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1 Introduction

Complex systems science becomes one of important area in both the natural

and social sciences. However, there is no concise definition of complex sys-

tems. There are various attempts to characterize a complex system. In order

to define complex systems, the concept of complexity is necessary. Many sci-

entists have tried to find proper measures of complexity with mathematical

rigor to the issue. In this paper, I discuss one effective measure of com-

plexity, based on information theory, which is suggested by Grassberger and

examine this measure of complexity on the two-dimensional Ising model,

the most simplest spin model. I obtain the equilibrium configurations of the

two-dimensional Ising model numerically by using the Monte Carlo Simu-

lation(MCS). From the configurations for several temperature conditions, I

obtain the measure of complexity of the model through the phase transition.

2 The two-dimensional Ising model

I use the two-dimensional Ising model with nearest neighbor interaction, the

Hamiltonian of which is given by

H = −

�

<i,j>

JijSiSj −
�

i

hiSi, (2.1)

where Si = ±1 is the Ising spin at site i, Jij is the coupling strength, and hi

is magnetic fields as a bias to the entire system. < · · · > denotes the nearest

neighbor summation. In this work, I set Jij to be uniform (i.e. ferromagnetic

system with coupling strength J), and assume that there is no bias in the

system, hi = 0. Then, the Hamiltonian becomes

H = −J

�

<i,j>

SiSj . (2.2)

The magnetization of the system is defined as

m =
1

N

N�

i=1

Si (2.3)

where N is the total number of spins in the system. In the calculation, I use

a square lattice with size L, thus N = L×L. The solution of the 2d-square

lattice Ising model was derived by Onsager[1]. In the thermodynamic limit,
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Figure 2.1: Exact entropy of the two-dimensional Ising model.

Onsager’s exact free energy F (T ) and energy E(T ) at zero field are given as

following:

F (T ) = −NkBT log[2 cosh(2βJ)]

−
NkBT

2π

� π

0
dφ log

1

2

�
1 +

�
1−K2s sin2 φ

�
(2.4)

E(T ) = −2NJ tanh(2βJ) +
NK

2π

dK

dβ

� π

0
dφ

sin2 φ

∆(1 +∆)
(2.5)

where β = 1
kBT , K = 2

cosh(2βJ) coth(2βJ) and ∆ =
�
1−K2 sin2 φ. kB is the

Boltzmann constant. From Maxwell’s relation,

s(T ) =
S(T )

N
=

F (T )− E(T )

NT
, (2.6)

the exact entropy of the system can be obtained. In Fig. 2.1, I plot the

analytic exact entropy. In this plot, I use the base of the logarithm as 2

in the entropy for comparison with information theory. Thus, maximum

entropy per lattice site has to be 1 because the Ising model is a two-state

model. In the figure, the entropy goes to unity as temperature increases. In
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Figure 2.2: Exact magnetization of the two-dimensional Ising model.

addition, the exact solution of magnetization is

m =

�
1−

�
sinh

�
2J

kBT

��−4
� 1

8

. (2.7)

The magnetization is given in Fig. 2.2. In this figure, the magnetization

as an order parameter exhibits the phase transition. From some point, the

order parameter becomes zero. This point is called a critical point or critical

temperature and this temperature is given by

tanh

�
2J

kBTc

�
=

1
√
2

(2.8)

kBTc

J
=

2

log (1 +
√
2)

= 2.269185... (2.9)

Eq.(2.8) is obtained from self-duality which is the property of the square

lattice Ising model. Tc denotes the critical temperature. In this report, I set

kB and the coupling strength J to be unity in order to silmplify calculation.

Then, the critical temperature Tc is 2.269....
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Figure 3.1: The configuration of cells Bn

3 A complexity measure of the spin system

from two-dimensional information theory

In this section, I introduce the complexity measure of the spin system from

the two-dimensional information theory[2].

3.1 The block entropy S

I consider an infinite two-dimensional lattice with Ising spins and let AM×N

be a specific M ×N−block occurring with probability p(AM×N ). Then the

entropy s of the system is

s = lim
M,N→∞

1

MN
SM×N (3.1)

where the block entropy SM×N is given by

SM×N =
�

AM×N

p(AM×N ) log
1

p(AM×N )
. (3.2)

In this work, I define new block Bn for convenient calculations, as a certain

spin-block-configuration of spins. Bn is arranged as Fig. 3.1 with two rows

of symbols, each of length n. Then, the new block entropy SBn is defined

by

SBn =
�

Bn

p(Bn) log
1

(Bn)
. (3.3)

I introduce the notation Bnx for the configuration that adds the symbol

x to Bn after nth spin in the top row. The conditional probability for a

certain character x given that we have already observed the characters in

the configuration Bn is given as

p(x|Bn) =
p(Bnx)

p(Bn)
. (3.4)
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This equation can be interpreted as the conditional probability for the

“next” character given that characters in block Bn. From the conditional

probability, the average entropy for the block configuration Hn is obtained

as

Hn =
�

Bn

p(Bn)
�

x

p(x|Bn) log
1

p(x|Bn)
. (3.5)

For n = 0, I define H0 as the entropy of the single character distribution,

H0 =
�

x

p(x) log
1

p(x)
, (3.6)

where x = ±1. In addition, from the configurational symmetry of the sys-

tem, the relation between Hn and s is given as

s = lim
n→∞

Hn = H∞. (3.7)

Eq.(3.7) tells us that the average entropy for the block configuration con-

verges to the real entropy if the block is large enough.

3.2 The correlation information over length n

I define the correlation information over length n as the difference between

two consecutive estimates of the average entropy

kn+1 = −Hn +Hn−1. (3.8)

The density information k1 is

k1 =
�

x

p(x) log
p(x)

1/2
= 1−H0. (3.9)

In the Eq.(3.9), 1
2 indicates the a priori probability to get each state ±1.

This can be interpreted as an “uninformed” uniform distribution p
(0). If the

system has ν possible states, one can assign equal a priori distribution as

p
(0) = 1/ν. I combine all the correlation information of all lengths n, kn and

define the correlation information kcorr,

kcorr ≡

∞�

n=2

kn. (3.10)

In this equation, the summation runs from n = 2 to infinity. Since, as I

mentioned above, k1 indicates the density information of single spin, and is
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not included in the correlation quatity. From expanding the Eq.(3.10) one

can obtain the relation between s and kcorr as

kcorr = log ν − s− k1 (3.11)

= 1− s− k1 (3.12)

Eq.(3.12) is for the Ising model which has two states. In this equation,

the correlation information and density information indicates the ordered

part. On the other hand, the Shannon entropy s indicates the disordered or

uncertain part. If I rewrite Eq. (3.12) as

Smax = kcorr + k1 + s = log 2 = 1, (3.13)

the meaning of information of the system becomes more clearer. The total

information of this system is composed of three parts, the correlation, the

density, and the uncertainty(Shannon entropy).

3.3 The correlation complexity

From the Grassberger’s correlation complexity[3], I define the measure of

complexity as

η =
∞�

n=2

(n− 1)kn (3.14)

= kcorr

∞�

n=2

(n− 1)
kn

kcorr
(3.15)

= kcorr(n− 1) = kcorr lcorr (3.16)

where kcorr is the correlation information and lcorr is the average correlation

distance. As I mentioned in the previous section, correlation information

kcorr indicates how ordered the system is. Then, the average correlation

distance quantifies at what distance this order is to be found on average.

lcorr is the weighted summation of the correlation information over specific

lengths which implies that long distance correlation information gives high

contribution on the average distance. If the observer needs information of

long sequences, this means the system is more difficult to predict. Tech-

nically, unpredictability does not guarantee complexity but I can roughly

assess this measure is kind of complexity quantity. From these points, the

Eq.(3.16), can be a proper measure of complexity (i.e, complexity = order

× unpredictability). From this measure, one can get low level of complexity

in the completely ordered state and completely random state.
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Figure 4.1: Three equilibrium configurations with different temperatures

after 10000 time units. From left to right, T = Tc/8, T = Tc and T = 2Tc.

4 The algorithm for the complexity measure η

In this section, I introduce an algorithm for the complexity measure of two-

dimensional Ising model which is designed from two-dimensional information

theory.

4.1 Equilibrium configurations

First, I obtain equilibrium configurations of Ising system at specific tempera-

ture. For this, I use the Monte Carlo Simulation(MCS)[4]. In this algorithm,

I use the L× L square lattice with the periodic boundary condition.

To get a equilibrium spin-configuration,

1) Start with the random spin-configuration with ±1. +1 is an up-spin and

−1 is a down-spin.

2) Choose one site randomly.

3) Change the state of chosen site (i.e. If the spin is up, change to down. If

the spin is down, vice versa.).

4) Compute the energy difference ∆E under the change. The energy is given

from the Hamiltonian of the model, Eq.(2.2).

5) If ∆E ≤ 0, accept the change; otherwise accept the change with proba-

bility e
− ∆E

kBT . This probability is obtained from detailed balance condition

of the Ising model.

6) Repeat above procedures till the macroscopic variable of the system con-

verges (e.g, magnetization m). One sweep of the above procedure for all

8



Figure 4.2: An example of different sites with the same block configuration,

B4 = {+1,+1,−1,+1,−1,−1,+1,+1}. (a) x = −1 (b) x = +1

N = L× L spins in the system corresponds to one time unit.

In Fig. 4.1, several configurations are given for different temperature

conditions which are obtained from MSC. Dark green sites are up spins

and yellow sites are down spins. The leftmost configuration shows ordered

configuration in the condition, T = Tc/8 ≈ 1.13. The middle configuration

shows complex configuration which has many clusters with various sizes at

critical temperature, T = Tc ≈ 2.27. And the last figure is disordered

configuration with temperature T = 2Tc ≈ 4.54.

4.2 The statistics of block configurations Bn

From obtained configurations, I get block configurations Bn for each spin.

For the convenience to compare each block configuration for statistics, I

assign one configuration as one index. The index is defined with binary

numbers. For example, in Fig. 4.2, there are two blocks with same configu-

ration. In the stripe, top row has the configuration, {+1,+1,−1,+1}, and

bottom row has one with {−1,−1,+1,+1}. I combine these two rows as one

set and define block configuration as B4 = {+1,+1,−1,+1,−1,−1,+1,+1}

where 4 is the distance from the chosen site. From this set, I change −1 to 0

and make binary number as 11010011(2). This binary number corresponds

to decimal number 211. From this decimal number, I assign the index in of

this configuration as 212 which is decimal number plus one because I want

9



to make index in the range in ∈ [1, 22n]. As a result, every sites corresponds

to one index of specific block configuration. By using this index, I count

all the indexes and make a table with all information of block configuration

like below.

in x = +1 x = −1 Nin

1 N(1,+) N(1,−) N1

2 N(2,+) N(2,−) N2

3 N(3,+) N(3,−) N3

· · · · · · · · · · · ·

22n − 1 N(22n−1,+) N(22n−1,−) N22n−1

22n N(22n,+) N(22n,−) N22n

N+ N− Ntot

Nin(in = 1, 2, · · · , 22n) is the counted total number of sites with same index

in, in other words, with same block configuration. Let N(in,+) and N(in,−)

denote the number of sites that spins + and − are drawn with that specific

inth configuration of Bn. Then, the conditions

Nin = N(in,+) +N(in,−) (4.1)

N+ =
22n�

in=1

N(in,+) (4.2)

N− =
22n�

in=1

N(in,−) (4.3)

Ntot = N+ +N− =
22n�

in=1

Nin (4.4)

have to be satisfied.
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4.3 The average entropy of the block configuration Hn

From the Eqs.(4.1-4), I obtain the numerical probabilities,

p(x = +1) =
N+

Ntot
(4.5)

p(x = −1) =
N−
Ntot

(4.6)

p(Bn) =
Nin

Ntot
(4.7)

p(x|Bn) =
N(in,x)

Nin
. (4.8)

Eqs.(4.5,4.6) give the entropy of the numerical single character distribution.

From Eq.(3.6),

H0 =
�

x

p(x) log
1

p(x)

=
N+

Ntot
log

Ntot

N+
+

N−
Ntot

log
Ntot

N−
. (4.9)

The average entropy for the block configuration Hn can be obtained as

Hn =
�

Bn

p(Bn)
�

x

p(x|Bn) log
1

p(x|Bn)

=
22n�

in=1

Nin

Ntot

�

x={+1,−1}

N(in,x)

Nin
log

Nin

N(in,x)
(4.10)

=
1

Ntot

22n�

in=1

(Nin logNin

−N(in,+) logN(in,+) −N(in,−) logN(in,−)).(4.11)

4.4 Obtain kn and η

Finally, I calculate the correlation information kn and the measure of com-

plexity η, from the average entropy of the block configuration Hn, Eq.(4.11).

I use Eqs.(3.8, 3.9) for kn and Eq.(3.14) for η.

4.5 Test for checker board with size 2

For testing this algorithm, I use the checker board with size 2, Fig. 4.3.

First, the entropy of the single character distribution is simply obtained.
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Figure 4.3: The checker board with size 2

The density of up spin and down spin are the same as 1
2 , thus

H0 =
�

x

p(x) log2 p(x) = 2×
1

2
log2 2 = 1. (4.12)

ForB1 case, there are 4 possible block configurations, {+1,+1}, {+1,−1}, {−1,+1},

and {−1,−1}. The probabilities are

p(B1) =
1

4

p(x|B1) =
1

2

for every block configurations and x. From probability, H1 is obtained as

H1 =
�

B1

p(B1)
�

x

p(x|B1) log
1

p(x|B1)

= 4×
1

4
log2 2 = 1. (4.13)

For n = 2, theoretically there are 22n = 16 different block configurations.

However, because of the checker board condition, just 8 are possible to

observe. For example, B2 = {−1,−1,−1, 1} is impossible to get. All possible

8 block configurations are equally probable. In addition, when I know B2,

x is always determined from B2. Thus, the probabilities are given as

p(B2) =
1

8
or 0

p(x|B2) = 0 or 1 always

12
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H2 is

H2 =
�

B2

p(B2)
�

x

p(x|B2) log
1

p(x|B2)

= 8×
1

8
log2 1 = 0. (4.14)

To sum up for checker board with size 2, H0 = H1 = 1, Hn = 0 for

(n ≥ 2), k3 = 1, kn = 0 for (n �= 3), η = 2, kcorr = 1, and lcorr = 2.

I numerically test the checker board with various sizes. The result is

given in Fig. 4.4. The obtained numerical result for n = 2 agrees with the

analytical result. In the figure, when the check board size is odd number, η

is smaller than even number cases. Since the length of the block is always

an even number, observer can measure just correlation in even length. This

implies information of relative position of the chosen site is included in the

block configuration. Another thing to note is that the measure of complexity

decreases as n increases for even number cases. In the large checker board

case, small block can be hidden inside the check shape which makes that

the short-distanced correlation information gets smaller compare to small

checker board. However, the long-distanced correlation information gets

larger for the complexity measure in large checker boards.

13



2 4 60.38

0.4

0.42

0.44

0.46

0.48

n

H n

 

 

Nens = 1
Nens = 5
Nens = 10
Nens = 70

Figure 5.1: Hn vs. n for L = 128. I take the ensemble average for different

number of ensembles at critical temperature T = Tc

5 Numerical results for 2-d Ising model

5.1 The average entropy of the block configuration Hn

I obtain the average entropy of the block configuration Hn from the algo-

rithm which is described in above section. The result is given in Fig. 5.1.

In this figure, I plot 4 different results. The results show that the ensemble

average is needed to get proper average of entropy. When I take one sample

to get Hn, the result does not converge because of statistics. In this process,

statistics is the most important to get correct entropy of block configura-

tion. For example, when n = 6, there are 212 ≈ 4096 block configurations.

However, in one equlibrium state, there are Ntot = 2562 = 216 samples of

configuration. In this case, roughly, we can get just 16 configurations for one

index which means that the probability to get one specific configuration is

too low (i.e. p(Bn) ≈ 2−12 ∼ 10−4) to calculate proper probability distribu-

tion. As I increase the number of ensemble, the average entropy converges

14
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Figure 5.2: The comparison between theoretical real entropy s and numer-

ically obtained the average entropy of the block configuration Hn. Size of

system L = 256, the number of ensemble is Nens = 70, the number of block

configurations of Bn ≈ 4.6× 106.

to some value. In Fig. 5.2, I compare numerical result of H6 and H7 to the

theoretical real entropy s which is given from Onsager’s solution, Eq.(2.6).

According to the information theory, Eq.(3.8) shows that if the block size is

large enough, Hn converges to the real entropy s. In Fig. 5.2, H6 and H7

almost converge to real entropy. This implies that n = 7 is large enough to

examine this two-dimensional Ising model. Thus, the contribution of cor-

relation information kn for n > 7 are negligible to obtain the measure of

complexity.

5.2 The correlation information over length n, kn

From the results of Hn, I plot the correlation information over length n in

Fig. 5.3 for different temperature conditions. In this figure, the distribu-

tion of correlation information exhibits different behavior before the phase

transition and after the phase transition. In the high temperature (T = 4,

10), most of correlation information have low value of kn. This means that

the configuration is almost disordered and correlation information is not

dominant. In the low temperature (T = 1.2, 2), the correlation information

15
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Figure 5.3: The correlation information over length n, kn for different tem-

perature. Size of system L = 256, the number of ensemble is Nens = 70, the

number of block configurations of Bn ≈ 4.6× 106.

possesses the high value only for n = 1. As I mentioned in the previous

section, k1 is the density information of the system. If the temperature is

lower than critical temperature Tc, density information is dominant. The

interesting thing comes from the critical temperature case. The red line

in Fig. 5.3 shows the characteristics of the two-dimensional Ising model.

k2 is the most high value of the correlation information. This implies that

contribution of nearest neighbor is a crucial fact to get information on this

system. The value of k2 decreases as temperature increases. In addition,

regardless temperature condition, kn for n > 5 go to almost zero. In the

Ising system, long-distanced correlation is weaker than short-distanced one.

From these results, I argue that the shortest correlation information have an

important role in the process of phase transition. In conclusion, the density

information and the short-ranged correlation are the most important part

of the two-dimensional Ising model.
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Figure 5.4: The approximated measure of complexity measure ηM with the

temperature. Size of system L = 256, the number of ensemble is Nens, the

number of samples of Bn ≈ 4.6× 106.

5.3 The measure of complexity η

From the correlation information kn, I calculate the measure of complexity

η. In the definition of the complexity measure, Eq. (3.15),

η =
∞�

n=2

(n− 1)kn,

the weighted summation over all the ranged correlation. However, because

of the limitation of numerical calculation, we need to cut off the summation

at reasonable point. From the results of Hn and kn, kn is neglected for

n > 8. I define new approximated η as

ηM =
M�

n=1

(n− 1)kn (5.1)

whereM is the cut-off distance which gives numerical approximated measure

of complexity. In Fig. 5.4, I plot the results of ηM for different M . In this
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Figure 5.5: The numerical result and the analytical result of correlation

information kcorr.

figure, the complexity measure is the highest value at critical temperature.

In the low temperature, η is almost zero because most of the spins are

aligned or ordered. As temperature increases through the critical point, η

rapidly increases to the highest value and for higher temperature decays to

zero after phase transition.

For comparison with the analytical result, I plot the correlation infor-

mation in Fig.5.5. Numerical result is obtained from

kcorr =
7�

n=2

kn. (5.2)

The analytical results are obtained from the Onsager’s solution. From the

definition of magnetization, the theoretical density information k1 can be

obtained as

p(x = +1) =
N+

N
=

1 +m

2
, p(x = −1) =

N−
N

=
1−m

2
(5.3)
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Figure 5.6: Decomposition of information for two-dimensional Ising model.

k1 = 1−H0

= 1−

�
−
1 +m

2
log

1 +m

2
−

1−m

2
log

1−m

2

�
. (5.4)

The analytic result of correlation information is derived as

kcorr = 1− s− k1 (5.5)

where s from Eq.(2.6), k1 from Eq.(5.4). In the figure, numerical results

are well fitted with analytic results. In Fig.5.6, I plot the decomposition of

information for three parts, the density, the correlation and the uncertainty.

In this figure, the correlation information is the highest at the critical point.

This can be explained as that correlation information has to be increased

for the qualitative change, the phase transition.
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6 Conclusions

In summary, I have studied a complexity measure of two-dimensional Ising

model. The Monte Carlo Simulation(MCS) has been used for obtaining

equilibrium spin-configurations. From obtained configurations for different

temperature condition, I calculate the effective measure of complexity η

which is derived from two-dimensional information theory. Total informa-

tion of the system can be divided to three parts, the density, the correlation,

and the uncertainty. From this, the phase transition can be characterized in

information theoretical way. When temperature is smaller than critical tem-

perature Tc, η is small and the density information is dominant in the total

information of the system. As temperature increases to Tc, the density in-

formation decreases and uncertain information, Shannon entropy increases.

Near Tc, the correlation information rapidly increases for phase transition

and density information gets changed to information of uncertainty. At Tc,

the correlation information has the highest value and decreases as temper-

ature increases. At high temperature, the uncertainty information becomes

dominant on the system. The importance of the contribution of nearest

neighbor has been pointed out in the two-dimensional Ising model. Most of

the correlation information comes from nearest neighbors. Long-distanced

correlation can be negligible. The measure of complexity η shows that the

complexity is the highest at Tc which implies that complexity is important

to make qualitative change.

References

[1] Onsager, L., Phys. Rev., 65 117 (1944).

[2] Lindgren, K., Information theory for complex systems - Lecture notes,

(2008).

[3] Grassberger, P., International journal of The. Phy., 25 907-938 (1986).

[4] Metropolis, N., Ulam, S., Journal of the American Statistical Associa-

tion, 44 335341 (1949).

20


