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PREDICTION OF CANCER CELL SENSITIVITY TO DRUGS∗

BY JAMES NEWLING†‡ , SUPERVISED BY SACH MUKHERJEE‡

Warwick University† and The Netherlands Cancer Institute ‡

We consider the problem of using high-dimensional genomic covariates
to predict the drug response of cancer cell lines. The cell lines are grouped
according to tissue type, which we show may be an important factor in deter-
mining the dependence of drug response on genomic covariates. We develop
predictors using l1-penalized linear regression models, and develop a novel
variant which we call the indicator lasso which exploits inherent group struc-
ture. The superior performance of this new method in simulations over other
methods which neglect group structure is illustrated. We finish by presenting
the drug response prediction results.

1. Introduction.

1.1. Biological Introduction. The systematic use of genomic data in guiding therapies remains
a challenging problem in oncology. However, there are several simple cases where drugs are di-
rected to patients presenting specific genomic indicators. Consider the case of breast cancer, where
currently the two main non-chemotherapeutical drugs in use are tamoxifen and trastuzumab. The
decision of which of these two drugs to use rests mainly on the abundance of certain receptors
present in cancerous cells. There are three receptors which are used as biomarkers in this way:
ER (estrogen receptor), PR (progesterone receptor) and HER2/neu. Cancers exhibiting an over-
expression of ER are commonly treated with tamoxifen, which binds to the estrogen receptors and
blocks a vital pathway by which cancerous cells replicate. Cancers in which HER2/neu is over
expressed are commonly targeted with trastuzumab, which binds to HER2 receptors and in turn
deactivates another important pathway. A third and heterogeneous class of breast cancers, in which
none of ER, PR and HER2/neu are amplified, is referred to as the triple negative breast cancer
subgroup. There are no targeted treatments for triple negative breast cancers, and it currently has a
relatively poor prognosis. Breast cancers associated with mutated BRCA1 and BRCA2 genes fall
into this subgroup.

Recently, the classification of breast cancer by receptor abundance has been enhanced by the
use of microarray data. Over the last decade, analyses of DNA microarray data have suggested dif-
ferences between normal and cancerous cells in hundreds of genes. Several of these genes control
the expression of proteins related to the ER and HER2/neu pathways, and classifications by the ex-
pression of these genes strongly overlap those provided by receptor abundance. Several companies
have started to provide tests based on gene expression to determine which drugs are appropriate,
and the probability of a cancer recurring after surgery. One example is the diagnostic test Oncotype
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DX provided by the company Genomic Health, which uses 21 genes in its forecasting. Genomic
Health also provides diagnostics for several cancer types, and has to date analysed samples from
200,000 patients and several tissue types. The field of genomic analysis for predictive personalized
medicine is rapidly growing.

In this project, we attempt to develop a novel method for drug efficacy prediction, presented in
Section 2. The data we analyse is the Cancer Cell Line Encyclopedia1(CCLE). The CCLE dataset
consists of 947 human cancer cell lines each with the following features,

mRNA expression the amount of a particular mRNA molecule in a cell is a good proxy for the
abundance of certain proteins in that cell. mRNA expression is also more easily and accu-
rately measured than protein expression. We have for each cell line the mRNA expression of
∼ 18, 000 genes.

chromosomal copy number the number of times a gene appears on a chromosome is also corre-
lated with the overall expression of certain proteins. Each cell line has the copy number of
∼ 350 genes.

mutation data these are binary variables indicating if the gene is of a common variety or if the
gene is a mutant. Each cell line has the mutation status of ∼ 100 genes.

Along with these covariates, we have augmented the dataset with protein expression measure-
ments of certain proteins which are available for some of the breast cell lines in the dataset.

protein expression we have the protein expression of 42 proteins in 15 breast cancer lines.

In addition to abundant genomic data, the CCLE data set contains the response of 479 of the
947 cell lines to 24 anticancer drugs. The responses of the cell lines are available at several doses.
A commonly used proxy for overall drug efficacy is the IC 50, which is the concentration of drug
necessary to cause 50% inhibition of biological activity. A low IC 50 is indicative of an effective
treatment, all else being equal. We will refer to IC 50 generically as the response.

We wish to develop a drug response predictor based on genomic data. Such prediction is difficult
due to the dimensions involved: there are far more possible explanatory covariates than there are
cell lines. A resulting difficulty is that there are covariates which appear to be strongly correlated
with response, but the correlations turns out to be artefacts of the large number of covariates.
Another concern is that it is easy to overfit models, and standard approaches such as simple linear
regression fail. In 1.2 we discuss techniques for avoiding overfitting, and methods for performing
linear regression in high dimensions.

1.2. Statistical Introduction. Here we introduce statistical ideas used in later sections. In 1.2.1
we briefly discuss cross-validation, a technique used to guard against overfitting. In 1.2.2 we discuss
penalized regression, in particular the lasso and elastic net. Then in 1.3, ideas used in multiple
hypothesis testing are presented.

1Publicly available from http://www.broadinstitute.org/
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1.2.1. Cross-validation. Cross-validation is a technique used to test a model’s predictive power.
The key idea is that model fitting and model testing are always done on mutually exclusive parti-
tions of the data. The data is separated into several partitions and predictions in each partition are
obtained from a model fitted using all the remaining partitions.

1.2.2. The lasso. The lasso [3] is a method in linear regression for parameter shrinkage. It can
be defined as standard least squares minimization with a penalty on the `1-norm of the coefficients.
For a set of observations (xi, yi) : i = 1 . . . Nobs, where the xi’s are vectors of covariates and the
yi’s are scalar responses, the lasso estimate is defined as

(1.1) ala, βla = arg min
a,β

Nobs∑
i=1

(
yi − a− xTi β

)2
+ λ‖β‖1.

Here ala is the intercept and βla is the coefficient vector. When λ = 0, this reduces to stan-
dard least squares regression. As λ increases, ‖βla‖1 shrinks towards zero. A similar method for
parameter shrinkage is ridge regression [3], where the estimate is defined as

(1.2) ari, βri = arg min
a,β

Nobs∑
i=1

(
yi − a− xTi β

)2
+ λ‖β‖22.

The penalty terms in 1.1 and 1.2 shrink β towards 0, but they do so in different ways. The lasso
tends to reduce many coefficients to exactly zero, resulting is sparse coefficient vectors, while ridge
regression tends to radically shrink larger coefficients while leaving smaller coefficients unchanged.
From a Bayesian perspective both 1.1 and 1.2 are viewed as log posterior distributions, where
the prior for the lasso is a Laplace distribution and the prior for ridge regression is a Normal
distribution. From a frequentest perspective 1.1 and 1.2 are penalized likelihoods. In the presence
of noise covariates2, penalized likelihoods act to reduce mean square error (mse), defined as

mse = E
[(
y − a− xTβ

)2]
.

The mse can be estimated by cross-validation. We consider adjusted mse, which is defined as
the mse divided by the variance of the response, and is a measure of the mse relative to the best
constant predictor.

In addition to reducing prediction error, the sparsity3 of the lasso solution is desirable for variable
selection. Ridge regression on the other hand works particularly well when a set of predictors4 are
correlated, by effectively producing better predictions by averaging covariates [2]. The desirable
properties of lasso and ridge regression are combined in the elastic net,

2by noise covariates we mean covariates which are independent of the response
3many coefficients of the lasso estimate are exactly zero
4by predictors we mean the non-noise covariates
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(1.3) aen, βen = arg min
a,β

Nobs∑
i=1

(
yi − a− xTi β

)2
+ αλ‖β‖1 + (1− α)λ‖β‖22.

In 1.3, the terms α and λ can be chosen to minimize mse in a layer of cross-validation, although
in practise α is often set beforehand to reduce computation. We considered both elastic net and
lasso estimation in this project, but found no significant differences and for brevity present only
lasso results in this report.

1.3. Correcting for Multiple Hypotheses. It is common to test several hypotheses simultane-
ously when exploring high-dimensional genomic datasets. For example, one may wish to simul-
taneously test the independence of all gene expressions to response. In single hypothesis testing,
the type I error rate is defined as the probability of rejecting a null hypothesis when it is true. In
multiple hypothesis testing there are two commonly used equivalents of the type I error rate, the
Familywise Error Rate (FWER) and the False Discovery Rate (FDR). The FWER is the probability
that any one of the true null hypotheses is rejected, while the FDR is the expected proportion of
rejected null hypotheses which are true, or zero if no hypotheses are rejected. Both of these reduce
to the type I error rate when there is only one hypothesis. When all the null hypotheses are true, it
is easy to see that FWER and FDR are equivalent. However, in general the FDR is a less stringent
error rate to control for, and is widely considered to be more practical for genomic applications.

There are several methods available for increasing or correcting single hypothesis p-values to ac-
count for multiplicity, and the correct manner in which to interpret such corrected p-values depends
on whether the correction is to control FWER or FDR. In Section 4 we are interested in considering
the meta-null hypothesis:H0: all m null hypotheses are true. We use the Benjamini-Hochberg FDR
correction method [1], and will reject H0 at level α if one of the post FDR-corrected p-values is
less that α. To verify the sense in this, note that it follows from the definition of FDR correction
that under H0 rejection happens with probability at most α, and thus α is the level of the test.

One weakness of FWER and FDR corrections is their failure to take into account dependencies
between null hypotheses. In general, when the hypotheses are strongly dependent, these correc-
tions are unduly conservative. In many situations there is an elegant alternative to these corrections
in the form of the Westfall-Young permutation approach, which asymptotically (in the number
of hypotheses) provides the most powerful test [4]. The idea of the Westfall-Young permutation
approach is best explained in the context of genomic correlations, as will be done in Section 4.

2. Modelling the response. The most important factor in determining which treatment a pa-
tient receives is currently the tissue type of the cancer. It would thus be reasonable to expect tissue
type to be a key covariate in predicting drug efficacy. However, the fact that tissue type is an im-
portant factor in drug prescription does not necessarily imply that it is the most important factor
in drug efficacy prediction, as until only recently it was the only factor available to medical practi-
tioners. It may be the case that tissue type is a proxy of more powerful genomic predictors which
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are only now becoming available. This is speculative, and for now we are still interested in giving
tissue type an elevated status amongst covariates.

For each tissue type, indexed5 by k (1 ≤ k ≤ K), we model the response (Y k) as an offset
linear combination of the p covariates (Xk), with a Gaussian noise term,

Y k = ak +

p∑
j=1

βkjX
k
j + εk.

We expect there to be similarities between the coefficient vectors (βks) of the different types,
based on a partial understanding of how the drugs work. Indeed, we verify that significant similar-
ities between certain tissue types do exist in section 4. Depending on how similar the βks are, one
may consider different model fitting approaches.

2.1. The local lasso. With the local lasso approach, estimates for each type are obtained inde-
pendently,

(2.1) aklo, β
k
lo = arg min

a,β
`
(
a, β|yk, xk

)
+ λklo‖β‖1.

where

`
(
a, β|yk, xk

)
=

Nk∑
i=1

(
yki − ak − βk · xki

)2
.

The lasso penalty factor λklo in eqn. 2.1 is chosen by cross-validation to minimize mse. The
local lasso is the optimal6 approach to take if the parameters in the models of the different types
are independent. It can also be optimal when the number of cell lines is very large and the models
are not independent, as will be discussed after the following method has been presented.

2.2. The global lasso. The global lasso approach ignores group differences completely and
finds a single lasso estimate from all the data,

(2.2) agl, βgl = arg min
a,β

`
(
a, β|y, x

)
+ λgl‖β‖1.

The global lasso is of course the optimal approach if there is no difference between the type coeffi-
cients. It is also the optimal approach in the case of mild correlations between βks when the group
sizes are small.

The global versus local dichotomy can be viewed as a variance versus bias trade-off. The local
fits are unbiased7 with high variance, while the global fit is biased with low variance. The bias
is independent of sample sizes, but the variance can be reduced arbitrarily with sufficiently large
samples. The next two lasso based approaches attempt to find a balance between variance and bias.

5there are several indices to be introduced. To remember that k is for type, k sounds like c, and c for class (type)
6optimal here means resulting in a lower mse than the alternative approaches
7actually the local fits are like all lasso estimates biased, but there is an additional bias incurred in the global fit which

local fits do not incur
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2.3. The mixture lasso. With the mixture lasso approach, coefficients are taken to be a linear
combination of the optimal local and global coefficients. More specifically,

βm ← αoβgl + (1− αo)βlo, am ← αoagl + (1− αo) alo,

where,
αo = arg min

α

{
mse(ŷ, y)

}
and where ŷ is the vector of predictions using am and βm.

2.4. The indicator lasso. The indicator lasso approach uses both local and global penalties
simultaneously. Let us denote by (akin, β

k
in) the k’th type fit using the indicator method. We de-

compose these into global and local8 components,

βkin = βgl + βklo

akin = agl + aklo.

The indicator fitted coefficients are chosen to be those that minimize the penalized likelihood,

(2.3) `in (a, β) = `
(
a, β|x, y

)
+ λin‖βgl‖1 +

K∑
k=1

λklo‖βklo‖1.

We consider the special case where in 2.3 the local penalty factors are all set to be equal, and it
proves convenient to express this local penalty factor as a multiple of the global penalty factor,

λklo = αinλin for 1 ≤ k ≤ K.

Thus 2.3 reduces to

(2.4) `in (a, β) = `
(
a, β|x, y

)
+ λin‖βgl‖1 + αinλin

K∑
k=1

‖βklo‖1.

One can choose the penalty terms λin and αin by cross-validation. If one fixes αin and chooses
only λin by cross-validation, then in the limiting cases of αin → 0 and αin → ∞, the indicator
lasso is equivalent to the local and a global9 lasso respectively, a proof of which is given in Ap-
pendix A. The penalty of the indicator lasso closely resembles the penalty of the fused lasso [7],
where the `1-norm of the coefficients as well as the `1-norm of all differences are penalized,

(2.5) Pfu

(
β1 · · ·βk

)
= λfu-1

K∑
k=1

‖βk‖1 + λfu-2

K∑
k1=1

K∑
k2=k1+1

‖βk1 − βk2‖1.

8βgl and βk
lo here are not to be confused with the global and local lasso fits which we described earlier

9when αin → ∞ we do not recover the global lasso in the form of 2.2, as the class specific intercepts are left
unpenalized
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We do not consider the fused lasso in this report, but discuss its relationship to the indicator lasso
in Appendix A. In the following section we compare the four methods described thus far through
a simulation designed to mimic true genomic structures. When reference is made to the indicator
lasso without specifying the value of αin, it can be assumed that αin = 1.

3. Simulation. The design of the simulation and a description of the free parameters is first
given in 3.1. Simulation results are then given in 3.2.

3.1. Simulation design. Covariates (genes) are indexed by j for 1 ≤ j ≤ p, groups are indexed
by k for 1 ≤ k ≤ K and observations by i for 1 ≤ i ≤ Nk, where there are Nk observations
per group. The indices of covariates which have non-zero coefficients in all groups (the globally
important genes) belong to the set S0,

S0 = {j | ∀k : βkj 6= 0}.

The indices of covariates which are non-zero only in group k belong to the set Sk,

Sk = {j |βkj 6= 0 ∧ ∀k′ 6= k : βk
′
j = 0}.

The total proportion of indices in S0 is given by the free parameter φ0. We constrain the proportion
of indices in Sk to be constant across groups, giving one more free parameter φ1.

φ0 =
|S0|
p
, φ1 =

|Sk|
p

(1 ≤ k ≤ K).

All coefficients are non-zero in either all, one or no groups, so we have the constraint

φ0 +Kφ1 ≤ 1.

We now discuss the actual generation of the K sparse coefficient vectors. First we present the
simpler setup for doing this and then the more complicated and realistic one.

Simple coefficient generation. For j ∈ S0, we generate the coefficients of covariate j for the K
types, that is βj = (β1j · · ·βkj ), as

βj ∼ N(0,Σ),

where Σk,k′ = 1k=k′ + ρ1k 6=k′ . When ρ = 0, the coefficients are independent N(0, 1) random
variables and when ρ = 1, the coefficients are the same across all groups. For j ∈ Sk, we generate
βj as,

βkj ∼ N(0, 1), and for k′ 6= k, βk
′
j = 0.

More complicated coefficient generation. We believe that it is more accurate to model coeffi-
cients as having non-zero modal values. This belief is incorporated into the model by generating
coefficient values as
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(3.1) µkj = Skj µ0 + Zkj ,

where the mean in 3.1 is composed of an offset of magnitude µ0 and sign Skj , and a perturbation
term Zkj ∼ N(0, 1). The sign Skj is +1 or −1 with equal probability so as to have E(µkj ) = 0. For
coefficients in S0 we need to consider the correlations between coefficients. To ensure that we still
have cor(µkj , µ

k′
j ) = ρ, we take Zj ∼ N (0,Σ) where Σk,k′ = 1k=k′ + ρ1k 6=k′ , and additionally

P
(
Skj S

k′
j = 1

)
= (1−√ρ)/2. Once we have the K coefficient vectors, we generate observations

for 1 ≤ k ≤ K, 1 ≤ i ≤ Nk from

(3.2) Y k
i = µki + εki ,

where µki = ak0 + βk · Xk
i and Xk

i is the vector of covariates of the i’th observation in the k’th
group. For the simulation we draw Xk

i ∼ N(0, 1), and then normalize the covariates such that for
each group k,

(3.3)
Nk∑
i=1

Xk
i = 0 and

1

N − 1

N∑
i=1

(Xk
i )2 = 1.

In addition to considering generated covariates, we considered extracting covariates from the CCLE
genomic data. This did not not result in significantly different simulation results and we do not
discuss this further. The noise term εki in 3.2 is drawn as εki ∼ N(0, σ2k). The relationship between
the variance of the noise σ2k and the estimated signal-to-noise ratio SNRk in type k is,

(3.4) σ2k =

1

Nk − 1

N∑
i=1

(
µki − µ̄k

)2
SNRk

.

In this simulation we wish to avoid having different noise variances between groups, and thus
define a global noise variance based on a global SNR,

(3.5) σ2 ←

1

N −K

K∑
k=1

Nk∑
i=1

(
µki − µ̄k

)2
SNR

,

where N =
∑K

k=1Nk. Each group noise variance is then set to the global value, σ2k ← σ2.
As the signal strength is dependent on randomly generated coefficient vectors, the constant noise
variance 3.5 results in different signal-to-noise ratios in the different groups. Let us summarize
what the simulation parameters which need to be set are,
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β1

β2

β3

β4

β5
p

K

Fig 1: An example realization of K = 5 coefficient vectors. Similar colours depict similar real
values, and white cells depict zeros. The first 6 covariate coefficients are non-zero in all types, and
each type additionally has 3 unique non-zero covariate coefficients. With p = 40 covariates, we
thus have φ0 = 6/40 and φ1 = 3/40. The within-column similarity of colours for the first six
coefficients is a result of a high correlation: ρ = 0.8.

K number of groups with distinct coefficients (number of tissue types)
p number of covariates (number of genes)
µ0 offset of the coefficients (mean ‘activity’ of active genes)
φ0 proportion of covariates whose coefficients are non-zero in all groups (globally active

genes)
φ1 proportion of covariates whose coefficients are non-zero in one group (locally active genes)
SNR signal-to-noise ratio
Nk number of observations in group k (number of cell lines of type k with drug response)
ρ for coefficients which are non-zero in all groups, the correlation between coefficients

across types.

The proportion of zero coefficients in each group is 1 − φ0 − φ1. The simulation is outlined as
Algorithm 1, and the parameters parameters are illustrated in Figure 1.

Algorithm 1 Simulation Outline

Indices run as: 1 ≤ j ≤ p, 1 ≤ k ≤ K, 1 ≤ i ≤ Nk, 1 ≤ i′ ≤ 10Nk

1: Set all the free parameters
2: Generate coefficient realizations βkj
3: Generate training (TR) and test (TE) covariate arrays Xk

i,j and Xk
i′,j

4: Calculate the mean responses µki and then σ2

5: Generate the TR responses Y k
i and the TE responses Y k

i′

6: Fit the different models using TR covariates and responses
7: Test the predictive power of the fitted models on TE
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3.2. Simulation results. In Figures 2, 3 and 4 comparisons are made between the local, indi-
cator (with αin = 1) and global lassos over various combinations of the simulation parameters. In
Figure 5 the performance with several αin values are compared, and in Figure 6 the performance
of the mixture lasso over several α0 values are illustrated alongside the local and global variants.

In all the Figures, the x-axis is φ0/(φ0 +φ1). This is the proportion of active10 covariates which
are active in all types. Thus large values of φ0/(φ0+φ1) correspond to high similarity across types,
which is favourable for a global fit.

In almost all situations we observe the indicator method resulting in lower prediction errors than
the global and local methods. The variables which are varied in Figure 2 are the signal-to-noise
ratio and ρ, then in Figure 3 we show the effect of varying µ0 and K, and finally in Figure 4 the
parameters p and φ0 + φ1 are varied. The results of varying each of these parameters are discussed
in the Figure captions.

Figure 5 illustrates how varying αin affects the indicator fit. Low αin values result in mses
similar to those obtained with the local fit, while high αin values result in an approach to global
fit mses. This is in agreement with the results of Appendix A, where it is shown that αin → 0
results in predictions from the indicator fit resembling those of the local lasso, and similarly those
for αin →∞ resembling those of a global fit.

In Figure 6 the mse of the mixture method for different values of αo is compared with local,
indicator and global mses. We observe that the mixture method mse is not significantly better than
either the global or local mses for any αo values, whereas the indicator mse is significantly lower
over a large range of φ0/(φ0 + φ1) values.

4. Correlation structures in the CCLE. Before applying the different penalized linear re-
gression techniques to the CCLE data, we perform preliminary analyses of correlations in the data.
We do so by posing a series of progressively weaker null hypotheses which we then attempt to
disprove. Ideally, the null hypotheses should all be rejected for the use of the indicator lasso to be
appropriate.

We first introduce some notation which better enables us to state the null hypotheses. In the
simulation we introduced indices i, j and k to index cell line, gene and type respectively. We
continue with this indexing system, and introduce a fourth index l for drugs. Accordingly we write
Y k
i,l for the response to drug l of the i’th cell line of type k and Xk

i,j for the expression of the
j’th gene, in the i’th cell of type k. We will present the null hypotheses in the context of specific
type-drug pairs. The first null hypothesis is trivial, and included for the sake of completeness,

(H0,1) Drug l has no effect on cell lines of type k.
10active here means having a non-zero coefficient
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Fig 2: Comparison of the adjusted mse for local (red), global (blue) and indicator (green) lassos.
On the x-axis of the four subfigures is φ0/(φ0 + φ1), which is the proportion of active sites which
are globally active. In the left column ρ = 0.7 and in the right column ρ = 1.0. The top two Figures
have signal-to-noise ratio 10, while the bottom two have signal-to-noise ratio 3. Other parameters
which are kept constant in all four subfigures are: K = 3, N1 = N2 = N3 = 60, φ0 + φ1 =
0.1, p = 200, µ0 = 0. Each point corresponds to an average over 20 simulation runs. The lines
are least square fits, although we have no reason to expect a linear relationship. There are several
unsurprising behaviours observed. (1) The mse of the local lasso fit is independent of both ρ and
φ0/(φ0 + φ1). (2) The global mse improves as ρ and φ0/(φ0 + φ1) increase. (3) The relative mse
is bound below by the SNR. The indicator method appears to be at least as good as the local and
global lassos for all parameter settings. When ρ = 1 and φ0/(φ0 + φ1) = 1 (far right), the group
models are identical, and thus the global lasso should is the correct lasso fit to use. However even
here the indicator lasso appears to perform at least as well as the global lasso.
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Fig 3: As in Figure 2, we have the local lasso (red), global lasso (blue) and indicator lasso (green).
In the left column µ0 = 0 and in the right column µ0 = 10. In the top row K = 2, while in
the bottom row K = 6. In all subfigures the total number of observations is

∑K
k=1Nk = 180.

Other parameters kept constant in all four are: φ0 + φ1 = 0.1, p = 200,SNR = 0 and ρ = 1.
On comparing the left and right panels, we observe that larger µ0 values result in poorer relative
predictions than small µ0 values. On considering the definition of µ0 this may seem strange as a
larger µ0 implies a larger signal which, all else being equal, results in an easier reconstruction and
better predictions. But the SNR is fixed, and not the noise variance, and so a larger signal coincides
with a larger noise variance. Comparing the top and bottom panels we note that for a fixed number
of observations, a larger number of groups results in a more challenging reconstruction. We also
observe the global lasso outperforming the indicator lasso when µ0 = 10,K = 6 (bottom right).
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Fig 4: We have the local (red), global (blue) and indicator (green) lassos. In the left column the
sparsity of the true model is φ0 + φ1 = 0.04 and in the right column it is φ0 + φ1 = 0.3. In the
top panel, the total number of covariates is p = 140, while in the bottom panel it is p = 500. In all
subfigures there are K = 3 groups of 60 observations. Other parameters kept constant in all four
are: µ0 = 0,SNR = 10 and ρ = 1. On comparing the left and right columns, we observe lower
adjusted mses in the sparser models, all other parameters equal. Similarly, comparing the top and
bottom Figures we observe lower adjusted mses in the case of fewer covariates. Neither of these
results is surprising. For the dense, high-dimensional case (bottom right) we observe the global
lasso outperforming the indicator lasso with αin = 1, although in Figure 5 we see that with larger
αin values the indicator method is more competitive with the global lasso.
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Fig 5: The same setup as for the bottom-right subfigure of Figure 4: φ0 +φ1 = 0.3, p = 500, N1 =
N2 = N3 = 60, µ0 = 0,SNR = 10 and ρ = 1. This Figure contains in addition to the local lasso
(red), global lasso (blue) and the indicator lasso with αin = 1, the indicator lasso with varying
weight between global and local penalty, with αin running from 0.5 to 2.0. We see that αin = 2 is
quite close to the global fit.
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Fig 6: Comparison of adjusted mses for methods: indicator (green), local (red), global (blue), and
mixture lasso with varying αo values. Setup parameters K = 6 types, with N1 = · · · = N6 =
40, ρ = 1,SNR = 10, φ0 + φ1 = 0.1, p = 200 and µ0 = 0.We observe that the mixture mse
does only slightly better than simply interpolating between the global and local mses, but it is
significantly poorer than the indicator lasso.
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Rejection of H0,1 follows from the fact that we have finite IC 50 responses. The second null
hypothesis concerns correlations between genomic covariates and drug response,

(H0,2) For drug l and type k, and for all genes j: cor
(
Xk
j , Y

k
l

)
= 0.

Hypothesis H0,2 being true would paint a bleak picture for drug response prediction and per-
sonalized medicine in general. Fortunately for several type-drug pairs we have sufficiently small
p-values, obtained via different methods, to be able to confidently reject H0,2. We consider both
Pearson and Spearman correlations. The Pearson correlation is defined as

(4.1) corP (X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
.

In finite samples this is estimated in the obvious way by replacing the covariance and vari-
ance terms with sample estimates. The Spearman correlation is defined for finite samples as the
Pearson correlation of the ranks of X and Y in eqn. 4.1. We assess the validity of H0,2 in three
different ways. The first and most direct way is by estimating the correlation of all genes with
drug response, and then calculating a global p-value associated with these correlations. We con-
sider four variants of the first approach, by using Benjamini-Hochberg FDR and Westfall-Young
multiple testing corrections with both Pearson and Spearman correlations to obtain global p-values.
The second approach involves comparing cross-validated background11 correlations with the cross-
validated strongest correlation. The use of cross-validation makes multiple-correction unnecessary,
but with it there is an associated loss of power which makes this approach weaker than the first
approach. The third approach is the least direct, and involves comparing the sparsity of coefficients
of bootstrapped lasso fits. All three approaches will be described in detail.

4.1. p-values for multiple hypotheses and the Westfall-Young approach. IfX and Y in eqn. 4.1
are normally distributed, exact p-values for the Pearson correlation coefficient can be calculated
from the Student’s t-distribution. For the Spearman correlation, exact p-values can be obtained
without any distributional assumptions. These p-values relate to single gene-response pairs. As
already mentioned, these can be adjusted for by using the Benjamini-Hochberg FDR correction.
The smallest post-correction p-value, which we denote by pB , turns out to be

pB = m min
1≤j≤J

p(j)

j
,

where p(j) is the j’th smallest pre-correction p-value, and m is the number of genes. Under H0,2,

(4.2) P (pB < α) < α.

11by background we mean genomic covariates are the covariates which are not correlated with drug response, by far
the majority. We referred to these as noise covariates in the simulation
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The degree to which inequality 4.2 is conservative depends on the dependence structure of the
genes. Of course for 4.2 to hold at all requires the gene-response p-values to be reliable, and so
a deviance from normality may render 4.2 invalid in the case where gene-response p-values are
obtained from Pearson t-statistics. These concerns of lack of power and lack of robustness can be
avoided if one adopts a Westfall-Young permutation approach. The idea of Westfall and Young
was to compare the correlations obtained using the true response vector to those obtained using
permutations of it. To test the null hypothesisH0,2 for subtype k and drug l, 1000 pseudo-responses
Ỹ k
l,q, 1 ≤ q ≤ 1000 are generated by permuting Y k

l . The highest correlation obtained with the
real drug is then then compared to the 1000 highest correlations obtained with the permutations.
The p-value is estimated as n/1000 where n is the rank of the real correlation amongst the 1000
top permutation correlations. In general, one need not compare the top correlation with the top
permutation correlations. One could compare a lower rank correlation, or use some combination
of top ranks. The most powerful combination of ranks to use depends on the underlying data,
and is beyond the scope of this project but is addressed in [5]. Note that with the Westfall-Young
approach, there are no distributional assumptions made in calculating the global p-value.

4.2. Corrected p-values to assessH0,2. We consider Benjamini-Hochberg corrected Spearman
correlations (BS), Benjamini-Hochberg corrected Pearson correlations (BP), Westfall-Young cor-
rected Spearman correlations (WS) and Westfall-Young corrected Pearson correlations (WP). The
only one of these which assumes normality in calculating a global p-value is BP. In Figure 7 and
in Figure 16 in Appendix D, the p-values using these four variants are illustrated for each type-
drug pair. We see that for several type-drug pairs, there is a significant correlation. For the smaller
groups, correlations need to be large to appear significant, and it is possible that several type-drug
pairs with real correlations do not appear significant due to small sample size. The BP method pre-
dicts the largest number of significant correlations. In Figure 14 in Appendix D, the significance
of each drug-tissue type is illustrated in p-value panels. We see a strong similarity in the p-values
when using the four approaches. We have included two random responses, which we have called
placebos, as a further check that p-values are reliable. The first placebo contains i.i.d draws from
a Normal distribution, and the second is a permutation of lapatinib responses. Further comments
can be found in the captions, and detailed tables of p-values and correlations using the described
method can be found in Appendix E.

4.3. Cross-validated p-values to assess H0,2. In this second approach a type of N -fold cross-
validation is used to obtain estimates of how significant the largest correlation is for each drug-type
pair. For each fold12, we choose the most strongly correlated gene in the remaining N − 1 folds,
and calculate the correlation of this chosen gene in the original fold. The average of the absolute
value of the N correlations thus obtained is then compared to equivalent values calculated on 500
background genes. The optimal number of folds to use is not clear. In general applications of cross-
validation,N is taken as large as computationally feasible, thus allowing the training sets13 to be as

12fold is the commonly used term for what in 1.2.1 we called a partition
13The N − 1 folds used to fit the model for the remaining fold are collectively called a training set
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Fig 7: The p-values associated with type-drug specific null hypotheses H0,2, that all genes are
uncorrelated with response. In the top Figure, p-values are obtained using the Westfall-Young ap-
proach, while in the bottom Figure p-values are obtained from a Benjamini-Hochberg FDR cor-
rection. Each circle represents a type-drug pair, and is color coded by type. The dotted red line
represents the 5% significance level. On the x-axis is the absolute value of the Pearson correlation
coefficient. The apparent stripy clustering by tissue type is due to the difference in number of cell
lines between the different types. For the smaller groups (large intestine, ovary, pancreas, breast)
a larger correlation is required to be declared significant. Even correlations as large as 0.7 are in-
significant in the smaller types. On the right are histograms of the p-values. The mild dispersion
within the types is due to the fact that not all cell lines received certain drugs. We observe that the
Benjamini-Hochberg correction obtains more significant genes, however, for reasons mentioned in
the text, the Westfall-Young p-values are more reliable in this plot as the Pearson p-values rely on
the normality assumption.
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close as possible in size to the full data set. However, in the current application we wish to calculate
correlations on a fraction 1/N of the data, and thus we have an incentive to keep N small so as to
reduce the variance in these correlations. We choose N = 3. It is worth mentioning that the gene
selected in each fold may be different.

The results of using this cross-validation technique are illustrated in Figure 12 and in Figure 15
in Appendix D. In addition to calculating cross-validated top correlation, we have calculated cross-
validated rank 2 to 5 correlations. We see that this cross-validation approach is less powerful than
the multiple-correction approaches of section 4.2. Significant correlations are observed when all
types are combined but few individual type-drug correlations appear significant with this approach.
Further comments are presented in the Figure captions.

4.4. Bootstrapped lasso counts to assess H0,2. The third approach we consider to assess H0,2

is to compare lasso fits on true responses with lasso fits on permuted responses. The idea is that,
if there were particular genomic covariates which obtain non-zero coefficients more frequently on
bootstrapped14 data than on bootstrapped permuted data, this would suggest that those covariates
were truly correlated with response. The scheme is described in Algorithm 2. While we do not
obtain a p-value using Algorithm 2, it could easily be extended so as to obtain one. For example,
the permutation step on line 13 could be repeated 1000 times, and the distribution of the largest
non-empty bin could be compared to the largest non-empty bin without permutation. In Figure 9,
we compare the frequency distribution using bootstrap sampling between the true responses and
permuted responses for the drugs Panobinostat and PD-0325901 for selected tissue types. In several
cases we observe top covariates being selected more frequently when the true response is used as
compared to the permuted response, suggesting that these covariates carry real predictive value.

Algorithm 2 Boostrapped lasso for H0,2

1: Choose the subtype τ and drug to be tested
2: Set the optimal λ for the lasso Algorithm by cross-validation (glmnet in R)
3: for i =1:100 do
4: Take a bootstrapped sample of cell lines of type τ
5: Fit the lasso penalized model and record which genes have non-zero coefficients
6: end for
7: for j =1:J do . Where J is the number of genes
8: cj ← number of times gene j was non-zero in the 100 bootstraps
9: end for

10: for n = 1:100 do
11: Count how many times cj = n . green bars in Figure 9
12: end for
13: Perform the above steps for the case where the response vector has been randomly permuted .

blue bars in Figure 9

14random sampling with replacement
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Fig 8: Cross-validated correlations and permutation p-values of the five largest correlations for
different types, for the drugs Panobinostat and Paclitaxel. The largest correlation is coloured red. On
the x-axis is the absolute value of the Pearson correlation, averaged over test sets. The dashed line
is the cumulative distribution of background genes, as estimated by 500 randomly selected genes.
For the drug Panobinostat, only when all types are considered simultaneously is there a significant
p-value. This is in contrast to, for example, the p-values from the Westfall-Young permutation
method as presented in Table 7. The drug Paclitaxel shows a significant correlation in type skin,
and perhaps breast.
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Fig 9: The frequency with which covariates have non-zero coefficient using the lasso, over 100
bootstrapped samples. The green bars are the counts using non-permuted responses. The blue bars
use permuted responses. In certain cases there appear to be several covariates being selected more
frequently using the true responses than would be expected if there were no real correlations (i.e.
the green bars).

We have now considered the null hypothesis H0,2 at length, and seen that it can be rejected
for several type-drug pairs. The final two null hypotheses consider the similarity between different
types. Hypothesis H0,3 postulates a form of independence of the types, and H0,4 that types are on
the other hand indistinguishable. We assume that for type k and drug l,

(4.3) Y k
i,l = βkl ·Xk

i + εi.

In hypothesis H0,3 we consider the independence of model coefficients of two types denoted
k and k′. To clarify what we mean by independence of model coefficients, we take a Bayesian
view and consider model coefficient vectors as random variables. Let the sparsity of the coefficient
vector βkl be denoted by,
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Ski,l = 1[βk
i,l 6=0].

Assume that the sparsity vector is a random variable with probability mass function,

(4.4) P
(
Skl = skl

)
=

m∏
i=1

(pkl )
ski,l(1− pkl )

1−ski,l .

where m is the number of genes, so that each coefficient is non-zero independently of other
coefficients with probability pkl . Assume too that the size of non-zero coefficients are independent
within and between types. Null hypothesisH0,3 then states that the sparsity vectors are independent
in the following sense:

(H0,3) P
(
Skl = skl , S

k′
l = sk

′
l

)
= P

(
Skl = skl

)
P
(
Sk
′
l = sk

′
l

)
.

We have a strong prior belief that H0,3 is false, based on a biological knowledge of how drugs
function. Note that we do not observe the true vector Skl but rather an estimate of it, denoted Ŝkl ,
obtained via the lasso. Roughly speaking, we expect to be able to disprove H0,3 if Ŝkl and Ŝk

′
l have

a large overlap. However, H0,3 being true does not imply the validity of the analogous version for
the sparsity estimate,

(H0,3a) P
(
Ŝkl = ŝkl , Ŝ

k′
l = ŝk

′
l

)
= P

(
Ŝkl = ŝkl

)
P
(
Ŝk
′
l = ŝk

′
l

)
.

For H0,3 to imply H0,3a, and thus for a rejection of H0,3a to imply a rejection of H0,3, we need
to make further assumptions on the distribution of the covariates. A sufficient although probably
unnecessarily strong assumption is that covariates within each model are independent15.

We will not test hypothesis H0,3a directly, but rather one of its consequences. We will consider
the vector of counts c as introduced on line 8 of Algorithm 2, and denote by ckl the vector c for type
k and drug l. It is easy to see that H0,3a implies,

(H0,3b) E
[
ρP

(
ckl , c

k′
l

)]
= 0.,

A rejection of H0,3b will imply that types k and k′ are not independent in the sense of H0,3,
and thus endorse the sharing of information between types k and k′ while fitting. We choose to

15This is not a realistic assumption, and we need to develop weaker and more realistic assumptions to make our anal-
ysis more rigorous. The need for assumptions arises from the possibility that certain covariate structures may encourage
certain coefficients to be selected more frequently than others, even given 4.4. However, one could argue that H0,3a is a
more relevant null hypothesis and propose ignoring H0,3 altogether, thus making connections between H0,3 and H0,3a

irrelevant.
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TABLE 1
The p-values of type independence (see H0,3) for the drug Paclitaxel.

central n.s. skin lung ovary l. intestine
central n.s. - 0.029 0.791 0.208 0.283
skin - - 0.031 0.573 0.014
lung - - - 0.795 0.000
ovary - - - - 0.873
l. intestine - - - - -

test H0,3b for all (type, drug) pairs which have a correlation significant at 1% in Table 5. We
obtain H0,3b p-values through a permutation test, that is by comparing the correlation in H0,3b to
equivalent correlations when ckl is permuted. The results for the drug Paclitaxel are presented in
Table 1, and the results for other drugs are presented in Appendix E. We notice that for several
pairs we can reject H0,3, and thus conclude that correlations between type coefficients do exist. It
should be noted H0,3b is not the null hypothesis providing the most powerful test for dependence,
as it ignores sign and magnitude of coefficients. We now turn our attention to the null hypothesis
H0,4,

(H0,4) βkl = βk
′
l .

Disproving H0,4 directly requires distinguishing between differences in estimates caused by
noise in the data and any true differences that might exist. One way to go about disproving H0,4

would be to compare the in-group variance of estimates obtained on mutually exclusive subsets of
the data, with inter-group variances. If the inter-group variance is in some sense large compared to
in-group variance, then H0,4 can be rejected. However we have already seen that the lasso estimate
within a group is strongly dependant on the data sample, and so this approach is not feasible with
the small samples at our disposal.

It should be noted that the mean genomic covariates and responses are significantly different
between types, as illustrated in Figure 10 and shown in our discussion on clustering in C. This is
however not sufficient to reject H0,4.

A second approach for disprovingH0,4 is to compare prediction mse by crossing training and test
set types. More specifically, for types k and k′ we can compare the four mses obtained by training
and testing on one of k and k′. The mses obtained by crossing all types for the drug Paclitaxel are
illustrated in Table 2. The first observation is that the adjusted mses are overall quite poor, as will be
discussed in the following section. What is important in the context of H0,4 is that certain models
fit on certain tissue types appear to perform badly when applied to other tissue types. In particular,
haematopoietic and lymphoid tissue and the central nervous system appear to provide poor fits for
the other types. Tables equivalent to Table 2 for other drugs can be found in Appendix E.

5. Drug Response Prediction. In this section we discuss the results obtained when using
the local, global and indicator versions of the lasso. We do not discuss two additional aspects of
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Fig 10: Boxplots of the response of cell lines to the drug Panobinostat, separated by tissue type.
Box widths are proportional to number of cell lines. The difference between haematopoietic and
lymphoid tissue, and the other tissue types is significant.

TABLE 2
Using the drug Paclitaxel, the adjusted mse obtained with a lasso estimate trained on the row tissue type, and tested on
the column tissue type. The diagonal terms are cross validated estimates, and off diagonal terms use all cell lines of the

row type in fitting. Further comments are made in the text.

central n.s. other hema.& ly. skin ovary lung pancreas breast l. intestine
central n.s. 0.842 1.420 2.237 1.375 2.081 1.508 1.632 1.435 1.571
other 1.488 0.659 1.233 1.091 0.828 1.059 1.051 1.108 1.062
hema.& ly. 3.110 1.717 1.198 2.526 2.446 2.133 3.261 2.279 2.269
skin 1.714 1.103 1.349 0.921 0.719 1.026 1.210 0.899 1.112
ovary 1.414 1.817 2.157 1.261 0.809 1.524 2.356 1.584 1.660
lung 2.631 1.156 2.265 0.863 0.852 0.817 1.264 0.954 0.936
pancreas 1.379 1.093 2.437 1.000 1.011 1.001 1.151 1.004 1.012
breast 1.601 1.188 2.364 0.939 1.074 1.399 1.119 1.189 0.944
l. intestine 3.505 2.605 2.215 1.816 2.554 2.367 1.918 2.462 1.034
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Fig 11: Two populations with (unknown) responses y and predicted responses ŷ. Considering each
population individually, we have Pearson correlations between predicted and true responses of
0.20 and 0.01. When the two populations are pooled, the Pearson correlation is 0.73. Of course
the prediction errors are unchanged when the two populations are grouped, illustrating that the
comparison of correlations between populations can be misleading.

creating predictive models, namely filtering and clustering, but refer the reader to Appendices B
and C for more information about these complementary aspects.

5.1. Evaluating prediction performance on the CCLE data. In Section 3, we presented the
quality of predictions in terms of an adjusted mse. There are other measures which may be con-
sidered, for example a Pearson or Spearman correlation between predicted and true response. In
the one paper most closely resembling our work [6], the authors consider the Pearson correlation
coefficient and the mse. The novel approach they use is to combine molecular features of the drugs
with the genomic data and then predict response using the extended covariate. They claim that their
approach results in substantially better predictions than when each drug is treated separately, and
present a spectacular increase in Pearson correlation with their novel approach. However their pre-
diction mse does not improve when drugs are pooled, suggesting to us that the observed increase
in correlation is an artefact of pooling. Our postulate is illustrated in Figure 11. To avoid such a
pitfall we focus on mse in only the breast cell lines. By more carefully considering the objective
of drug prediction, which is to direct appropriate drugs to patients, it may be possible to derive a
more meaningful performance measure, but this is beyond the scope of this project.

5.2. Prediction results with the CCLE. We do not succeed in making accurate drug response
predictions using any of the methods presented in the report. However, we do observe that predic-
tions on breast cell lines based on a global fit are significantly better than predictions based on a
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Fig 12: Scatter plots of true response (x-axis) versus predicted response (y-axis) of breast cell lines
to several drugs, using the indicator lasso fit (above) and the global lasso fit (below). In the bottom
right hand corners we give the adjusted mse associated with the points in the plots. The response
of the two ‘placebo’ drugs are more or less constant, reflecting the ability of the cross-validated
penalized regression fits to avoid overfitting. In all drugs other than Nilotinib we observe mild
success at prediction. There does not appear to be a significant difference between the performance
of the indicator and global methods.

local fit. We observed the poor predictive value of local fits in Table 2. In Figure 12 we present
scatter plots of the response and predicted response to several drugs of breast cell lines, along with
mses. We see there that the indicator method does not provide improved predictions over the global
fit. We believe this is due to the low number of breast cell lines in the CCLE, which renders any bias
reduction gained with the indicator method insignificant given the resulting increased variance.

6. Discussion. We have analysed correlations between genomic covariates and drug responses
within and between different tissue types. We have then considered using the genomic covariates
to predict the drug response of cancer cell lines, and have attempted to harness the similarity across
tissue types to make improved predictions. The proposed method has been shown to perform well in
simulation studies, but has failed to provide significant improvements when applied to the real drug
prediction problem. We suspect that the failure of the use of tissue type via the indicator method to
improve predictions is due to too small a number of cell lines available for model fitting. The extra
variance incurred by dividing an already small number of cell lines into separate types outweighs
any potential gain in bias reduction. We hypothesize that future datasets containing larger numbers
of cell lines will prove move amenable to approaches making use of tissue type differences.
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APPENDIX A: INDICATOR LASSO PROOFS

The main result we prove present here is that in the limit αin → 0 and αin →∞, the indicator
lasso reduces to forms of local and global lassos. We also present a result pertaining to intermediate
values of αin, and present a proof highlighting a major difference between the local indicator and
fused lassos. Let us repeat what the expression is which we wish to minimize with the indicator
lasso,

(A.1) `in (a, β) = `
(
a, β|x, y

)
+ λin‖βgl‖1 + αinλin

K∑
k=1

‖βklo‖1.

A.1. In the limit αin → ∞. In A.1, as αin → ∞ any perturbations from the global fit are
penalized to such an extent as to make them not worthwhile, resulting in β1lo = . . . βKlo = 0.
However we do not recover the global fit as presented in 2.2, as we still the constant terms akin, 1 ≤
k ≤ K which are unpenalized. Thus in the limit, the coefficients are the same between models but
the intercept terms are free to differ.

A.2. In the limits αin → 0. First we note that for a constant αin the solution found with the
indicator lasso as presented in A.1 for the optimal λin, is the same as that found when the penalty
term is divided through by αin,

(A.2) `in (a, β) = `
(
a, β|x, y

)
+
λin
αin
‖βgl‖1 + λin

K∑
k=1

‖βklo‖1,

albeit the optimal λin in A.2 is a factor αin larger than that in A.1. We now apply a similar
argument to that in case αin → ∞ to show that as As αin → 0 the penalty on the global term
increases to such an extent as to reduce βgl to 0. A more precise proof follows as a corollary of the
following lemma.

A.3. A lemma relating βgl and the βk
los. We present a result which puts a bound on βgl co-

efficients in terms of βklos coefficients. We first introduce some notation. For a particular covariate
index j, let the sets of types with positive, zero and negative coefficients for a given (λ, α)-indicator
penalty be given as

U+
j (λ, α) = {k |βkin, j > 0},

U0
j (λ, α) = {k |βkin, j = 0},
U−j (λ, α) = {k |βkin, j < 0}.

We define the excess of positive coefficients as

Kj(λ, α) = |U+
j (λ, α)| − |U0

j (λ, α)| − |U−j (λ, α)|.
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We define the n’th smallest coefficient in U+
j to be β+[n]

j . Kj(λ, α) may be negative, but we
assume without loss of generality that |U+

j (λ, α)| ≥ |U−j (λ, α)|.

LEMMA 1. If Kj <
1
α , then βgl = 0. Otherwise for integer n ≤ Kj

2 , if
1

Kj − 2n
< α <

1

Kj − 2(n− 1)
, then βgl = β

+[n]
j . Finally, for integer n ≤ Kj

2 if α = Kj − 2n, then β+[n]
j ≤

βgl ≤ β+[n+1]
j .

PROOF. (sketch) We assume that the minimum (in covariate j) is obtained at βin, j , and then
consider how best to divide βin, j between global and local components so as to minimize the
penalty term. Consider the respective global and local components of the penalty,

Pin (βin, j) = λin‖βgl‖1 + αinλin

K∑
k=1

‖βklo‖1

= Pin-gl (βgl) + Pin-lo (βlo) .

The global penalty is minimized when βgl, j = 0 The local penalty Plo is minimized if βgl is the
median of βin, j . In the case Kj < 0 these minima coincide at βin, j = 0. In other cases, the value
of αin dictates which is more important. When αin is large, the optimal βgl is near the median of
βin, j . If αin is small, βgl approaches zero. Indeed, if αin < 1/Kj then βgl.

A.4. Difference between indicator and fused. We can rearrange the fused lasso to get,

Pfu

(
β1 · · ·βk

)
= λfu-1

K∑
k=1

‖βk‖1 + λfu-2

K∑
k1=1

K∑
k2=k1+1

‖βk1 − βk2‖1

= λfu-1

K∑
k=1

‖βk‖1 + λfu-2

K∑
k=1

(2k −N − 1)β[k]

where β[k] is the k’th largest coefficient. Thus we see that the coefficients which are further away
from the median are penalized more. To make a clearer comparison with the indicator method,
suppose that all the βk’s are positive. We then have,

Pfu

(
β1 · · ·βk

)
= λfu-1K‖µβ‖1 + λfu-2

K∑
k=1

(2k −N − 1) (β[k] − µβ)

where µβ is the mean of the βk’s. This is equivalent to a version of the Indicator lasso, where β0 is
constrained to be the mean, and the penalty applied to each perturbation term depends on its rank.
Extremely ranked perturbations have a larger penalty. We saw in A.3 that βgl is in general not the
mean.
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APPENDIX B: FILTERING

In many ways the lasso can be viewed as a type of filter, but performing the lasso on all∼ 20, 000
covariates is computationally burdensome16. By performing a fast pre-filter of covariates, exploring
the different variants of the lasso fits becomes easier. A second potential advantage of filtering
could be better predictions, although we have not observed this. We have attempted filtering for
both genes which are most correlated within a specific type and across all types simultaneously,
within a cross-validated framework much like that presented in 4.3.

APPENDIX C: CLUSTERING

Tissue type does seem like the natural variable by which to group cell lines, but we have explored
other possible groupings to see if better predictions can arise when using the indicator lasso. The
alternative groupings were defined according to the two clusterings below.

C.1. Clustering by covariates. Using the k-medoid clustering technique, cell lines are clus-
tered by the∼ 20, 000 genomic covariates. Clusters are similar to the real tissue types, as illustrated
in Figure 13.

C.2. Clustering by response. Here the cell lines are clustered according to their responses to
the ∼ 50 drugs. In an application setting, the response to a drug is of course not available. For this
reason, we perform initial clustering on responses but then redefine clusters in terms of their mean
genomic covariates. This is done in a cross-validated framework, so that the final cluster of a cell
line does not depend (directly) on it’s drug responses. Matching up cluster names from different
folds can be done at the end to minimise inter-fold cluster mean variance.

APPENDIX D: ADDITIONAL FIGURES

We present three additional Figures. Figure 14 compares H0,2 p-values using four varieties of
multiple correcting. Figure 15 presents the results of the cross-validated correlation test applied to
the drugs Lapatinib and PD-0325901. Figure 16 presents the results of Benjamini-Hochberg FDR
correction and Westfall-Young permutation for drug-type correlation significance.

APPENDIX E: TABLES

We present additional tables. Tables with precise p-values correlations for each type-drug pair
using both Spearman and Pearson correlations, and Benjamini-Hochberg FDR corrections and
Westfall-Young permutation tests are first presented, followed by Tables of p-values for to the
test of null hypothesis H0,3b for several drugs are presented.

16For a n× p covariate matrix, the operations required in O(n pmin (n, p))
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clust.1 clust.3clust.2

central nervous system
haemat. and lymph.

skin

ovary

lung

pancreas
breast
large intestine

clust.1 clust.2 clust.3
central nervous system
haemat. and lymph.
skin

ovary

lung

pancreas

breast
large intestine

Fig 13: Results of clustering the ∼ 500 cell lines. On the left, the ∼ 20, 000 covariates are used
for clustering and on the right the ∼ 50 responses are used. The clusters are strongly dependent on
type (p-value 10e-28 on right using χ2 g.o.f test).
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Fig 14: Hypothesis H0,2 p-values using the four techniques described in 4.2. p-values which are
less than 5% are shown in gray, and p-values of below 1% are shown in black. There is a strong
similarity of p-values using the different approaches. The tissue types with more cell lines generally
exhibit more significant correlations, and when all types are pooled (all c.lines, on the right of each
inset) the largest number of significant drugs are reported. Reassuringly, the two random responses
(placebos) are the only ‘drugs’ not to show any significant correlations.
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Fig 15: Permutation method applied to Lapatinib and PD-0325901. Few subtypes appear to have
significant genomic correlates with drug response, but when all types are considered the correla-
tions become significant.
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Fig 16: As in Figure 7, but using the Spearman correlation coefficient. Above: Westfall-Young and
below: Benjamini-Hochberg FDR correction.
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TABLE 3
Benjamini-Hochberg FDR corrected p-values of largest Pearson correlation. Red values signify 1% significance.

cent: othe: haem: skin: ovar: lung: panc: brea: larg: all:
17-AAG 100 0.019 6.72 58.19 10.03 4.57 100 62.76 68.59 0
AEW541 40.72 0.027 0.031 100 0.935 100 37.48 100 100 0.032
AZD0530 100 66.05 5.41 0.333 17.68 0.207 100 11.48 100 0.895
AZD6244 0.006 1 0 19.57 2.52 1 100 0.007 21.08 0
Erlotinib 4.8 0 4.47 5.76 12.36 0.001 18.02 0.01 18.42 0
Irinotecan 55.33 0.011 3.49 18.15 4.74 12.55 0.644 100 63.4 0
L-685458 11.86 0.027 4.4 6.55 41.87 100 1.81 0 16.89 0.059
LBW242 0 0 0.586 10.32 55.31 0.003 0.262 70.44 44.85 0
Lapatinib 100 0.003 0.864 1.37 100 0 22.93 1.8 44.99 0
Nilotinib 100 1.15 0.003 86.67 3.15 4.42 96.49 0 25.03 2.15
Nutlin-3 0.005 13.28 9.93 2.24 0.782 2.85 100 14.33 23.8 13.42
PD-0325901 0.202 0.158 0.001 2.14 5.96 0.655 100 0.373 1.33 0
PD-0332991 100 1.24 4.12 2.74 0.024 14.43 23.24 0.005 43.26 3.29
PF2341066 14.17 0.114 1.43 100 18.21 15.12 29.63 35.3 100 0.011
PHA-665752 0.308 1.24 0.218 100 0.967 0.017 15.12 61.58 61.49 2.96
PLX4720 14.69 9.74 0.004 100 100 55.42 100 100 17.55 12.19
Paclitaxel 3.48 0.001 82.11 0.483 4.17 0.438 64.32 14.95 36.1 0
Panobinostat 28.24 0.002 0.224 23.33 4.93 1.83 1.42 1.48 52.89 0
RAF265 15.46 1.33 0.005 97.65 10.81 10.87 100 11.23 100 0.001
Sorafenib 100 26.48 0.033 17.94 49.92 25.89 100 100 27.84 0.064
TAE684 100 0.019 0.01 39.89 6.06 100 100 5.8 22.2 0.432
TKI258 100 2.6 0.499 78.65 66.65 11.12 2.5 1.19 10.73 0.115
Topotecan 12.56 0.007 45.27 6.24 11.53 0.751 100 47.55 12.63 0
ZD-6474 3.56 3.35 3.99 100 29.89 0.033 100 5.66 100 0.001
Placebo 1.16 16.99 70.68 45.65 7.24 3.3 100 32.3 100 90.98
Placebo 47.49 100 51.44 100 100 100 41.51 100 100 49.1
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TABLE 4
Largest Pearson correlations, appearing in red if it is significant at 1% using Benjamini-Hochberg FDR correction.

cent: othe: haem: skin: ovar: lung: panc: brea: larg: all:
17-AAG 0.03 0.446 -0.52 -0.61 -0.76 0.47 0.16 -0.69 -0.78 0.375
AEW541 -0.7 0.442 0.61 0.08 -0.802 -0 0.71 -0.1 -0.33 0.252
AZD0530 0.09 0.33 -0.52 0.719 0.74 0.522 0.09 0.73 0.43 0.226
AZD6244 0.856 0.39 0.674 0.64 0.78 0.5 -0.09 0.855 0.79 0.343
Erlotinib 0.75 0.512 -0.53 -0.66 0.75 0.593 0.73 0.85 0.8 0.338
Irinotecan 0.79 0.574 -0.61 0.7 0.82 0.62 -0.89 0.01 0.9 0.46
L-685458 0.73 0.451 -0.53 -0.67 0.72 0.03 0.78 0.891 0.81 0.251
LBW242 0.93 0.544 0.564 0.65 0.71 0.584 0.814 0.69 0.77 0.287
Lapatinib -0.01 0.467 0.557 0.69 0.03 0.634 0.73 0.77 -0.77 0.373
Nilotinib 0.09 0.45 0.65 0.65 0.79 0.52 0.77 0.926 0.83 -0.24
Nutlin-3 0.859 0.36 -0.51 0.68 0.805 0.48 0.01 0.73 -0.79 0.2
PD-0325901 0.809 0.419 0.663 0.68 0.77 0.504 -0.09 0.8 0.85 0.365
PD-0332991 -0.06 0.43 0.54 -0.72 0.856 0.49 0.79 0.873 0.8 0.23
PF2341066 0.73 0.424 0.55 -0.05 0.74 0.45 0.72 0.71 -0.35 0.26
PHA-665752 0.803 0.39 -0.58 -0.17 0.801 0.561 0.74 0.69 0.77 0.22
PLX4720 0.74 0.36 0.64 0.15 0.05 0.42 0.06 -0.44 0.8 -0.2
Paclitaxel 0.77 -0.475 0.47 0.712 0.77 -0.511 0.7 0.73 0.78 0.337
Panobinostat -0.71 0.472 -0.58 0.63 -0.77 0.49 -0.79 -0.78 -0.77 -0.304
RAF265 0.78 -0.42 -0.642 0.6 -0.75 -0.48 -0.06 -0.74 -0.2 0.29
Sorafenib 0.11 0.35 0.609 0.64 -0.72 0.44 0.16 -0.01 0.79 0.247
TAE684 0.17 -0.445 0.626 0.62 0.77 -0.18 -0.34 0.75 -0.79 0.232
TKI258 0.45 0.38 -0.566 0.6 0.71 0.46 -0.77 0.78 0.81 0.242
Topotecan 0.73 0.457 0.48 0.66 -0.75 0.502 0.17 -0.7 0.8 0.426
ZD-6474 0.77 0.38 0.53 -0.45 0.77 0.549 0.21 0.75 0.13 0.278
Placebo 0.78 0.35 0.47 -0.62 0.76 0.48 -0.01 0.71 -0.5 0.18
Placebo 0.7 0.06 -0.48 0.13 -0 -0.08 -0.71 0.11 0.11 -0.19
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TABLE 5
Benjamini-Hochberg FDR corrected p-values of largest Spearman correlation. Red values signify 1% significance.

cent: othe: haem: skin: ovar: lung: panc: brea: larg: all:
17-AAG 40.94 0.062 12.56 32.32 11.78 21.44 93.86 48.53 22.75 0
AEW541 28.3 1.1 0.047 56.58 3.75 100 6.59 100 100 0.039
AZD0530 23.65 14.98 0.228 0.263 6.98 2.46 100 100 100 0.903
AZD6244 22.17 0.036 0.003 0.25 100 16.08 22.46 1.14 10.27 0
Erlotinib 100 0.007 1.05 100 41.94 0.017 46.05 18.51 25.42 0
Irinotecan 26.11 0.487 0.586 3.25 1.95 4.28 0.855 95.14 18.81 0
L-685458 33.64 0.001 14.29 14.46 28.56 43.23 40.98 23.37 12.72 0.06
LBW242 100 1.77 29.37 71.55 100 1.91 100 100 5.56 3.47
Lapatinib 100 0 4.25 100 100 0.094 2.88 0.864 92.9 0
Nilotinib 70.72 0.472 0.117 100 21.5 19.77 10.44 100 26.75 0.152
Nutlin-3 1.41 13.53 30.38 16.1 53.33 18.76 25.31 7.13 100 5.98
PD-0325901 100 11.12 0.002 0.12 20.04 0.885 100 5.93 1.71 0
PD-0332991 57.68 1.15 5.34 8.31 34.79 100 25.42 100 100 2.16
PF2341066 100 0.023 0.727 65.27 9.25 100 41.45 19.61 78.73 0.197
PHA-665752 19.77 100 0.49 100 100 19.58 80.23 100 100 1.81
PLX4720 100 2.02 1.36 9.91 100 100 8.27 50.66 100 4.52
Paclitaxel 0.212 0.06 100 0.431 0.853 0.201 1.4 27.2 0.178 0
Panobinostat 60.6 0.006 0.197 8.52 0.124 2.23 23.5 0.334 7.39 0
RAF265 72.41 0.35 0.02 39.83 25.8 7.66 80.01 14.14 18.19 0
Sorafenib 9.54 75.13 5.16 0.289 33 56.67 6.59 100 32.53 0.027
TAE684 100 0.021 0.034 100 58.07 100 100 7.8 44.83 0.036
TKI258 6.81 2.25 0.092 100 42.94 3.42 6.42 45.01 25.67 0.003
Topotecan 100 0.101 14.9 1.62 7.82 0.439 87.97 44.17 6.99 0
ZD-6474 17.06 16.75 1.3 100 22.93 13.88 42.94 79.42 46.88 0.017
Placebo 36 100 39.81 51.13 23.94 100 100 19.82 70.3 100
Placebo 39.41 100 100 100 35.49 100 45.09 100 14.1 8.71
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TABLE 6
Largest Spearman correlations, appearing in red if it is significant at 1% using Benjamini-Hochberg FDR correction.

cent: othe: haem: skin: ovar: lung: panc: brea: larg: all:
17-AAG 0.7 0.431 0.51 -0.62 0.75 -0.44 0.69 0.7 0.8 0.359
AEW541 -0.71 -0.39 0.604 -0.61 -0.78 0.01 0.75 -0.06 -0.26 0.251
AZD0530 0.72 0.35 -0.579 0.723 0.76 0.48 0.15 -0.39 0.33 -0.226
AZD6244 0.72 -0.438 -0.644 0.724 0.03 0.45 -0.73 -0.78 -0.81 0.304
Erlotinib 0.14 0.458 -0.55 -0.17 -0.72 0.558 0.71 -0.72 0.79 0.321
Irinotecan -0.81 0.519 -0.646 0.74 -0.84 0.64 -0.886 0.84 -0.92 0.451
L-685458 -0.71 0.487 0.51 0.65 0.73 0.44 -0.71 -0.72 0.82 -0.251
LBW242 0.01 -0.39 -0.49 -0.6 0.2 0.49 0.24 -0.34 0.82 -0.21
Lapatinib 0.06 0.551 -0.53 0.1 0 0.534 0.77 0.785 -0.75 0.386
Nilotinib 0.74 0.466 0.597 0.2 0.75 -0.49 0.82 -0.06 0.82 -0.263
Nutlin-3 0.78 0.36 -0.49 0.64 0.71 0.45 -0.72 -0.74 -0.34 0.21
PD-0325901 -0.19 0.36 -0.65 -0.736 -0.74 0.499 -0.1 -0.75 0.84 0.33
PD-0332991 0.74 -0.44 0.53 0.7 0.73 0.08 0.79 -0.18 -0.18 0.24
PF2341066 -0.07 -0.443 -0.56 -0.61 -0.76 -0.06 0.71 0.72 0.76 0.238
PHA-665752 -0.72 0.09 -0.567 -0.13 0.03 0.45 -0.69 -0.05 0.29 -0.22
PLX4720 0.1 -0.39 -0.55 -0.65 0.02 -0.01 -0.76 -0.7 -0.15 -0.21
Paclitaxel 0.817 0.432 -0.37 0.714 0.804 0.523 -0.79 -0.71 -0.876 0.344
Panobinostat 0.69 0.46 -0.582 0.66 0.834 -0.49 -0.73 -0.81 0.81 0.31
RAF265 0.74 -0.435 -0.623 0.63 0.73 -0.49 0.75 -0.74 0.8 0.296
Sorafenib 0.74 0.33 0.52 0.721 -0.73 -0.42 -0.75 0.1 0.78 0.253
TAE684 0.13 -0.444 0.609 0.04 0.71 -0.19 -0.25 -0.74 -0.77 0.251
TKI258 0.74 0.38 -0.594 -0.19 0.72 0.48 -0.76 0.7 0.79 0.268
Topotecan 0.03 0.425 0.5 -0.69 -0.76 0.511 0.69 -0.7 -0.82 0.418
ZD-6474 -0.73 0.36 0.55 -0.42 0.78 -0.45 -0.72 0.68 -0.77 0.259
Placebo -0.71 -0.14 0.48 0.61 0.74 -0.01 -0.12 -0.72 -0.76 -0.09
Placebo -0.7 0.09 -0.06 0.19 0.73 -0.08 -0.71 0.04 0.8 -0.21
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TABLE 7
Westfall-Young corrected p-values of largest Pearson correlation. Red values signify 1% significance.

cent: othe: haem: skin: ovar: lung: panc: brea: larg: all:
17-AAG 80.3 0 5.2 47.1 8.6 1.9 75.9 87.9 51.4 0
AEW541 43.6 0 0 87.7 7.6 67.9 11.8 87.3 85 0
AZD0530 44.5 48.7 15.7 1.2 6.4 2.3 52.2 6.6 84.2 1.1
AZD6244 2.4 13 0.3 6.9 9.4 2.8 75.6 0.3 8 0
Erlotinib 10.3 0 17.3 18.6 4.6 0.6 12.4 0.2 29.1 0
Irinotecan 19.3 0 3.8 5.8 2.5 3.4 1.2 47.9 23.9 0
L-685458 56 3.5 18.9 49.7 35.5 71 28 0.9 13.1 0.3
LBW242 1.4 12.8 19.6 22.9 63.7 6.6 6.3 83 29 0.2
Lapatinib 95 8 1 30.1 36.4 0 22.1 2.4 71.8 0
Nilotinib 51.8 31.3 1.9 68.7 16.6 71.7 62.5 1.5 20.4 6
Nutlin-3 0 13.8 46.4 11.1 10.6 60.4 76.5 49.5 27.1 13.5
PD-0325901 2.8 0.3 0 1 12.1 0.7 96.2 1.6 0.9 0
PD-0332991 56.3 9.6 1.4 83 0.2 62.6 34.4 18.3 23.9 4.9
PF2341066 21.2 26.2 2.2 71.2 17.8 98.8 25.4 12.2 41.7 0.6
PHA-665752 20.5 7.4 5.8 65.9 12.2 13.6 23.8 62.8 71.4 5.8
PLX4720 67.2 43.6 77.8 47.2 84.3 36.9 95.2 97.5 63.7 21.2
Paclitaxel 1.3 0 26.7 0.2 1.5 0.2 19.8 4.2 13.2 0
Panobinostat 49.9 0 2.4 8.4 2.1 0.5 27.8 3.4 23.9 0
RAF265 10.5 2.6 0.6 30.7 39.6 16.9 37 13.3 45.5 0.2
Sorafenib 74.9 48.1 29.5 10.5 90.2 34.6 38.3 93.4 8.2 0.5
TAE684 58.9 0.2 0 47.6 5.9 98.8 56.5 4.4 90.4 0.6
TKI258 39.6 5.5 64.1 38.2 45.8 14.8 16.7 1.3 7.7 0.2
Topotecan 5 0 12.7 1.9 5.2 0.4 41.3 44.3 4.7 0
ZD-6474 14.8 3.2 2 39.9 9.6 1.2 90.3 4.4 96.7 0
Placebo 17.3 79.9 57.1 40.5 19.6 22.2 99.1 46.8 79.3 56.1
Placebo 16 51.9 61.2 76.1 83.3 39.8 24.4 66.2 64.5 77.4
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TABLE 8
Largest Pearson correlations, appearing in red if it is significant at 1% using a Westfall-Young permutation method.

cent: othe: haem: skin: ovar: lung: panc: brea: larg: all:
17-AAG 0.63 0.446 0.51 0.58 0.74 0.47 0.64 0.6 0.74 0.375
AEW541 0.67 0.442 0.61 0.53 0.78 0.39 0.71 0.63 0.7 0.252
AZD0530 0.67 0.33 0.51 0.72 0.74 0.52 0.66 0.73 0.7 0.23
AZD6244 0.86 0.39 0.67 0.64 0.78 0.5 0.64 0.86 0.79 0.343
Erlotinib 0.75 0.512 0.48 0.63 0.75 0.59 0.73 0.85 0.8 0.338
Irinotecan 0.79 0.574 0.58 0.7 0.82 0.62 0.87 0.83 0.9 0.46
L-685458 0.73 0.45 0.48 0.62 0.72 0.41 0.78 0.89 0.81 0.25
LBW242 0.93 0.54 0.56 0.65 0.71 0.58 0.81 0.69 0.77 0.29
Lapatinib 0.6 0.47 0.56 0.69 0.69 0.634 0.73 0.77 0.73 0.373
Nilotinib 0.71 0.45 0.65 0.65 0.79 0.52 0.77 0.93 0.83 0.24
Nutlin-3 0.859 0.36 0.49 0.68 0.81 0.48 0.69 0.73 0.77 0.2
PD-0325901 0.81 0.42 0.663 0.68 0.77 0.5 0.6 0.8 0.85 0.365
PD-0332991 0.71 0.43 0.54 0.7 0.86 0.49 0.79 0.87 0.8 0.23
PF2341066 0.73 0.42 0.55 0.58 0.74 0.45 0.72 0.71 0.74 0.26
PHA-665752 0.8 0.39 0.52 0.58 0.8 0.56 0.74 0.69 0.77 0.22
PLX4720 0.74 0.36 0.64 0.58 0.68 0.42 0.64 0.59 0.8 0.2
Paclitaxel 0.77 0.45 0.47 0.71 0.77 0.49 0.7 0.73 0.78 0.337
Panobinostat 0.65 0.472 0.52 0.63 0.76 0.49 0.72 0.75 0.76 0.287
RAF265 0.78 0.4 0.57 0.6 0.71 0.47 0.73 0.71 0.74 0.29
Sorafenib 0.66 0.35 0.61 0.64 0.62 0.44 0.67 0.59 0.79 0.25
TAE684 0.64 0.44 0.626 0.62 0.77 0.35 0.67 0.75 0.69 0.23
TKI258 0.67 0.38 0.52 0.6 0.71 0.46 0.7 0.78 0.81 0.24
Topotecan 0.73 0.457 0.48 0.66 0.75 0.5 0.67 0.65 0.8 0.426
ZD-6474 0.77 0.38 0.53 0.59 0.77 0.55 0.63 0.75 0.67 0.278
Placebo 0.78 0.35 0.47 0.6 0.76 0.48 0.63 0.71 0.73 0.18
Placebo 0.7 0.31 0.42 0.56 0.65 0.4 0.69 0.64 0.74 0.17
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TABLE 9
Westfall-Young corrected p-values of largest Spearman correlation. Red values signify 1% significance.

cent: othe: haem: skin: ovar: lung: panc: brea: larg: all:
17-AAG 21.1 0 13 48.8 3 5.8 77.9 69.1 47.1 0
AEW541 36.1 13.5 0 50.3 3 41.9 20.9 32.2 71.9 0
AZD0530 9.2 8.4 17.4 3.7 1.8 1 36.7 51.3 33.4 1.4
AZD6244 2.8 4.5 0 4.7 90 6.5 70.2 5.4 5.6 0
Erlotinib 88.4 0 10.2 82.2 11.3 0 43.2 3.4 43.8 0
Irinotecan 38.9 0 5.4 4.9 1.1 6.9 1 87.2 39.7 0
L-685458 83.6 0 3.5 13.2 43 17.7 27.8 59.2 36 0
LBW242 9.7 17.7 32.8 26.6 80.4 1.4 30 96.2 22.8 1.9
Lapatinib 96.6 0 3.9 48 42.5 0 0 2.7 85.2 0
Nilotinib 64.7 1.8 0.5 95.2 25.6 30.7 57 72.7 46.3 0.8
Nutlin-3 1.6 8.3 6.2 32.4 34.8 6.2 95.4 29.1 36.9 3
PD-0325901 18.8 2.1 0 1.3 19.4 0.7 90.6 4.3 4.1 0
PD-0332991 3.9 3.1 2.1 8.8 27.4 49.3 36.4 83.9 90.9 1.2
PF2341066 69.2 0 5.3 64.2 52.1 22.7 21.4 7.7 31.4 0
PHA-665752 76.4 76.2 3.3 46.9 92.8 12.1 82.8 48 65.3 17.7
PLX4720 65.7 76.6 11.8 53.2 96.1 26.5 96.9 67.8 75.5 53.3
Paclitaxel 0.7 0.2 63.1 0.5 3.9 0 31.8 7.7 8 0
Panobinostat 25.2 0 9.9 4.4 0 1.3 23.9 1.4 25.6 0
RAF265 32.3 2.2 0.7 10.2 5.5 20 12.7 28.3 20.9 0
Sorafenib 37.9 37.2 1.5 0.7 33.3 35.5 45.8 30.1 27.2 0
TAE684 74.5 0.4 0 28.1 7.5 61.7 21.7 27.8 81.2 0
TKI258 19.2 1 2.5 84.7 19.9 2.7 45 7.3 22.6 0
Topotecan 20.4 0 11.9 5.7 9.1 1.2 17.1 30.8 17.4 0
ZD-6474 11.3 5.8 1.8 85.8 69.2 1.1 23.8 39.5 72.1 0
Placebo 85.4 74.9 30.1 21.5 8 77.5 61.5 30.7 98.6 74.3
Placebo 76.1 76.9 50.4 67 22 61.5 30.2 37.9 42.6 84.2
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TABLE 10
Largest Spearman correlations, appearing in red if it is significant at 1% using a Westfall-Young permutation method.

cent: othe: haem: skin: ovar: lung: panc: brea: larg: all:
17-AAG 0.71 0.442 0.49 0.58 0.79 0.46 0.65 0.65 0.77 0.359
AEW541 0.69 0.34 0.623 0.58 0.78 0.41 0.72 0.68 0.72 0.251
AZD0530 0.73 0.35 0.48 0.68 0.8 0.49 0.7 0.67 0.77 0.22
AZD6244 0.76 0.36 0.65 0.66 0.63 0.46 0.65 0.75 0.82 0.304
Erlotinib 0.62 0.468 0.5 0.55 0.76 0.589 0.69 0.75 0.75 0.321
Irinotecan 0.78 0.543 0.59 0.73 0.86 0.62 0.91 0.8 0.89 0.452
L-685458 0.63 0.486 0.53 0.64 0.7 0.43 0.71 0.65 0.78 0.246
LBW242 0.72 0.33 0.46 0.61 0.65 0.49 0.7 0.6 0.78 0.21
Lapatinib 0.6 0.549 0.51 0.58 0.69 0.567 0.837 0.77 0.71 0.386
Nilotinib 0.71 0.45 0.58 0.57 0.73 0.46 0.75 0.65 0.8 0.24
Nutlin-3 0.78 0.35 0.51 0.6 0.71 0.46 0.61 0.69 0.77 0.21
PD-0325901 0.7 0.37 0.653 0.7 0.73 0.51 0.62 0.74 0.83 0.33
PD-0332991 0.81 0.41 0.53 0.68 0.71 0.44 0.76 0.64 0.73 0.24
PF2341066 0.65 0.426 0.52 0.57 0.69 0.42 0.72 0.74 0.77 0.238
PHA-665752 0.64 0.29 0.52 0.59 0.63 0.44 0.64 0.67 0.72 0.19
PLX4720 0.66 0.29 0.49 0.58 0.66 0.42 0.62 0.65 0.71 0.18
Paclitaxel 0.81 0.42 0.43 0.72 0.78 0.531 0.71 0.74 0.82 0.344
Panobinostat 0.7 0.464 0.5 0.66 0.841 0.49 0.7 0.79 0.77 0.31
RAF265 0.73 0.4 0.58 0.65 0.76 0.45 0.79 0.71 0.79 0.296
Sorafenib 0.68 0.32 0.54 0.7 0.71 0.41 0.69 0.7 0.78 0.253
TAE684 0.65 0.39 0.606 0.6 0.75 0.39 0.71 0.7 0.71 0.251
TKI258 0.71 0.39 0.53 0.54 0.72 0.47 0.69 0.74 0.77 0.268
Topotecan 0.71 0.435 0.49 0.65 0.75 0.49 0.72 0.69 0.79 0.418
ZD-6474 0.74 0.36 0.54 0.54 0.71 0.49 0.73 0.68 0.72 0.259
Placebo 0.63 0.29 0.46 0.62 0.75 0.37 0.66 0.68 0.67 0.17
Placebo 0.64 0.29 0.44 0.56 0.72 0.39 0.71 0.69 0.75 0.16
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TABLE 11
p-value of type independence (see H0,3) for drug AZD0530

hema.& ly. skin
hema.& ly. - 0.035
skin - -

TABLE 12
p-value of type independence (see H0,3) for drug AZD6244

hema.& ly. skin
hema.& ly. - 0.037
skin - -

TABLE 13
p-value of type independence (see H0,3) for drug Irinotecan

hema.& ly. pancreas
hema.& ly. - 0.038
pancreas - -

TABLE 14
p-value of type independence (see H0,3) for drug Lapatinib

lung breast
lung - 0.036
breast - -

TABLE 15
p-value of type independence (see H0,3) for drug Panobinostat

hema.& ly. ovary breast
hema.& ly. - 0.035 0.781
ovary - - 0.025
breast - - -

TABLE 16
p-value of type independence (see H0,3) for drug PD-0325901

hema.& ly. skin lung
hema.& ly. - 0.046 0.793
skin - - 0.027
lung - - -
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TABLE 17
Using a model fitted with (row) to predict the response in type (column) for drug Lapatinib ActArea.

central n.s. other hema.& ly. skin ovary lung pancreas breast l. intestine
central n.s. 1.928 1.551 1.772 1.133 2.091 1.496 1.657 1.782 1.678
other 3.292 0.924 1.104 1.145 1.063 0.871 1.452 0.941 1.070
hema.& ly. 22.062 1.381 0.929 1.816 1.159 1.175 0.966 1.421 1.124
skin 1.608 1.238 1.295 1.167 1.277 1.206 1.164 1.511 1.325
ovary 3.553 1.035 1.029 1.135 1.065 1.030 1.004 1.293 1.118
lung 2.847 0.840 1.084 1.030 1.118 0.861 1.370 0.608 0.947
pancreas 3.179 1.053 1.051 1.097 1.006 1.045 1.806 1.322 1.144
breast 5.352 1.064 3.671 1.858 3.101 1.094 4.454 1.039 1.287
l. intestine 8.497 1.043 1.111 1.790 1.555 1.043 1.480 1.088 1.297

TABLE 18
Using a model fitted with (row) to predict the response in type (column) for drug Topotecan ActArea.

central n.s. other hema.& ly. skin ovary lung pancreas breast l. intestine
central n.s. 1.017 1.038 2.658 1.058 1.034 0.949 1.064 1.289 1.601
other 0.733 0.764 1.518 1.153 0.927 0.917 1.012 1.090 1.195
hema.& ly. 2.631 1.717 1.058 3.952 1.535 2.124 3.846 2.518 1.521
skin 1.092 2.050 7.185 1.092 1.950 1.238 1.778 1.274 8.130
ovary 0.827 0.939 1.712 1.063 0.988 1.042 0.874 1.305 1.073
lung 0.848 1.030 2.466 0.843 0.994 1.064 0.822 0.929 0.942
pancreas 1.013 1.150 3.657 1.005 1.100 1.000 1.034 1.039 1.055
breast 1.102 1.355 4.466 1.036 1.344 1.044 1.067 1.090 1.228
l. intestine 0.993 1.234 1.838 1.133 1.119 0.987 1.367 1.152 0.998
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