times without taking into account dye intercalation. In case of the mean error bars
are smaller then markers, for standard deviation the error is ignored (see text).

The main flaw of such an approach is that it ignores the influence of dye intercalation
on contour length L. In order to take it into account, we need to know how much one
dye molecule extends the contour length and the quantity of dye molecules intercalated.
Estimates for dye molecule height vary from 0.4 nm to 0.5 nm with 10% uncertainty [22,
28]. We assume that it is 0.44 nm [23]. As for the number of dye molecules intercalated,
we can use the measured luminosity l. First, we assume that the luminosity l depends
linearly on the number of dye molecules. Then, we assume that maximal intercalation (1
dye molecule per 4 base pairs) was achieved in the dataset, that is we know corresponding
luminosity lmax. Then we consider relative luminosity lrel = l/lmax. Since we know
number of basepairs and contour length L(0) ≡ L without dye (that is relative luminosity
is 0), we can calculate contour length L(1) under maximal intercalation (corresponds to
relative luminosity 1):

L(1) = L(0) +
48502× 0.44 nm

4
Using our assumption about linear dependence of luminosity on the number of dye
molecules, we find contour length L(lrel) under relative luminosity lrel as a linear inter-
polation between L(0) and L(1):

L(lrel) = (1− lrel)L(0) + lrelL(1)

If we check a distribution of relative luminosities lrel in the dataset (see Fig. 3.5), we can
see that it is very uneven. Thus, we need to use binning for the estimation of contour
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length L(lrel). As we can see on Fig. 3.5 the bin width of 0.04 provides good binning.
Therefore, we distribute the series into bins by their relative luminosities, then for each
bin we assume that all molecules inside have one relative luminosity, which equals to the
middle value of the bin. Then by using this relative luminosity value, we can estimate
contour length of the molecules in the bin.

(a)

#
m

o
le

cu
le

s

(b)

(c)

#
m

ol
ec

u
le

s

lrel

(d)

lrel

Figure 3.5: Distributions of relative luminosities in the dataset, the bin width is 0.04,
binning starts from lrel = 0. Panels correspond to 0.05, 0.5, 2 and 5×TBE buffer concentra-
tions.

After plotting the data as function of relative luminosity, we obtain Fig. 3.6. This
time the difference in the dependence on effective width w is not clear, but still can
be observed. Since the effective width w depends on the buffer concentration, different
colors on the figure (that is the buffer concentrations) correspond to different values
of effective width. We can see how the mean grows almost twice with decreasing the
buffer concentration from 5 to 0.05×TBE (that is going from black points to red), on
the contrary, the standard deviation mostly stays on the same level. As you can see,
taking into account dye intercalation makes the agreement between the experiments and
the theory better, especially under low buffer concentrations for the mean.
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(a)

µ
R

,
µ

m

lrel

(b)
σ
R

,
µ

m

lrel

Figure 3.6: The experiments (points) and the theory (lines) as functions of relative
luminosity. The panel (a) shows the mean, the panel (b) corresponds to the standard
deviation. Different colors correspond to the different buffer concentrations: 0.05×TBE
(red ◦), 0.5×TBE (green �), 2×TBE (blue ♦) and 5×TBE (black M). The gray band in the
panel (b) shows 5% uncertainty in the theory constant, all other uncertainties on this panel
are bounded by this band. In panel (a) 1% the uncertainty is not shown. Standard errors
for the standard deviation are not shown.
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4
Conclusions

We have analyzed measurements of the extension statistics of channel-confined DNA
and compared them to the new theory in the extended de Gennes regime by Werner and
Mehlig [14]. We observe qualitative agreement between the experiments and the theory.
That the agreement is not perfect is to be expected, since the conditions for the extended
de Gennes regime are only partially fulfilled. Nevertheless, we find that the theories for
the parameters of DNA together with Eqs. (2.1) and (2.2) for the extension statistics
reproduce the experimental measurements surprisingly well. These results suggest that
the method presented here allows, in principle, to test the theoretical predictions for
how the parameters `K and w describing a DNA molecule depend on the ionic strength
of the solution.
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5
About the article

The described analysis became a basis of an article. Please find attached the article in
Appendix A and its supplementary materials in Appendix B.

This analysis was improved and extended there in multiple ways:

• The estimation of the mean and standard deviation was done using a random-
coefficient model, a variation of a linear-regression model adapted to correlated
data. The results were similar to the approach in this report, but not exactly
same. In addition to this, with the new model we estimated errors not only for the
mean, but for the standard deviation as well;

• Two new datasets were obtained and analysed. This report is based on λ-DNA
molecules in ≈ 100×150 nm2 channel under 4 different buffer concentrations (0.05,
0.5, 2 and 5×TBE) and the experiments duration was 38.4 seconds. Both new
datasets were obtained on T4-DNA molecules, which are longer than the λ-DNA
(165647 basepairs against 48502 correspondingly). The first new data was obtained
in a nanofunnel (one side was 120 nm, other side gradually changed from 92 nm to
815 nm) and 0.05 (the experiments duration was 100 seconds) and 2×TBE buffers
(the duration was 400 seconds). The second new data was obtained in a square
channel 300 × 300 nm2 with the same 4 buffer concentrations (0.05, 0.5, 2 and
5×TBE), but the recordings were done for 200 seconds. Such settings enabled us
to conclude more about the theories for the physical parameters;

• The channel was remeasured, it happen to be trapezoidal with a width at the
top (bottom) of 130 nm (87 nm). The further assumption was that it could be
approximated with a rectangular channel with DW = 108 nm.

The article was sent to Physical Review E, so far it is on a review stage.
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The extension of DNA confined to nanochannels has been studied intensively and in detail. Yet
quantitative comparisons between experiments and model calculations are difficult because most
theoretical predictions involve undetermined prefactors, and because the model parameters (con-
tour length, Kuhn length, effective width) are difficult to compute reliably, leading to substantial
uncertainties. Here we use a recent asymptotically exact theory for the DNA extension in the ‘ex-
tended de Gennes regime’ that allows us to compare experimental results with theory. For this
purpose we performed new experiments, measuring the mean DNA extension and its standard de-
viation while varying the channel geometry, dye intercalation ratio, and ionic buffer strength. The
experimental results agree very well with theory at high ionic strengths, indicating that the model
parameters are reliable. At low ionic strengths the agreement is less good. We discuss possible
reasons. Our approach allows, in principle, to measure the Kuhn length and effective width of a
single DNA molecule and more generally of semiflexible polymers in solution.

PACS numbers: 87.15.-v, 36.20.Ey, 87.14.gk

Nano-confined DNA has recently been intensively
studied [1–6] as a means of stretching the molecules in or-
der to study local properties (e.g. DNA sequence [7, 8]).
A fundamental question is how the physical properties of
the DNA and the solution affect the extent to which the
molecule is stretched by confinement. Experimentally
this question has been investigated in detail, varying the
confinement, the length of the DNA molecule, and the
properties of the solution (see Ref. [1] for a review).

It is commonly assumed that DNA can be modeled as
a semiflexible polymer with hard-core repulsive interac-
tions [9–15]. Measurements [16–19] and theoretical con-
siderations [9, 16] indicate that a worm-like chain model
may be a good approximation. A recent study [3] com-
pares experimental results for the extension of confined λ-
DNA to results of computer simulations of a self-avoiding
discrete worm-like chain model, indicating that it may
describe the experimental results well.

Yet quantitative comparison between experiments and
theoretical model calculations has remained difficult for
at least two reasons. First the model parameters (con-
tour length, Kuhn length `K, and effective width weff
of the semiflexible polymer) are difficult to determine
reliably: there is substantial uncertainty regarding the
physical properties of DNA. Second, the model is hard
to analyse theoretically. But a recent asymptotically ex-
act theory [20, 21] for the extension of a confined self-
avoiding semiflexible polymer in the so-called ‘extended
de Gennes regime’ [11, 13, 22] overcomes the second dif-
ficulty: it makes precise predictions for the prefactors

and exponents defining scaling laws as a function of the
physical parameters, Eqs. (2) below. This opens the pos-
sibility to experimentally determine `K and weff by mea-
surements of confined DNA. In this article we report on
experimental results mapping out how the extension of
confined DNA in the extended de Gennes regime depends
on channel geometry, ionic strength of the solution, and
upon the amount of dye bound to the molecule.

At high ionic strengths we find very good agreement
between experiment and theory using approximations for
`K and weff that are commonly employed [23–26], and
taking into account how the contour length depends on
the amount of dye molecules bound to the DNA. The
comparison between experiment and theory is so precise
that it enables us to detect subtle alignment effects [27]
at the border of the extended de Gennes regime. At low
ionic strengths the agreement is not as good. This may
indicate that theoretical estimates of `K and weff must be
improved. We expect it is possible to experimentally pre-
cisely determine `K and weff by extending the approach
described in this article.

Extended de Gennes regime. Consider a semiflexible
polymer of contour length L, Kuhn length `K [9] and ex-
cluded volume v per Kuhn length segment. The excluded
volume is often written in terms of an effective width weff ,
defined by the relation v ≡ (π/2)`2Kweff . This expression
for the excluded volume is based on Onsager’s result [28]
for the excluded volume of a cylinder of length `K and
diameter weff , which in the limit `K � weff reduces to
the expression above. We phrase our results in terms of
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FIG. 1: a Experiment 1. λ-DNA in a 150 nm × 108 nm chan-
nel, different buffer concentrations, and different luminosities
corresponding to different dye loadings. Shown are represen-
tative video frames (scale bar applies to panels b,c as well). b
Experiment 2. T4-DNA in a nanofunnel in 0.05× and 2×TBE
solution, varying funnel width DW at constant DH = 120 nm.
c Experiment 3. T4-DNA in a 302 nm × 300 nm channel, dif-
ferent buffer concentrations. d Time trace of the fluorescence
intensity for λ-DNA in a 108 nm× 150 nm channel in 5×TBE
solution, center-of-mass motion subtracted.

the effective width weff . This is customary but we stress
that, strictly speaking, it is the excluded volume that
determines the statistics of the polymer, and that even
for DNA models with only hard-core repulsion between
rod-like segments, the effective width does not equal the
actual width of the rods, except in the limit `K � weff .
This is important to consider when evaluating the results
of simulations.

The polymer is confined to a channel with cross section
DW × DH. The polymer exhibits different confinement
regimes distinguished by different laws for the polymer
extension in the channel direction [21]. The extended de
Gennes regime is defined by the conditions [21]

`K � DH � `2K/weff and D2
W � DH`

2
K/weff , (1)

where we assume that DW ≥ DH. For a square channel
the corresponding conditions were previously derived and
discussed in Refs. [10, 11, 13, 20, 22]. In regime (1) exact
expressions for the mean µ and the variance σ2 of the
extension in the channel direction are known [20, 21],
provided that the contour length is long enough [20]:

µ/L = 0.9338(84) [`Kweff/(DWDH)]1/3 , (2a)
σ/(L`K)1/2 = 0.364(17) . (2b)

The errors quoted for the coefficients reflect strict bounds
[20] derived from the exact results of Ref. [29]. Provided
L is known Eqs. (2) allow to infer `K and weff from mea-
surements of nanoconfined DNA molecules.

Calculation of parameters. We now discuss how the
parameters L, `K and weff are commonly estimated for

0.05×TBE 0.5×TBE 2×TBE 5×TBE
Is[mM] 3.81 24.9 78.4 178.0
`K[nm] 154.4 116.5 105.9 101.2
weff [nm] 26 10 6.2 4.6

TABLE I: Numerical values for the ionic buffer strength Is,
the Kuhn length `K, and the effective width weff (see text).

DNA, and what the main uncertainties are. We first dis-
cuss bare DNA, before considering the effect of staining
with fluorescent dye (YOYO-1).

The contour length of bare DNA is 0.34 nm per base
pair, with an uncertainty of about 0.01 nm, or 3% [30].

DNA is commonly modeled as a worm-like chain, for
which the Kuhn length is twice the persistence length,
`K = 2`P [9]. The persistence length has been measured
by a number of different techniques [16, 17, 19, 31] yield-
ing `P ≈ 45–50 nm at high ionic strength (Is & 10 mM),
and increasing at lower Is. Following Refs. [3, 25, 26, 32]
we use the empirical formula suggested in Ref. [23] `P ≈
46nm+1.92 I−1/2

s M1/2 nm. While this dependence of `P
upon Is has a theoretical basis, the prefactors are known
only from an empirical fit with an uncertainty of about
10% (Fig. 3 in Ref. [23]). The resulting values of `K are
given in Table I, the calculation of Is is described in the
Supplemental Material [33].

Stigter [24] computed the excluded volume between
two long, strongly charged cylinders in NaCl solution,
and applied this calculation to DNA to obtain an es-
timate of weff . Linear interpolation on a doubly loga-
rithmic scale of the effective widths given in Table 1 of
Ref. [24] yields the values tabulated in Table I. There are
many sources of uncertainty when applying this theory
to our system. Stigter’s calculation [24] for weff assumes
that the Kuhn length segments can be approximated by
infinitely long cylinders with an intrinsic width of 1.2
nm, and that the effective line charge of DNA is given by
0.73e− per phosphate group. The approximation of infi-
nite cylinders is problematic when the Kuhn length and
the effective width are of the same order, i.e. for low ionic
strengths. According to Stigter, the value 1.2 nm has an
uncertainty of about 20%, leading to an uncertainty for
the effective width of 5-10% [34], with a larger effect at
large ionic strengths. The effective line charge estimate
is based on measurements in NaCl-solutions, which do
not generalise to other ions [35].

The DNA contour length is expected to increase in
proportion to the amount of dye bound. We assume
that dye intercalation extends the bare contour length
of the DNA molecule by 0.44 nm per dye molecule [3].
Estimates of this number range from about 0.4 nm to
0.5 nm, with large uncertainties in the individual esti-
mates [36, 37], the uncertainty is at least 10%. At a
dye loading of 1 molecule per 10 base pairs, this corre-
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sponds to an uncertainty in the contour length of ≈ 2%.
There is no consensus regarding how intercalating dye
molecules affect the parameters `K and weff . Ref. [38]
finds that the Kuhn length decreases with increasing dye
load, whereas Ref. [37] finds no dependence. Since the
dye molecules are positively charged, the effective width
might decrease with dye load, but the magnitude of this
effect is not known. Lacking a better estimate, it is com-
monly assumed that YOYO- binding does not affect these
parameters [3, 26, 39]. In summary, while the contour
length of DNA is known to a rather high accuracy, there
is substantial uncertainty regarding the parameters `K
and weff .

Experimental method. The experimental data are ob-
tained measuring the extension of single DNA molecules
in nanochannels under different conditions (Fig. 1a to c).
We use linear λ- and T4GT7-DNA (T4-DNA for short)
with definite contour lengths of 48502 and 165647 base
pairs, respectively (this ensures that L is large enough
in our experiments, it exceeds (D2

WD
2
H`K/w

2
eff)1/3 by an

order of magnitude [21]). The molecules are stained with
YOYO dye and suspended inside a channel in a TBE
(Tris-Borate-EDTA) buffer.

The first experiment is a re-analysis of data presented
in Ref. [32]. In this experiment (Fig. 1a), λ-DNA is in-
serted into a nanochannel of height DH = 150 nm and
width DW = 108 nm. We discuss the uncertainty in the
channel dimensions in the Supplemental Material [33].
DNA extensions are measured at different buffer condi-
tions (0.05×, 0.5×, 2× and 5×TBE), and at different dye
loads. To estimate the dye load of a molecule we assume
that it is proportional to the luminosity, and that the
largest observed luminosity corresponds to full intercala-
tion (one dye molecule per four base pairs). In this way
we obtain an estimate for the amount of dye bound to
the molecule by linear interpolation.

In experiment 2 (Fig. 1b), T4-DNA is inserted into a
nanofunnel, with fixed height DH = 120 nm and gradu-
ally changing width from DW = 92 nm to DW = 815 nm
over a length of 500 µm. These experiments are at two
different buffer concentrations (0.05× and 2×TBE).

In experiment 3 (Fig. 1c), T4-DNA is inserted into
a channel with DW = 302 nm, DH = 300 nm. The
buffer concentration is varied (0.05×, 0.5×, 2×, and
5×TBE). In experiments 2 and 3, the average dye load
at 0.05×TBE is approximately 1 dye molecule per 10
base pairs. Assuming that the dye load is proportional
to luminosity we estimate the dye load in experiment 2
at 2×TBE to 1 dye molecule per 45 base pairs, and 1
per 12, 16, 28 base pairs at 0.5×, 2×, and 5×TBE in
experiment 3.

For each molecule 200 frames are recorded. Fig. 1d
shows an example of a fluorescence-intensity trace (‘ky-
mograph’) obtained in this way. Each row in the kymo-
graph shows the fluorescence intensity in a given frame
averaged over the channel cross section. Bright regions

correspond to high intensity indicating where the DNA
molecule is located. The extension of the molecule along
the channel is simply the width of the bright region.

For a given set of parameters we estimate the mean
and standard deviation of the extension by a linear mixed
model that takes into account the fact that the measured
extensions are correlated in time. Details concerning the
experimental method and the data analysis are given in
the Supplemental Material [33].

Results. Our results are shown in Fig. 2. We plot two
theoretical curves. The solid curve uses the actual chan-
nel size DH×DW. The dashed curve compensates for the
repulsive interaction with the negatively charged walls
[1], by using an ‘effective channel size’ (DH−δ)×(DW−δ).
We take δ = weff , but it is not known how accurate this
estimate is. Since the standard deviation is independent
of channel size in the extended de Gennes regime, the
compensation does not affect this comparison.

The results of experiment 1 are shown in panels a and
b. At low relative luminosity (small dye-to-basepair ra-
tio) the average extension is well described by Eq. (2a).
For the standard deviation there are larger differences
between experiment and Eq. (2b). Possible reasons are
discussed below.

We turn now to the effect of increasing the dye-to-
basepair ratio of the DNA. The theoretical lines are cal-
culated under the assumption that each dye molecule in-
creases the contour length by 0.44 nm but leaves the
Kuhn length and the effective width unchanged. This
yields estimates of the mean and standard deviation that
overestimate the observables at high ionic strengths and
high dye loads. A simple explanation would be that
the persistence length decreases slightly with increasing
dye load, in agreement with Ref. [38] though not with
Ref. [37]. Note that since experiments 2 and 3 were
performed at low dye-to-basepair ratios, such a decrease
would not significantly influence the interpretations of
these experiments.

The results of experiment 2 are shown in panels c, d.
Again, the experimental results are in qualitative agree-
ment with the theoretical predictions. We see that the
average extension agrees well with the theoretical predic-
tion. However, the model predictions underestimate the
standard deviation for the larger ionic strength, and for
the largest channel at the lower ionic strength.

It is important to note that for experiment 2 we do
not expect perfect agreement with Eqs. (2), since the
condition DH � `K is not satisfied, or only weakly satis-
fied. However, as long as DW � `K, the violation of the
condition for DH only affects the prefactors but not the
power of DW in Eqs. (2). This follows from the fact that
a mapping to a one-dimensional model is possible also
when DH ≈ `K [21]. In accordance with this prediction,
the data points satisfying DW � `K in panel c obey the
scaling µ ∝ D−1/3

W of (Eq. 2a). Similarly the data points
at 2×TBE which satisfy DW � `K show a variance that
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FIG. 2: Experimental results for 0.05×TBE (red ◦), 0.5×TBE (green �), 2×TBE (blue ♦), and 5×TBE (black 4) a, b
Experiment 1. Mean and standard deviation of the extension of λ-DNA in a narrow nanochannel, as a function of relative
luminosity. Theory [Eq. (2)], solid lines. The rigorous bounds on the prefactor in Eq. (2b) are indicated as a shaded region for
0.05×TBE, they are of the same order for the other cases. The corresponding uncertainty for the extension is much smaller and
not shown. The dashed line shows theory corrected for wall repulsion (see text). c, d Experiment 2. Same, but for T4-DNA
in a nanofunnel with varying width DW. Note that panel c is a log-log plot. e, f Experiment 3. Same, but for T4-DNA in a
wider square nanochannel, as a function of buffer concentration (x×TBE). Error bars correspond to 95% confidence intervals
from the statistical analysis, the experimental uncertainty is not taken into account.

is approximately independent of DW, in agreement with
Eq. 2b, Fig. 2d. For the two rightmost data points at
0.05×TBE, the condition D2

W � DH`
2
K/weff is violated.

At this point the variance is expected to start increasing
as DW increases further [21], in perfect agreement with
what is observed.

For square channels simulations [11, 15, 22] show that
the mean extension increases more rapidly with decreas-
ing D = DH = DW than Eq. (2a) predicts, when D ≈ `K.
The reason is that there is a tendency for the DNA
molecule to align with the wall, and that the presence
of the walls makes it more difficult for the molecule
to change direction in the channel, forming a ‘hairpin’
[15, 27]. This can explain why the average extension ap-
pears to increase slightly faster with decreasing width
than Eq. (2a) predicts, for the leftmost points in panel c.
Such a trend has also been observed in previous measure-
ments in rectangular channels [27, 40].

Now consider the standard deviation. The alignment
and correlation effects mentioned above cause σ to be
overestimated [27]. But when µ approaches the maxi-
mal extension L then fluctuations are suppressed [15].
These two effects could explain why, in experiments 1
and 2, σ is larger than predicted by theory at high ionic
strengths but smaller for low ionic strengths and small
channel sizes. It must also be noted that the standard
deviation is difficult to estimate precisely, as it is not very
much larger than the pixel size in the image (159 nm),

and may depend on the assumptions entering into the
statistical analysis (see Supplemental Material [33]). An
additional source of uncertainty specific to experiment 2
is that DW changes over the span of the molecule. For
the most extended condition (µ = 37µm), the channel
width at either end of the molecule differs by approxi-
mately 25 nm from the stated width, measured at the
center of the molecule.

The results of experiment 3 are shown in panels e, f.
Here Eq. (1) is well satisfied. Simulations indicate [15, 22]
that the alignment effects discussed above have little in-
fluence on µ, in square channels with D ≈ 3`K. Equally
sensitive simulation results for σ have not been published,
but simulations of the alignment effect [15, 27] indicate
that Eq. (2b) underestimates σ by approximately 10%.
We find that for the three largest ionic strengths, mea-
surements are in excellent agreement with theory. The
mean extension (panel f) agrees very well with the theo-
retical prediction of Eq. (2a), and Eq.(2b) underestimates
the standard deviation (panel f) by about 10%, just as
the measurements of alignment effects would suggest.

Intriguingly, the relation between measurements and
predictions is different at 0.05×TBE than at high ionic
strengths. Both mean and standard deviation are smaller
than expected. This is particularly surprising consid-
ering that alignment effects should be even stronger at
low ionic strength (where `K is larger). The discrepancy
might indicate that the standard model does not describe
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the physical parameters well at such low ionic strengths,
possibly because the high relative concentration of BME
significantly changes the buffer conditions, lowering the
pH from ≈ 8.5 to ≈ 7.5. But we note that it may be
hard to ensure uniform dye coverage under these condi-
tions [32]. Also, BME is consumed as the experiment
proceeds. This may change the ionic strength at small
buffer concentrations, an effect our calculations do not
include.

Conclusions. We have compared measurements of the
extension of confined DNA to asymptotically exact pre-
dictions. First, we find very good agreement between
experiments and theoretical predictions at high ionic
strengths. A possible cause for deviations at low ionic
strengths is that common estimates for weff and `K of
stained DNA are too imprecise. Second, by measuring
longer time series and more molecules in wider chan-
nels we expect to be able to precisely determine how `K
and weff depend on the ionic strength of the solution. It
may even be possible to determine `K and weff for single
molecules. We note that weff is an effective parameter de-
fined in terms of the excluded volume per Kuhn length,
even for rigid rods weff is identical to the actual width
only when `K � weff . Finally the approach described
here could be used to investigate DNA-wall interactions,
a question about which little is known, and that is hard
to describe theoretically.
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After submission of this manuscript a paper [41] ap-
peared online, which also compares experimental mea-
surements on channel-confined DNA to the theoretical
predictions of Ref. [20].
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EXPERIMENTAL PROCEDURE

Channel manufacture. The channels were manufac-
tured as described in Ref. [S1]. The nanochannels used
in experiment 1 have a depth of DH = 150 nm. The
channel cross-section is not perfectly rectangular, but
rather trapezoidal, with a width at the top (bottom) of
the channel of 130 nm (87 nm). We assume that these
channels can be approximated by rectangular channels
with a width DW = 108 nm, which is the arithmetic
mean of the measurements at the top and bottom of the
channel. The funnels used in experiment 2 have a depth
of approximately DH = 120 nm, and DW increases from
92 nm (top: 111 nm, bottom: 73 nm) at the narrow end
to 815 nm (top: 830 nm, bottom: 800 nm) at the wide
end – over a length of 500 µm. Finally, the channels used
in experiment 3 have a depth DH = 300 nm, and a width
DW = 302 nm (top: 330 nm, bottom: 275 nm). The
dimensions are measured before the channel is closed by
the lid. Since the bonding process changes the depth of
the channel, our values for the depth of the channels have
a relatively large uncertainty of about 10 nm.
Buffer preparation. The buffers were obtained by di-

luting 10×TBE tablets from Medicago to the desired con-
centration. 1×TBE contains 0.089 M Tris, 0.089 M Bo-
rate and 0.0020 M EDTA. Right before the experiments,
3% BME (3 µL of BME to 97 µL of sample solution) was
added to prevent photo-nicking of the DNA. In addition
to this the micro- and nanochannels in the chip were
flushed with the right buffer concentration, containing
3% BME as well, to keep the same environment in the
chip as in the sample solution.
Dye intercalation. Since intercalation of YOYO-dye

molecules extends the contour length of the DNA it is im-
portant to estimate the dye load as accurately as possible.
In experiment 1, the dye load was not equilibrated be-
tween molecules, resulting in heterogeneous staining [S2].
In experiments 2 and 3 the aim was instead to achieve
homogeneous staining. To this end we first mixed the
sample in high ionic strength (5×TBE), let it rest for
at least 20 min, and then diluted to the desired ionic

strength [S2].
DNA insertion. The nanofluidic chips consist of four

loading wells connected two and two by microchan-
nels. The microchannels are in turn connected by many
nanochannels. Sample solution was inserted into one of
the loading wells. Then the DNA was carried to the
nanochannels by pressure-driven flow (N2 gas for T4 ex-
periments and air for lambda experiments). The DNA
was forced into the nanochannels by applying pressure
over two wells that are connected by a microchannel.
Once inserted in the channel, the pressure was switched
off. Before imaging the DNA was allowed to relax for
about 30 seconds to reach its equilibrium extension.
Video recording. Videos were recorded using a Pho-

tometrics EvolveTM EMCCD camera. The image pixel
size is 159.2 nm. For all measurements, the exposure
time was 100 ms per photograph, but the delay between
frames differed between experiments. For experiment 1,
the delay between frames was 84 ms, yielding a frame-
rate of 184 ms/frame. For experiments 2-3 with T4-DNA,
the correlation time is significantly longer, so to minimise
problems with photo bleaching and nicking, the frame-
rate was decreased. For experiment 2, the frame-rate
was 0.5 s/frame for the measurements at 0.05× TBE,
and 2 s/frame for the ones at 2× TBE. For experiment
3, the frame-rate was 1 s/frame for all measurements.
Number of molecules. In experiment 1, 2388 molecules

were analysed in total. Since the relative intensities are
distributed unevenly, so are the number of molecules in
each bin. This leads to very different error estimates for
different bins in the estimation of the mean and standard
deviation. We excluded bins with 2 molecules or less from
the analysis. Further 3 molecules were excluded because
the extension could not be succesfully extracted from all
frames. In experiment 2, 9-10 molecules were analysed
per data point under 0.05×TBE, and 7 molecules under
2×TBE. In experiment 3, 30 to 35 molecules were anal-
ysed per measured data point. One outlier at 0.5x TBE
was removed, as its extension changed abruptly halfway
through the data series.
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DATA ANALYSIS

Extraction of DNA extension from kymographs. Con-
sider a raw kymograph of the form provided in the main
text (Fig. 1d). Dark regions in this image correspond
to background, the bright regions correspond to fluores-
cence from DNA. The fluorescence intensities measured
for both regions are subject to noise. This makes it dif-
ficult to reliably identify the end points of the bright
regions in an automated fashion. In previous studies this
was achieved by fitting the difference of two sigmoidal
functions [S3] to each time frame. This method was used
for analysing experiment 1 [S2]. In experiments 2-3 we
used a computationally faster method that yields very
similar results for the mean, and agrees to within about
5% for the standard deviation of the extension. The new
method for detecting end positions relies on the assump-
tion that the fluorescence intensities from DNA and from
the background assume consistent and easily differenti-
ated values, and proceeds as follows. First, each frame in
the raw kymograph is smoothed using a moving average
(we use an averaging window that is five pixels wide).
Second, each frame is then segmented into binary low-
and high-intensity regions using Otsu’s method [S4, S5].
Third, we even out gaps between high-intensity regions
that are equal to or shorter than five pixels. Fourth, the
largest connected high-intensity component is found, and
its edges are identified. The distance between these edges
is the extension of the DNA molecule.

Statistical analysis. The experimental data consist of
repeated measurements of the extension of individual
DNA molecules at given values of parameters and are
modeled using a random-coefficient model, a variation of
a linear-regression model adapted to correlated data [S6].
Let yij denote the extension of molecule i (i = 1, . . . , n)
at time tj (j = 1, . . . , 200). The extension is modeled as
a linear function of time as yij = µ+βtj +ui +eij , where
µ and β denote the overall mean value and slope. To ac-
count for the within-molecule correlation of data points
the error term is split into two uncorrelated components,
a molecule-specific correction to the mean, ui, and an er-
ror term eij that measures the deviation of a data point
from the molecule-specific regression line, µ + βtj + ui.
Both ui and eij are assumed to be independently nor-
mally distributed with mean zero and variance r2 and σ2,
respectively. The model describes the mean extension
of molecules at a particular set of external parameters
and the linear time dependence allows to include small
unmeasured changes of external conditions, for instance
drift into wider or narrower channel regions, or change
of buffer concentration. The random intercept adjusts
for the initial conditions at the start of measurement of
each time series. A random intercept model is adequate
as each set of molecules can be viewed as a random sam-
ple representative for all molecules at this particular set

of external parameters. On average, the covariance of
two arbitrary data points within molecules is equal to
the variance of intercepts between molecules. The ra-
tio of variances, r2/(r2 + σ2) is both a measure for the
proportion of variation that is explained by differences
between molecules, and the correlation of data points
within a typical time series. By isolating the molecule-
specific random variation due to unknown fluctuations of
external parameters we are able to obtain an improved
value for the residual variance of the extension (σ2) that
can be compared with the theory. Although the time
trend was weak in most cases, we evaluated the mean
value µ at t = 100, i.e. we replaced tj with (tj − 100) in
the above model. Results are given in terms of point esti-
mates together with a 95% confidence interval (95% CI).
The statistical analyses were performed by using SAS
(version 9.4; SAS Institute, Cary, NC).

CALCULATION OF IONIC STRENGTH

The parameters w and `K of the DNA molecule depend
on the ionic strength of the surrounding solution. The
ionic strength is defined as

Is = 1
2
∑

i

ciz
2
i . (S1)

Here, the sum runs over all ions in the solution, ci is
the concentration of ion species i, and zi its valence. To
compute the ionic strength, we must calculate the equi-
librium concentrations ci of all ions. Since there is some
confusion in the literature (discussed below) about the
ionic strength of TBE buffer, we document our calcula-
tion in some detail.
We follow the method outlined in Ref. [S7, Section 12-

2]. Denote by C[X] the total amount of all species of a
substance X, in neutral and ionic form. At N×TBE, the
solution contains C[T] = N × 0.089 M Tris, C[Bo] =
N × 0.089 M Borate, C[E] = N × 0.0020 M EDTA,
and C[β] = 0.429 M BME. The dissociation and asso-
ciation constants that determine the chemical equilib-
rium are Tris: pKb = 5.94; Borate: pKa = 9.24, EDTA:
pKa = {1.99, 2.67, 6.16, 10.26}; BME: pKa = 9.6. At
the resulting pH-value of approximately 8.5, most of
the EDTA is triply ionised, and we can safely ignore
the minute concentrations of neutral and singly ionised
EDTA.We denote the molar concentration of a species by
[X], and its activity coefficient by γX. The activity coeffi-
cients are assumed to be given by the Davies equation, as
stated in Ref. [S7] (the empirical prefactors of this equa-
tion differ between sources. For our ionic strength cal-
culations, the difference between different formulations
makes a difference of two percent at most). The system
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of equations that must be solved is

[TH+]γTH+ [OH−]γOH−

[T]γT
= 10−5.94 (S2)

[Bo−]γBo− [H+]γH+

[HBo]γHBo
= 10−9.24 (S3)

[HE3−]γHE3− [H+]γH+

[H2E2−]γH2E2−
= 10−6.16 (S4)

[E4−]γE4− [H+]γH+

[HE3−]γHE3−
= 10−10.26 (S5)

[β−]γβ− [H+]γH+

[Hβ]γHβ
= 10−9.6 (S6)

[H+]γH+ [OH−]γOH− = 10−14.0 (S7)
[T] + [TH+] = C[T] (S8)

[HBo] + [Bo−] = C[Bo] (S9)
[H2E2−] + [HE3−] + [E4−] = C[E] (S10)

[Hβ] + [β−] = C[β] (S11)
[TH+] + [H+] = (S12)

[OH−] + [Bo−] + 2[H2E2−] + 3[HE3−] + 4[E4−] + [β−]

Eqs. (S2)-(S6) are the equilibrium conditions from the
law of mass action, Eqs. (S7)-(S11) ensure that the total
concentration of a substance is conserved, and Eq. (S12)
ensures charge neutrality. The activity coefficients γX
depend on the ionic strength Is according to the Davies
equation [S7],

log10 γX = −0.51z2
X

( √
Is

1 +
√
Is

− 0.3Is

)
. (S13)

Here, zX is the valence of species X, and Is is measured
in units of M. Finally, the ionic strength itself is given
according to Eq. S1 by

Is = 1/2
(

[TH+] + [H+] + [OH−] + [Bo−]+ (S14)

4[H2E2−] + 9[HE3−] + 16[E4−] + [β−]
)
.

We solve the system of equations (S2)-(S14) iteratively.
Starting from the initial guess γX = 1 for all species,
Eqs. (S2)-(S12) are solved with the Mathematica routine
FindInstance. Plugging the resulting concentrations
into Eqs. (S13)-(S14) yields new values for γX, which are
then used in Eqs. (S2)-(S12). This process was repeated
until the ionic strength converged.
We tested our calculations by comparing with Table 1

of Ref. [S8]. We reproduce the reported ionic strengths
for 0% BME and 0.5% BME to within one percent.
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