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Abstract
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Wolbachia is a maternally inherited, intracellular bacteria that causes a number of abnormalities in

their host’s reproductive system. Recent studies show that infecting mosquito populations with Wol-

bachia is a promising new strategy for controlling diseases such as dengue fever and yellow fever. Wol-

bachia infection can spread rapidly through mosquito populations following its introduction, and infected

mosquitos have been shown to have a much reduced capacity to transmit disease. The success of this

strategy depends on how easily and rapidly the Wolbachia spreads. This report is focused on the dynam-

ics of Wolbachia infection in spatially heterogenous environments. We extend the single-patch model of

mosquito population to the two-patch model as the simplest spatially heterogenous system. The two-

patch model describes the interaction between mosquito population dynamics and Wolbachia infection

frequency for an age-structured insect population regulated by larval density dependence. We show that

spatial subdivision and migration between patches can affect to the dynamics of mosquitoes and spreads

of Wolbachia. The results help to design a properWolbachia-releasing strategy to the heterogenous dis-

tribution of mosquito habitats.
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network theory, modelling of complex systems
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Chapter 1

Introduction

Wolbachia are a common and widespread group of bacteria found in reproductive tissues of insects or

worms. Wolbachia have attracted great interest for a number of reasons. Firstly, they can dramatically

alter reproductive biology of the host insect, for example by inducing parthenogenesis [1, 2]. Secondly they

can protect the host insect from infection by pathogens [3]. Recently, Wolbachia have been recognized

as a potential means of controlling vector-borne diseases. For example, in the mosquito Aedes aegypti,

Wolbachia infection can prevent the mosquito from transmitting important human diseases such as the

dengue and yellow fever viruses [4]. In this work, the spatial spread of Wolbachia in a heterogeneous

environment will be discussed as a potential biological control method to prevent vector-bone diseases.

In order to focus on the spread of Wolbachia, we first discuss the biology of cytoplasmic incompatibility.

Cytoplasmic incompatibility (CI)

Wolbachia spreads through the host population by inducing cytoplasmic incompatibility (CI). CI is a

reproductive incompatibility between the sperm and the egg. The bacteria are transmitted in eggs but

are not transmitted through sperm. Incompatibility occurs when the sperm from a Wolbachia-infected

male fertilizes an uninfected egg. In Figure 1.1, the schematic diagrams of CI of Wolbachia are given

for two cases, perfect maternal transmission (left) and imperfect maternal transmission (right). Perfect

transmission of Wolbachia means that all offspring inherit the infection from the mother, where as some

offspring of infected mothers are uninfected in the case of imperfect maternal transmission. In this

diagram, while the fertility of infected females is unaffected by Wolbachia regardless of males, matings

between infected males and uninfected females are infertile, which is denoted as “CI” in the figure.

When infected females fail to transmit Wolbachia to an offspring in the case of imperfect maternal

transmission, the bacteria from the infected sperm still cause incompatibility. This mechanism of CI can

increase the frequency of Wolbachia infection in subsequent generations of the host population. Usually,
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Figure 1.1: Wolbachia induced Cytoplasmic Incompatibility (CI) when maternal transmission of Wol-
bachia is perfect (left) and imperfect (right) in absence of paternal transmission.

the Wolbachia spread rapidly the population because the probability of failure of maternal transmission

is relatively low(around 1%) and the probability of infertility due to CI is relatively high(around 99%)

[5].

Biological control implication

Using Wolbachia in biological control is a considerably interesting issue because Wolbachia influences the

ability of insects to transmit pathogens. This can be achieved indirectly by reducing insect life span or

directly by reducing the ability of viruses and other pathogens to proliferate within the insect [6, 7]. In

particular, from recent studies in recent 2-3 years, infecting mosquito populations with Wolbachia has

been recognized as a promising new strategy to prevent transmission of diseases such as dengue fever and

yellow fever. The observation is that Wolbachia provide greater disruption to dengue transmission and

successful invasion for dengue control [8]. Furthermore, these bacteria confer greater fitness costs to the

mosquito host as well. From this aspect, biological control aimed at suppressing mosquito populations or

reducing their capacity to transmit disease may be a useful and important addition to traditional vector

control strategies, especially if the mosquito populations’ resistance to chemical insecticides continues to

increase.
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Spread of Wolbachia infection can be accelerated through mosquito populations following introduction

of infected mosquitoes. The success of this strategy depends on how easily and rapidly the Wolbachia

spreads. This report is focused on the dynamics of Wolbachia infection in spatially heterogenous envi-

ronments. As understanding of the effects of host population heterogeneity on the spread of Wolbachia

is crucial to predicting how this disease control strategy will perform in the real world. Here, we will

develop the spatial dynamics of Wolbachia infection in a mosquito population from a two-patch model

to a network model [5, 9].

3



Chapter 2

Single-patch Model

One of the simplest mathematical models of Wolbachia dynamics are derived by Turelli [9]. This model

describes the dynamics of Wolbachia infection frequency with several assumptions : (1) maternal trans-

mission is imperfect, (2) paternal transmission is absent, (3) mating is random, (4) the infection affects

female fecundity but no other fitness component, (5) only vertical transmission can occur, (6) the host

population mixes homogeneously, and (7) generations are discretized. Turelli’s Wolbachia dynamics show

that spread occur if the infection frequency exceeds a threshold that is higher for the bacteria that cause

stronger reductions in host fitness. However, the Turelli model considers changes in infection frequency

but not changes in host population abundance, and assumes that host population dynamics do not affect

the dynamics of Wolbachia infection.

There has been limited consideration of the role of host life history and demography in Wolbachia

infection dynamics, and host populations are typically assumed to have discrete, non-overlapping gener-

ations like Turelli’s. The changes of hosts’ demographic rates have to be considered for understanding

more realistic model such as immigration of infected individuals, dependence on the population density,

and seasonal variations in abundance.

In this section, a continuous-time demographic model of Wolbachia spread through a host population

will be given in a homogenous, single-patch system. In this model, some assumptions from Turelli’s model

will be used(1,2,3 and 5). The overlapping generations will be considered and the dynamics are regulated

by density-dependent processes. Furthermore, host age structure and adult age-specific mortality is also

included. The model that will be given in the following sections is obtained from the paper of Hancock

et al.[5].
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2.1 Mosquito population without Wolbachia

The model divides the mosquito population into larvae and adults. Let L(t, l) and S(t, a) be the numbers

of larvae and adults at time t that have survived until ages l and a in two different stages, respectively.

The probability that a larva survives until time l is defined as θL(t, l). This probability is a function of

time because larval mortality is density dependent. Defining the total number of larvae at time t as L̃(t),

the larval survival, θL(t, l) can be written as

θL(t, l) = exp

(
−
∫ t

t−l
µL(L̃(τ))dτ

)
. (2.1)

The mortality rate of larvae µL(L̃(t)) can be modeled as

µL(L̃(t)) = µ+ α(L̃(t))β (2.2)

where µ, α, and β are constants. In this larval mortality function, there are two parts. The first part is

a constant rate µ and the second one is the function of density that can represent with different forms

[10, 11]. In this model, the power-law function is taken as density dependence. The values of α and β

correspond to carrying capacity and strength of the dependence on density of the patch, respectively.

Similarly, at the adult stage, let the probability an adult survives until age a be θS(a), which depends

on age alone:

θS(a) = exp

(
−
∫ a

0
µS(τ)dτ

)
, (2.3)

with mortality,

µS(a) = c+ γr(ra)γ−1. (2.4)

where c is the constant rate and the age dependent mortality function has the Weibull shape with shape

and scale (rate) parameters γ and r, respectively [12]. By using the survival probabilities (2.1,2.3), the

population dynamics of the model is given as following:

L(t, l) =
λ

2
S̃(t− l)θL(t, l), l ≤ TL, (2.5a)

S(t, a) = L(t− a, T )θS(a) (2.5b)

where S̃(t) is the total number of adults at time t, S̃(t) =
∫∞

0 S(t, a)da and λ is the female fecundity per

unit time. The factor 2 means that the sex ratio is unity. In equations (2.5), the maximum length of the

larval stage is assumed as TL. From the equilibrium analysis (see Appendix A), one can get the total

number of larvae at the equilibrium, L̃∗,

L̃∗ =

[
1

αTL
ln

(
λΘS

2
e−µTL

)]1/β

, (2.6)
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Figure 2.1: Mosquito population dynamics without Wolbachia, from equation (2.5) with parameters,
λU = 15, TL = 10, µ = 0.1, α = 0.1, β = 0.2, c = 0.1, γ = 1.5, and r = 0.025. Good agreement with
analytical results is obtained at equilibrium.

where ΘS =
∫∞

0 θS(a)da, which is average adult lifetime. The total number of adults can be obtained

from the total larval density from the relation,

S̃∗ =
2L̃∗

λΘLD
, (2.7)

where ΘLD ≡
∫ TL

0 θ∗L(l)dl = 1−e−(µ+αL̃∗β)TL

µ+αL̃∗β , which is average larval lifetime.

Computer simulation is conducted by using the model without Wolbachia, equations (2.5). In this

project, MATLAB code was developed to perform the computer simulation. The result is illustrated in

Figure 2.1. In this numerical calculation, the parameters are given as λU = 15, TL = 10, µ = 0.1, α =

0.1, β = 0.2, c = 0.1, γ = 1.5, and r = 0.025. The analytical results are obtained from equations (2.6) and

(2.7). The numerical results of total number of individuals agree with analytical results at equilibrium.

2.2 Mosquito population with Wolbachia

The population dynamics with Wolbachia will be presented in this section. Let the subscripts U and

W represent uninfected and infected insects, respectively. p(t) is the infection frequency, which can be

obtained by p(t) = SW (t)
SW (t)+SU (t) . A fraction sh of the offspring of any uninfected female that mates with an

infected male will fail to develop because of the cytoplasmic incompatibility (CI) by Wolbachia infection.

Infected females fail to transmit Wolbachia to a fraction ω of their offspring. The changes in fecundity

caused by Wolbachia carriage might be defined with sf by λW = (1− sf )λU . In this model, the potential
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effect on any life-history parameter from Wolbachia and random mating are assumed. The dynamics are

given as following:

LW (t, l) =
λW
2

(1− ω)S̃W (t− l)θL,W (t, l), l ≤ TW , (2.8a)

LU (t, l) = [1− shp(t− l)]θL,U (t, l)

×
[
λU
2
S̃U (t− l) + ω

λW
2
S̃W (t− l)

]
, l ≤ TU , (2.8b)

SW (t, a) = LW (t− a, TW )θS,W (a), (2.8c)

SU (t, a) = LU (t− a, TU )θS,U (a). (2.8d)

The total number of infected and uninfected adults at time t are S̃W (t) and S̃U (t), respectively. Equation

(2.8.a, b) can be obtained by modelling the mechanism of CI for the case of imperfect maternal trans-

mission from Figure 1.1. The equilibria of the dynamics can be obtained as following (see Appendix B

for the derivation):

p∗s/u =
sh +A−B ±

√
(sh +A−B)2 − 4shA(1−B)

2shA
. (2.9)

The constants are defined as A = 1 − ω(1 − sf ) and B = (1 − ω)(1 − sf )(1 − sd)(1 − sg), where

ΘW
ΘU

= 1 − sg and
θ∗L,W (TW )

θ∗L,U (TU ) = 1 − sd. sd and sg indicate the amounts of reduction in average adult

lifespan and equilibrium reduction in juvenile survival, respectively. These are the fitness costs caused by

Wolbachia infection. When there is no Wolbachia infection-effect, the fitness costs on average life-time

(i.e. sd = sg = 0), B becomes (1−ω)(1− sf ) and equation (2.9) has the same result with Turelli’s model

[9].

In equation (2.9), there are two possible fixed points.p∗s with the sign + gives the stable fixed point of

the dynamics. If the bacteria could spread to the population, the infection frequency at the equilibrium

becomes p∗s. The unstable fixed point p∗u gives the threshold value for spreads. If the infection frequency

is larger than this threshold, the spreads of Wolbachia occurs. If the frequency is smaller that this

threshold, the infected individuals will be extinct because p∗ = 0 is another trivial equilibrium. This

implies the spreads of Wolbachia fails.

The numerical results of the single-patch model with Wolbachia are given in Figure 2.2. In this figure,

the cases of two different initial initial frequencies are examined with same parameters. In the figure,

the threshold value is given in black dashed line, which is obtained from equation (2.9). When p(0) is

smaller than threshold value(blue line), the infection frequency goes to zero. In the other case, when p(0)

is larger than threshold, the spread of Wolbachia occurs.

The immigration or introduction of mosquitoes carrying Wolbachia affects infection frequency. The

population model with introduction of Wolbachia carrying adults at a constant rate can be described
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Figure 2.2: Population-Wolbachia model without Introduction, equation (2.8) with parameters, λU =
15, TU = TW = 10, µ = µW = 0.1, α = αW = 0.1, β = 1, βW = 0.2, c = 0.24, γ = 1, r = 0.025, cW =
0.1, γW = 1.5, rW = 0.05, and sf = 0.05. The fitness cost of infection for the adults is considered as
sg ≈ 0.095. The black dashed line indicates the threshold of infection frequency, p∗u. The red solid line
is for the case of successful spreads for Wolbachia with initial frequency p(0) = 1/3 > p∗u, the blue line is
for the case of failure of spreads with p(0) = 1/6 < p∗u.

from simple extension of equation (2.8c) [5]. Introducing infected individuals to insect population can

breach the threshold for Wolbachia to spread. This can be used for control of mosquito-borne diseases.

In addition, since female mosquitoes bite people and they can potentially transmit disease, it is desirable

that only a minimum number of female insects are released as part of a Wolbachia introduction. The

theory for male-biased release strategies can be considered [13].

Until now, we have seen the model of mosquito population dynamics in the single-patch. For consid-

ering the spatial heterogeneity, we need to consider multi-patch system. In the following, we will discuss

about the two-patch system as the most simplest heterogeneous system.
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Chapter 3

Two-patch model without Wolbachia

Let’s consider a model that subdivides the mosquito population into two patches connected by migration,

assuming for now that Wolbachia is absent from the system. The two patches represent spatially discrete

larval habitats. Adults may migrate between the two patches and oviposit in the patch in which they

are currently present. From equations (2.5), the single-patch model can be extended to two-patch model

with migration between patches as following:

Li(t, l) =
λ

2
S̃i(t− l)θLi(t, l), l ≤ TL, (3.1a)

Si(t, a) = Li(t− a, TL)θS
i(a)θiM (a) + Ij→i(t, a), (3.1b)

where i 6= j. The influx of population with age a from patch j to patch i at time t is denoted as Ij→i(t, a).

The schematic representation of the two-patch system is illustrated in Figure 3.1. In equation (3.1b),

θiM (a) indicates the staying probability during time a at patch i. If the migration rate from patch i to j

is constant, mji, the probability of remaining in patch i during time T can be obtained as

θiM (T ) = e−
∫ t+T
t mjidτ = e−mjiT . (3.2)

Basically, the number of adults is the sum of the number of native mosquitoes who never left patch i,

the first term in equation (3.1b), and the influx from the other patch. The survival probabilities can be

obtained in the same manner as equation (2.1) and (2.3). The mortality rate of larvae is given as

µiL(L̃i(t)) = µi + αi(L̃i(t))
βi , (3.3)

where µi, αi, and βi are constants. µi indicate a constant rate of mortality. One can assume that the

constant mortality rates are the same for two different patches because this rate is a larval property of

the specific species. The density dependence of the mortality is assumed to be a power-law function. The

value of αi is inversely proportional to carrying capacity of the patch i and the value of βi represents the
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Figure 3.1: The schematic representation of two-patch model.

density-dependence of the larval mortality in the patch i. We assume that the form of density dependence,

β, is the same across the patches but the carrying capacity of each patch, α, may be different. In addition,

since the mortality function of adults depends on the species of mosquito, we assume the θiS(a) are the

same for different patches as well.

3.1 Migration in two-patch model

The influx of population with age a from patch j to i at time t is denoted as Ij→i(t, a). This is the

integral over the entire influx of adult mosquitoes which have the age a during the given time interval.

It can be written as

Ij→i(t, a) = mij

∫ a

0
Sj(t− ξ, a− ξ)θSi(ξ)θiM (ξ)dξ, (3.4)

where the migration ratemij is constant. mijSj(t−ξ, a−ξ) represents the number of migrating mosquitoes

with age a − ξ from patch j to patch i at time t − ξ. For these migrating mosquitoes, after moving to

patch i, they have remained with probability θiS(ξ)θiM (ξ) untill time t. This means that mosquitoes can

only leave from the patch because of death or migration. With this influx function, equation (3.1b) can

be rewritten as following :

Si(t, a) = Li(t− a, TL)θS
i(a)θiM (a) +mij

∫ a

0
Sj(t− ξ, a− ξ)θSi(ξ)θiM (ξ)dξ. (3.5)
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By putting Sj(t− ξ, a− ξ) in the previous equation, one can get a new expression of age distribution of

the adults.

Si(t, a) = Li(t− a, TL)θS
i(a)θiM (a) (3.6a)

+ mij

∫ a

0
Lj(t− a, TL)θS

j(a− ξ)θjM (a− ξ)θSi(ξ)θiM (ξ)dξ (3.6b)

+ mijmji

∫ a

0

∫ a−ξ

0
Si(t− ξ − ξ1, a− ξ − ξ1)θS

j(ξ1)θjM (ξ1)θS
i(ξ)θiM (ξ)dξ1dξ. (3.6c)

In equation (3.6), the first term (3.6a) indicates the ‘native’ mosquitoes in patch i who have never left

their habitat since they were born. The second term (3.6b) is a part of the number of ‘immigrants’ with

age a who left patch j when their age was a−ξ and never returned to patch j. The last term (3.6c) could

be called ‘travellers’. They travelled between patch i and patch j several times and they are observed

at patch i at that time. However, from this expression for travellers, we cannot identify, in which patch

they were born. A traveller could be a native or an immigrant.

3.2 Subdivision of the system : Spatial heterogeneity

The dynamics of two-patch system can be reduced to two single-patch systems by assuming there is no

migration. A proper comparison between spatially homogeneous system(i.e. single-patch) and spatially

heterogeneous system could be attained by assuming the two-patch system is the subdivided system of

one single-patch system.

Let’s consider the concept of resource distribution. A patch in the model represents a mosquito’s

habitat where the insects can breed their offsprings. The larvae can survive with nutrients in the patch.

When a comparison between the single-patch system and the two-patch system is needed, we should

consider the carrying capacity or the amount of nutrients of each patch. In equation (2.6), the total

number of larvae at equilibrium is given. From this, we interpret the total number of larvae as the proper

size of the population that the patch can support. By assuming that the characteristics of mosquitoes

are the same for different patches, the properties of patches are given from just two parameters α and

β. When the reciprocal of carrying capacity for each patches are given as α1 and α2 and the density

dependence is the same β1 = β2 = β, the single-patch system with the same amount of nutrients as the

two-patch system is obtained as following (see Appendix C for the derivation):

αs =
α1α2(

αβ1 + αβ2

)1/β
, (3.7)

where αs is the reciprocal carrying capacity of the single-patch. By using equation (3.7), one can set the

comparable different systems with same amount of nutrients.
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3.3 Two-patch model with constant mortality and migration

After setting the two-patch system with different carrying capacities, now we can consider the spatially

heterogenous model analytically. Firstly, for simplicity, let’s assume that adult mortality is constant and

does not depend on adult age. In this case, the parameter r is zero in equation (2.3). Then, the survival

probability, θiS(a), becomes

θiS(a) = θjS(a) = e−ca. (3.8)

Here, we assume that c = ci = cj since we are considering the same species of mosquito in similar

generations. By assuming the migration rate between two patches is the same and constant (i.e. mij =

mji = m), one can get the reduced form of the mosquito population dynamics, equations (3.1) and (3.6)

Li(t, l) =
λ

2
S̃i(t− l)θLi(t, l), l ≤ TL, (3.9a)

Si(t, a) = Li(t− a, TL)e−(c+m)a +maLj(t− a, TL)e−(c+m)a

+ m2

∫ a

0

∫ a−ξ

0
Si(t− ξ − ξ1, a− ξ − ξ1)e−(c+m)(ξ+ξ1)dξ1dξ. (3.9b)

By successive substitutions of Si(t, a), age-distribution of the number of adults is obtained as (see Ap-

pendix D.1 for the derivation),

Si(t, a) = cosh (ma)Li(t− a, TL)e−(c+m)a + sinh (ma)Lj(t− a, TL)e−(c+m)a. (3.10)

In equation (3.10), the first term indicates the number of “native” mosquitoes with age a at time t in

the patch i, Sn
i (t, a), and the second term indicates the number of “immigrant” mosquitoes from patch

j, Sim
i (t, a). Since the Li(t− a, TL) term means the number of newborns in patch i at time t− a, one can

interpret the factor cosh(ma)e−ma as the probability of being present in the birth patch at age a, due to

not emigrating or returning after emigration, and the factor sinh(ma)e−ma as the probability of being an

immigrant at age a. When m = 0, only the first term remains and there would be no immigrants because

the probability of immigration becomes zero. As m increases, the probability of staying gets smaller and

the probability of immigration gets bigger. When ma becomes very large, the probabilities of staying and

immigration asymptotically tend to 1
2 . This implies that the migration rate is large enough, probabilities

of staying and migrating become almost same.

In Figure 3.2, numerical results of time evolution of total adults populations for each patch are

plotted with given parameters with α1 = 0.1, α2 = 0.1/30.2 ≈ 0.0802 and β = 0.2. These values give

the proportion of populations at the equilibrium in two patches as S̃∗1 = S̃∗2 = 1 : 3, which is obtained

from proportion of nutrients (see previous section and Appendix C). The solid lines are obtained from
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Figure 3.2: Time evolution of total adult populations, S̃i(t) for each patch, The parameters are assigned
as λU = 15, TL = 10, µ = 0.1, α1 = 0.1, α2 = 0.1/30.2 = 0.0802 · · · , β = 0.2, c = 0.1, and the migration
rate m = 0.05. The blue solid line is the time evolution of S̃1(t) and the green solid line is the one of
S̃2(t). The red dot-dashed lines are obtained from equation (3.10). The results show good agreements
between two different equations, (3.9b) and (3.10).

equations (3.9) and the red dot-dashed lines are obtained from equation (3.10). The results are agreed

to each other very well. This implies that the equations are equivalent. Thus, the two-patch model with

constant migration can be interpreted with probabilities of staying and emigrating between two patches.

In addition, the proportion of adults population between two patches approaches 1 : 3 as we expected

from α, β values.

The numerical results of composition of adults population are given in Figure 3.3. In this figure, we

made two different patches which have different carrying capacities, α1 = 0.1, α2 = 0.1
30.2

, and β1,2 = 0.2

like the previous figure. Other parameters are set to be the same. From the α values, one can say that

the patch 1 as a small patch and patch 2 as a big patch. Red solid lines show the total number of adults

S̃∗1 (left) and S̃∗2 (right). Green solid lines and blue solid lines are results of the total number of natives,

S̃n∗
1 , and the total number of immigrants, S̃im∗

1 , respectively. The values are analytically tractable as

following:

S̃n∗
i =

∫ ∞
0

cosh (ma)L∗i (TL)e−(c+m)ada =
c+m

c(c+ 2m)
L∗i (TL) (3.11)

S̃im∗
i =

∫ ∞
0

sinh (ma)L∗j (TL)e−(c+m)ada =
m

c(c+ 2m)
L∗j (TL). (3.12)

The numbers of natives and immigrants are dependent on the constant mortality rate c, migration rate

m, and the number of larvae with stage TL at equilibrium, L∗i (TL). The numbers of larvae with stage TL
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Figure 3.3: Composition of adults for different migration rates. Equation (3.10) is used with one possible
set of parameters, λU = 15, TL = 10, µ = 0.1, α1 = 0.1, α2 = 0.1/30.2 ≈ 0.0802, β1,2 = 0.2, and c = 0.1.
The left panel is for the result of patch 1, the small patch and the right one is for the large patch. Red
solid lines are the total numbers of adults at equilibria, the green ones are the numbers of natives and
the blue lines are the numbers of immigrants.

are not determined yet because of complex properties of density mortality function.

In Figure 3.3, as the migration rate m increases, the numbers of adults at the equilibria of each patch

shows different behaviour. In the small patch (left panel), the total number of mosquitoes is increasing

because of migration effect. As the number of immigrants Sim∗
1 increases, the number of natives decreases.

This is because of the density dependent mortality function. The carrying capacity of the small patch

is relatively small to support many larvae in the patch but their is always some influx from the big

patch. On the other hand, for the big patch, many larvae can survive in the early stage from the density

dependent mortality. Because of migration, the small patch can get more immigrants and the big patch

can lose their natives. That results the increase of the total number of adults in the small patch and the

decrease of the total number of adults in the big patch.

3.4 Density dependent mortality and migration

In the previous section, the density mortality function has an important role in the two-patch model with

migration. However, since the migration rate and the density of each patch are coupled in the dynamics,

it is hard to understand the relation between density dependent mortality and migration. In this section,

the effects of migration to the larval density dependent mortality will be discussed.

The numerical results of the total number of adults at equilibria for different migration rate are given

in Figure 3.4. As we mentioned in the chapter 2, the density dependent mortality is chosen as power-law

function. The value β corresponds to strength of the dependence on density of the patch. For higher
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Figure 3.4: Number of adults for different migration rates. Equation (3.9) is used with parameters,
λU = 15, TL = 10, µ = 0.1, and c = 0.1. The sizes of patches are given with proportion 1 : 3 for patches.
The parameters are α1 = 0.1, α2 = 0.1/3β The left panel is for the case β = 0.2 (solid line with circles)
and the right panel is for β = 1.0 (dashed line with ×). Red solid lines are the total numbers of adults
at equilibria, the green ones are the numbers of adults in patch 1 (small) and the blue lines are numbers
of adults in patch 2 (big).

values of β, larval mortality responds more strongly to changes in larval density. Here, we examine for

two different values of β. The left panel shows the case when β = 0.2 and the right one shows the case

when β = 1.0. The carrying capacities are chosen as α1 = 0.1 and α2 = 0.1/(0.3)β, which gives the

proportion between the numbers of adults in each patch as 1 : 3.

In Figure 3.4, the overall behaviours of two cases seem similar regardless of density dependency. As

migration rate m increases, the population in small patch, which is shown as blue line, increases and the

population in big patch, green line, decreases. The total population of entire system seems unchanging.

Since the migration rate m is given as constant, the big patch lose its population constantly but the

influx from small patch is always smaller than its efflux. For the small patch, vice versa.

However, there is very important difference between two cases. The total number adults in the system

is slightly changed because of migration. For the case β = 0.2, the total number of adults (red line) shows

a slight decrease as migration rate increases. This indicates that the influx from big patch is too large

to support for the small patch. The larvae from immigrants make the density in the small patch higher.

This causes the strong competition between larvae. As an overall effect to two-patch system, the total

number of adults decreases even though the adult population in small patch increases. On the other

hand, for the case β = 1.0, the observed is a slight increase of total number of adults in the system. This

is a counter effect of the density dependence. In this case, the mortality function is linearly depend on

the larval density. Larval mortality responds to the change of density too strong. This enables the system
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has a low population so that each patch can support. The pressure experienced in the small patch due

to immigration from the big patch is demonstrated by sharp reduction in the larval survival in the small

patch as the migration rate increases (See Appendix E.). However, the larval survival in the big patch

increases due to lower population pressure. This counteracts the loss of offspring in the small patch with

the overall result that the meta-population size is not greatly affected by increased migration.

The density dependence mortality becomes more important when we consider the migration in the

heterogenous environment. As we have seen previous results, when the density dependence is too strong,

the effect of the migration cannot have a critical role to change entire system’s behaviour. In real

ecosystem, the density dependence cannot be too high to be independent from migration. In the case

of β = 1.0, the mortality function increases linearly. This cannot be a proper description for the real

ecosystem. From the previous study, the proper value of β is required.
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Chapter 4

Two-patch model with Wolbachia

In this chapter, we explore the effect of spatial subdivision of the mosquito population on the dynamics of

Wolbachia infection. This analysis involves extending the two-patch model to include Wolbachia infection.

We assume in this analysis that Wolbachia infection is introduced into the mosquito population via

immigration of Wolbachia infected adults from an external source. The population dynamics are given

as following:

LiW (t, l) =
λw
2

(1− ω)S̃iW (t− l)θiL,W (t, l), l ≤ TW , (4.1a)

LiU (t, l) = [1− shpi(t− l)]
[
λu
2
S̃iU (t− l) + ω

λw
2
S̃iW (t− l)

]
θiL,U (t, l), l ≤ TU , (4.1b)

SiW (t, a) =
(
LiW (t− a, TW ) + IiW

)
θiS,W (a)θiM (a) +mij

∫ a

0
SjW (t− ξ, a− ξ)θSi(ξ)θiM (ξ)dξ, (4.1c)

SiU (t, a) = LiU (t− a, TU )θiS,U (a)θiM (a) +mij

∫ a

0
SjU (t− ξ, a− ξ)θSi(ξ)θiM (ξ)dξ, (4.1d)

where each superscript(i.e. i, j) indicates the index of each patch. In equation (4.1.c), the term of

Wolbachia introduction is included for considering the biological control strategies. In the equation, the

Wolbachia infected adults are introduced onto each other patch at a constant rate I
i/j
W . In the aspects of

strategies, introduction of infected mosquitoes could be different for each patch.

Two-patch model of Wolbachia with constant adult-mortality and migration

For simplicity, we assume age-independent adults mortality and the constant rate of migration between

two patches as the previous chapter. With the exponentially decaying probability of survival, equations

(4.1.c,d) becomes simpler.

SiW (t, a) =
(
LiW (t− a, TW ) + IiW

)
e−(c+m)a +m

∫ a

0
SjW (t− ξ, a− ξ)e−(c+m)ξdξ, (4.2a)

SiU (t, a) = LiU (t− a, TU )e−(c+m)a +m

∫ a

0
SjU (t− ξ, a− ξ)e−(c+m)ξdξ. (4.2b)
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From equation (4.2), the age-distribution of each class of adults can be obtained by conducting the same

analytical method as in previous section.

SiW (t, a) =
[
cosh(ma)

(
LiW (t− a, TL) + IiW

)
+ sinh(ma)

(
LjW (t− a, TL) + IjW

)]
e−(c+m)a (4.3)

SiU (t, a) =
[
cosh(ma)LiU (t− a, TL) + sinh(ma)LjU (t− a, TL)

]
e−(c+m)a. (4.4)

Despite understanding the effects of migration, there are 8 different equations with 8 variables. Because

of the complexity of the coupled equations, it is not analytically tractable. For these equations, we

present the numerical results of the model.

The most important measure in the dynamics of the two-patch model with Wolbachia could be the

meta-infection frequency. The meta-infection frequency is defined as,

pM (t) ≡ S̃TW (t)

S̃TU (t) + S̃TW (t)
=

S̃iW (t) + S̃jW (t)

S̃iU (t) + S̃jU (t) + S̃iW (t) + S̃jW (t)
. (4.5)

This meta-infection frequency gives information about how quickly the Wolbachia spreads through the

host population in a heterogeneous environment. The infection frequency of each patch is denoted as

pi/j(t) =
S̃
i/j
W (t)

S̃
i/j
U (t)+S̃

i/j
W (t)

. From these infection frequencies, we can see the dynamics of Wolbachia instead

of mosquito populations.

In Figure 4.1, the numerical results of meta-frequencies are given for different migration rates. In this

figure, two different cases are plotted. (1)The case that two identical patches (top) with sizes α1 = α2 =

0.1/20.2. (2) Two patches with different sizes, 1 : 3 nutrient system (i.e. α1 = 0.1, α2 = 0.1/30.2). These α

values are chosen as same amount of nutrients for entire system and equally and unequally distributed for

each case. The rest of parameters are equivalent for two patches. For the introduction rate, I
i/j
W = 0.05 is

used and the releasing started at t = 400 after stabilizing the uninfected mosquito population. This value

of introduction rate IW is chosen to be enough to spread to the host population(i.e. I
i/j
W > IWc where

IWc is the minimum rate of introduction required for Wolbachia to invade the uninfected population.).

In the top figure, we show the meta-infection frequencies when the two patches are identical. The

conditions are the same for each patch. The meta-infection frequencies show almost same behaviour

regardless of migration. In the bottom figure, the case of the system with different patches shows different

results to the identical case. The red line in the figure shows the case of the absence of migration. The

isolation of the two patches implies the bacteria are spreading in each patch independently. The red

curve of pM (t) is not smooth and there is a hump near t ≈ 700 because of an effect of isolation. This

shows the Wolbachia quickly spread in the small patch first and then, spread to the second patch. This

18



400 600 800 1000
0

0.2

0.4

0.6

0.8

1

time (day)

P
M

(t
)

 

 

m = 0.00
m = 0.01
m = 0.05

400 600 800 1000
0

0.2

0.4

0.6

0.8

1

time (day)

P
M

(t
)

 

 

m = 0.00
m = 0.01
m = 0.05
m = 0.10

Figure 4.1: Time evolution of the meta-infection frequencies pM (t) for the two different cases with different
migration rate. Used parameters are λU = 15, TL = 10, µ = 0.1, β1/2 = 0.2, c = 0.1, sf = 0.05, sh = 0.99,
and ω = 0.01. Infected mosquitoes starts being released at t = 400 with the constant introduction rate
IW = 0.05 to each patch. (1) The case that two identical patches (top) with sizes α1 = α2 = 0.1/20.2.
(2) The case that patches with nutrient proportion 1:3 (bottom) with sizes α1 = 0.1 and α2 = 0.1/30.2.
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Figure 4.2: Time to spread τs(bottom) for different migration rate with parameters, λU = 15, TL =
10, µ = 0.1, β1/2 = 0.2, c = 0.1, sf = 0.05, sh = 0.99, and ω = 0.01. Infected mosquitoes starts being
released at t = 400 with the constant introduction rate IW = 0.05 to each patch. The case that two
identical patches (blue line) with sizes α1 = α2 = 0.1/20.2. The case that patches with nutrient proportion
1:3 (red line) with sizes α1 = 0.1 and α2 = 0.1/30.2. The threshold of frequency pth is defined as 0.999.

is because the carrying capacity of the patch and the rate of introduction are fixed. However, if the

migration factor is considered, the Wolbachia infection frequency in meta level becomes smooth function

and the spread becomes more faster.

In order to quantify the speed of spread of Wolbachia, another interesting measure could be the time

to spread through the entire system. We define the time to spread τs as

τs ≡ min{ t | pM (t) > pth} (4.6)

where pth is the threshold value that we can vary. τs indicates the time to spread of Wolbachia to the

entire system after releasing infected adults to uninfected patches. In Figure 4.2, the changes of the time

to spread for different migration rates are plotted. In this simulation, we use the threshold of frequency

as pth = 0.999. When the patches are identical, the time to spread slightly increases but there is not

remarkable change. On the other hand, when the patches are different, the time to spread shows rapid

decrease as soon as migration added to each patch. When the migration is high enough, heterogenous

system shows more faster spreads than identical patch because the small patch acts as an extra source

of Wolbachia introduction into the big patch once spread occurs in the small patch.
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Chapter 5

Discussion and Conclusions

In previous chapters, we have seen the two-patch model, which includes the heterogenous of the sub-

division, the form of density-dependent regulation, and rates of migration between the patches. From

this model, we obtain the results that spatial subdivision and migration affect the mosquito population

dynamics and the dynamics of Wolbachia. Because of subdivision, the population dynamics with no

Wolbachia shows that the number of adult population goes down. This effect depends on the nature

of the density dependent competition operating in the larval stage. Effects of subdivision on Wolbachia

dynamics are increases of the rate of Wolbachia spread. In a heterogenous system with different size of

patches, greater migration between patches can lead to faster spread. This analysis will be important to

predicting the dynamics of Wolbachia when used as a strategy for controlling mosquito-bone diseases.

The strategy for introducing Wolbachia infected mosquitoes to the patch is aimed at attaining fast

spreads of the bacteria in the target population system. From the perspective of the experiment, we

compare three strategies of releasing infected mosquitoes. (1) Introducing Wolbachia with same rate to

each patch (i.e. I1
W = I2

W ). In this strategy, we do not need to consider about properties of patches

for releasing, such as carrying capacity. (2) Introducing the bacteria only in the big patch (i.e. I1
W =

0, I2
W > 0, when α1 > α2.). This strategy is considered because the big patch can affect to the small

patch easily through migration. (3) Introducing the bacteria to the small patch (i.e. I1
W > 0, I2

W = 0,

when α1 > α2.). This strategy can be helpful to attain an infected patch as soon as possible. The small

patch can easily get the threshold of infection frequency because of relatively small population in the

patch. The second and the third strategies require information about patches. This means that, in order

to release Wolbachia, we need to find out which patch is smaller or bigger.

In Figure 5.1, the schematics of three different model systems are given. According to the subdivision

method (see Appendix C), three representative systems are chosen. a) A single patch with the amount of

nutrients Ns and the carrying capacity αs. b) An identical two-patch system that each patch has the half
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Figure 5.1: The schematics of three different cases.
From left to right, (a) A single system, (b) A half-system, (c) A quarter-system.

of nutrients for single system, Ns
2 (i.e α1 = α2 = αh or Ns

2 = N1 = N2, which we call a half-system). c)

A heterogeneous two-patch system(i.e. α1 6= α2) that the nutrients are divided to 1 : 3 for each. We set

Ns
4 = N1 = N2

3 , which we call a quarter-system. In the numerical calculation, we set αs = 0.1
40.2

, αh = 0.1
20.2

,

αq = 0.1 and α3q = 0.1
30.2

and β = 0.2.

The numerical results for the comparison of meta-infection frequencies for different strategies are

given in Figure 5.2. The results show the most effective strategy when we are using the same amount of

infected mosquitoes to release. The top figure illustrates the meta-infection frequencies of the half-system

for different strategies and the below figure is the results of the quarter-system. In both results, we allow

the migration between patches with migration rate m = 0.05.

In Figure 5.2, the black dot-dashed lines show the pM (t) of single-patch system with IsW = 0.1. These

lines are added as a reference in the homogenous system. The green, blue, red lines indicates the different

strategies, (1) the two-patch system with same introduction rate, I1
W = I2

W = 0.05, (2) the two-patch

system with big patch introducing, I1
W = 0 and I2

W = 0.1, (3)the two-patch system introduction to the

small patch, I1
W = 0.1 and I2

W = 0, respectively.

In the top figure, the half-system case, the spreads of Wolbachia are almost the same as a single-

patch system even though the patches are subdivided and strategies are different. If the two patches are

identical, migration is no longer important to the mosquitoes because the conditions in the patch, such

as mortality rates, the amount of nutrients are the same in each patch. From this, we can expect that

many identical patches can be interpreted as a homogenous system if the patches are connected to each

other with constant migration rate.

In the bottom figure, the results of quarter-system case are given. The meta-infection frequencies

show the different behaviour for the different strategies. For the strategy (1) (green), the spread of Wol-

bachia is not as fast as in single-patch system. Even though the nutrients are separated, the small patch

is too small to support introduced mosquitoes. The density-dependent mortality kills the larvae from

introduced mosquitoes. If there is no migration between patches, the spread time would be the longest
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Figure 5.2: Meta infection frequencies pM (t) for different strategies. On the top, the result of the half-
system is given with patch sizes, α1 = α2 = 0.1/20.2. On the bottom, the result of the quarter-system
is given with α1 = 0.1, α2 = 0.1/30.2. Other parameters are chosen as λU = 15, TL = 10, µ = 0.1, β =
0.2, c = 0.1, sf = 0.05, sh = 0.99, and ω = 0.01. Migration between patches are allowed with the constant
rate m = 0.05. Infected mosquitoes start being released at t = 400 with the different introduction
rate for each strategies. The black dot-dashed lines show the pM (t) of single-patch system with size
αs = 0.1/40.2. This inverse carrying capacity gives the same amount of nutrients as other two systems.
The introduction rate to the single patch is IsW = 0.1. The green lines do the two-patch system with
same introduction rate, I1

W = I2
W = 0.05 (i.e. Strategy (1)), the blue lines do the two-patch system with

big patch introducing, I1
W = 0 and I2

W = 0.1 (i.e. Strategy (2)), and the red lines do the two-patch
system with small patch introducing, I1

W = 0.1 and I2
W = 0 (i.e. Strategy (3)).
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because many mosquitoes that introduced as strategies to small patch would be killed in larval stage.

For the strategy (2) (blue), the spread of Wolbachia occurs relatively fast compared other strategies. The

patch, which is referred as a big patch, has the size of 3/4 of the single patch. For the bacteria, this implies

that this system is more easier to conquer than single-patch system and the spread to the small patch can

be attained easily because of migration. Lastly, for the strategy (3), this shows slow spreads to the meta

system. As we mentioned before, since the density dependent mortality regulates the population size,

the introduced mosquitoes cannot make many larvae in the small patch. Not like strategy (2), larvae of

introduced mosquitoes will be killed in the small patch. For the Wolbachia, avoiding density dependent

mortality and conquering the big patch could be the best strategy to be spread for entire system. As

a strategy for spreading Wolbachia to the mosquito population, introducing the infected mosquitoes to

the biggest patch can be the best strategy when we are able to access the information of the patches, for

example, carrying capacity or amount of nutrients.

In conclusion, we have shown that the spatially heterogeneous environment can affect to the popu-

lation dynamics of mosquitoes and the dynamics of Wolbachia spread. The migration between different

patches and the density dependent mortality are highly connected to each other. Because of migration,

the mosquitoes can moved to another better patch to survive. Furthermore, because of migration, the

larvae from the emigrating mosquitoes can cause the increase of larval density in the patch and the

high larval density induces the high mortality to the larvae. An understanding of these factors from

the two-patch model is critical to analyze the real ecosystem. To approach to the real ecosystem, the

modelling on the multi-patch system is required. Analysis of multi-patch systems will be complicated and

the dynamics will be influenced by the processes that we have identified as important in this two patch

analysis. These include the heterogenous of the subdivision, the form of density-dependent regulation,

and rates of migration between the patches. From this two-patch model, we can expect the mechanisms

that this study has identified to be amplified in a multi-patch network model. In the multi-patch model,

heterogeneity and inter-patch migration will be even more important because there will be feedback

effects in a multi-patch system.
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Appendix A

Single-patch model without Wolbachia

Here I derive the equilibrium of the numbers of larvae and adults in single-patch model without Wolbachia.

At the equilibrium, the dynamic equations (2.5) have to be satisfied

L∗(l) =
λ

2
S̃∗θ∗L(l), (A.1a)

S∗(a) = L∗(TL)θS(a). (A.1b)

Taking the integration over all the ages(i.e
∫∞

0 da) of equation (A.1b), one can obtain an expression of

S̃∗,

S̃∗ = L∗(TL)ΘS (A.2)

where ΘS =
∫∞

0 θS(a)da, which is average adult lifetime. At the last stage of larvae l = TL, the probability

of larval survival at the equilibrium can be given by using equation (A.1a).

θ∗L(TL) =
2L∗(TL)

λS̃∗
=

2

λΘS
. (A.3)

This implies the probability of larval survival at equilibrium is the reciprocal of expected lifetime pro-

duction of adult female. On the other hand, this larval survival probability can be obtained analytically

as following[14].

θ∗L(TL) = exp

(
−
∫ t

t−TL
µL(L̃∗)dτ

)
= exp

(
−
∫ t

t−TL
µ+ αL̃∗βdτ

)
= exp

(
−(µ+ αL̃∗β)TL

)
(A.4)

From the equivalence between equation (A.3) and (A.4), total number of larvae at the equilibrium is

obtained as

L̃∗ =

[
1

αTL
ln

(
λΘS

2
e−µTL

)]1/β

. (A.5)
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L∗ also can be obtained from the integration over all stage l of the L∗(l).

L̃∗ =

∫ TL

0
L∗(l)dl =

λS̃∗

2

∫ TL

0
θ∗L(l)dl

=
λS̃∗

2

∫ TL

0
e−

∫ t
t−l µ+αL̃∗βdτdl

=
λS̃∗

2

∫ TL

0
e−l(µ+αL̃∗β)dl

=
λS̃∗

2

(
1− e−(µ+αL̃∗β)TL

µ+ αL̃∗β

)
. (A.6)

From equation (A.6), the relation between total number of larvae and adults is given.

S̃∗ =
2L̃∗

λΘLD
(A.7)

where ΘLD ≡
∫ TL

0 θ∗L(l)dl = 1−e−(µ+αL̃∗β)TL

µ+αL̃∗β , which is average larval lifetime.
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Appendix B

Single-patch model with Wolbachia

Here I derive the equilibrium of the numbers of larvae and adults in single-patch model with Wolbachia.

At the equilibrium, the dynamic equations (2.8) can be written as

L∗W (l) =
λW
2

(1− ω)S̃∗W θ
∗
L,W (l), l ≤ TW , (B.1a)

L∗U (l) = [1− shp∗]
[
λU
2
S̃∗U + ω

λW
2
S̃∗W

]
θ∗L,U (l) l ≤ TU , (B.1b)

S̃∗W = L∗W (TW )

∫ ∞
0

θS,W (a)da = L∗W (TW )ΘW , (B.1c)

S̃∗U = L∗U (TU )

∫ ∞
0

θS,U (a)da = L∗U (TU )ΘU . (B.1d)

By substituting equation (B.1a) to (B.1c), the expression of θ∗L,W (TW ) is given.

S∗W =
λW
2

(1− ω)S̃∗W θ
∗
L,W (TW )ΘW , (B.2)

θ∗L,W (TW ) =
2

λW (1− ω)ΘW
iff S∗W 6= 0. (B.3)

Next, substitute equation (B.1b) to (B.1d) to give

S∗U = (1− shp∗)
[
λU
2
S̃∗U + ω

λW
2
S̃∗W

]
θ∗L,U (TU )ΘU . (B.4)

The relative decrease of parameters, which is caused by Wolbachia infection can be expressed with relative

constants.

λW = (1− sf )λU (B.5)

ΘW = (1− sg)ΘU (B.6)

θ∗L,W (TW ) = (1− sd)θ∗L,U (TU ) (B.7)
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Substitute equation (B.3) to (B.4)

S̃∗U =
2(1− shp∗)

(1− ω)(1− sd)(1− sf )(1− sg)

[
1

2
S̃∗U + ω

1

2
(1− sf )S̃∗W

]
. (B.8)

From dividing by the total number of adults at equilibrium, S̃∗U + S̃∗W , one can get simple quadratic

equation of p∗

1− p∗ =
(1− shp∗) [1− p∗ + ω(1− sf )p∗]

(1− ω)(1− sd)(1− sf )(1− sg)
(B.9)

Solving equation (B.9) gives fixed points of infection frequency p∗,

p∗ =
sh +A−B ±

√
(sh +A−B)2 − 4shA(1−B)

2shA
(B.10)

where A = 1−ω(1− sf ) and B = (1−ω)(1− sd)(1− sf )(1− sg). When there is no Wolbachia infection-

effect on average life-time (i.e. sd = 0 and sg = 0), B becomes (1− ω)(1− sf ) and equation (B.10) has

the same result with Turelli model[9] . At equilibrium, one can obtain the total number of infected and

uninfected larvae and adults by integrating equations (B.1a,b) over entire stages(i.e.
∫ TW/U

0 dl). For the

larvae,

L̃∗W =
λW
2

(1− ω)S̃∗W θ
∗
L,W , (B.11a)

L̃∗U = (1− shp∗)
[
λU
2
S̃∗U + ω

λW
2
S̃∗W

]
θ∗L,U (B.11b)

Summation equations (B.11a,b) and substitution S̃∗U = 1−p∗
p∗ S̃∗W give

S̃∗W =
2p∗L∗T

(1− shp∗)(λU (1− p∗) + ωλW p∗)θ∗L,U + λW (1− ω)p∗θ∗L.W
(B.12)

where the total number of larvae, L̃∗T = L̃∗W + L̃∗U . From equation (B.3), L̃∗T can be obtained. If the

probability of infected larval survival is given as

θL,W (t, l) = exp

(
−
∫ t

t−l
µW + αW (L̃T (t))βW dτ

)
, (B.13)

which has the same mortality function with parameters µW , αW and βW , at equilibrium, θ∗L,W (TW ) is

θ∗L,W (TW ) =
2

λW (1− ω)ΘW
= e−(µW+αW (L̃∗

T )βW )TW . (B.14)

Thus, the total number of larvae is

L̃∗T =

[
1

αWTW
ln

(
λW (1− ω)ΘW

2
e−µWTW

)]1/βW

(B.15)

By substituting p∗, equation (B.10), and equation (B.15), the exact value of S̃∗W can be obtained.
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Appendix C

Subdivision of the system

If we assume that the characteristics of mosquitoes are the same for different patches, in other words,

the expected life spans ΘS , the fertility λ, the mortality µ, and the time of development of larvae TL are

given from the species, then the properties of patches are given from just two parameters α and β. From

equation (2.6), the function of nutrients N(α, β) can be written as

N(α, β) = n0

[
1

α

]1/β

(C.1)

where n0 is constant which indicates the characteristics of insects. In the two-patch model, without

migration, the total amount of nutrients could be an extensive quantity, which means the amount of

nutrients is additive.

Ntot = N1(α1, β1) +N2(α2, β2)

= n0

[
1

α1

]1/β1

+ n0

[
1

α2

]1/β2

. (C.2)

By using the above equations, one can find a comparable two-patch model to a single-patch model. When

the reciprocal of carrying capacity for each patches are given as α1 and α2 and the density dependence

is the same β1 = β2 = β, the single-patch system with the same amount of nutrients as the two-patch

system is obtained as

αs =
α1α2(

αβ1 + αβ2

)1/β
(C.3)

where αs is the reciprocal carrying capacity of the single-patch.

By using equation (C.3), we set the three different cases with same amount of nutrients: 1) A single

patch, 2) An identical two-patch system (i.e α1 = α2 or Ns
2 = N1 = N2, which we call a half-system)

and 3) A heterogeneous two-patch system(i.e. α1 6= α2). We set Ns
4 = N1 = N2

3 , which we call a

quarter-system. In the numerical calculation, we set α1 = 0.1 and β = 0.2.
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Figure C.1: Numerical results of the time evolution of the total number of adults in different patched
system. The parameters are λU = 15, TL = 10, µ = 0.1, β = 0.2, c = 0.1, IiW = 0 and m = 0.0 (without
migration). The pink solid line indicates the total(meta) population of adults in single-patch system, the
blue one does the half-system, and the red one does the quarter-system. The dashed lines show the total
number of adults for each patch.

In Figure C.1, the numerical result of time evolution of total number of adults are given. The pink

solid line indicates the total number of adults in the single-patch model. For the half-system case, which

is shown as blue lines, the population in each patch is exactly half of meta population, the blue dashed

line. For the quarter system, the red lines, the proportion as the population between patches are given

as 1 : 3, which is the same proportion of the amount of nutrients. From these results, we can observe the

several different and comparable cases of spatial heterogeneity.
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Appendix D

Two-patch model without Wolbachia

D.1 The adult population for each patch

By putting the expression of Si(t− ξ − ξ1, a− ξ − ξ1),

Si(t− ξ − ξ1, a− ξ − ξ1) = Li(t− a, TL)e−(c+m)(a−ξ−ξ1) +m(a− ξ − ξ1)Lj(t− a, TL)e−(c+m)(a−ξ−ξ1)

+m2

∫ a−ξ−ξ1

0

∫ a−ξ−ξ1−ξ2

0
Si(t− ξ − ξ1 − ξ2 − ξ3, a− ξ − ξ1 − ξ2 − ξ3)e−(c+m)(ξ2+ξ3)dξ3dξ2,

to equation (3.9), a new expression for the number of adults can be obtained because a change of integral

variables gives always same form of integration. Keeping successive substitutions to the expression of

Si(t, a) to itself gives the final expression of the age distribution of adults for each patch.

Si(t, a) = Li(t− a, TL)e−(c+m)a
∞∑
n=0

(ma)2n

(2n)!
+ Lj(t− a, TL)e−(c+m)a

∞∑
n=0

(ma)2n+1

(2n+ 1)!
(D.1)

= cosh (ma)Li(t− a, TL)e−(c+m)a + sinh (ma)Lj(t− a, TL)e−(c+m)a. (D.2)

The time evolution of the number of adults with age a at given time is determined by the numbers of

newborns for each patch at time t− a.

D.2 Equilibrium distribution for each patch

Here I derive the equilibrium of the numbers of larvae and adults in two-patch model without Wolbachia.

At the equilibrium, the dynamic equations (3.9) have to be satisfied

L∗i (l) =
λ

2
S̃∗i θ

i∗
L (l), l ≤ TL, (D.3a)

S∗i (a) = L∗i (TL)e−(c+m)a +maL∗j (TL)e−(c+m)a

+ m2

∫ a

0

∫ a−ξ

0
S∗i (a− ξ − ξ1)e−(c+m)(ξ+ξ1)dξ1dξ. (D.3b)
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Figure D.1: The comparison between analytical results, equation (D.6), and numerical results for the age
distribution of the number of adults for each patch. Above graph is the age distribution for equal size
patches. Below graph is the age distribution for different size of patches. Green dashed line indicates the
number of adults in small patch and blue dashed line is the number of adults in big patch.

By changing integration variable x = a − ξ − ξ1 in equation (D.3b), one can get new expression of the

number of adults at equilibrium.

S∗i (a) = L∗i (TL)e−(c+m)a +maL∗j (TL)e−(c+m)a

+ m2e−(c+m)a

∫ a

0

∫ a−ξ

0
S∗i (x)e(c+m)xdxdξ (D.4)

S∗i (a)e(c+m)a = L∗i (TL) +maL∗j (TL) +m2

∫ a

0

∫ a−ξ

0
S∗i (x)e(c+m)xdxdξ. (D.5)

By solving the integral equation (D.5), one can get a solution of age-distribution function of the number

of adults at equilibrium:

S∗i (a)e(c+m)a =
1

2

[
(L∗i (TL) + L∗j (TL))ema + (L∗i (TL)− L∗j (TL))e−ma

]
S∗i (a) =

[
cosh(ma)L∗i (TL) + sinh(ma)L∗j (TL)

]
e−(c+m)a. (D.6)

This equation agrees with equation (D.2), which is obtained from the condition of the age-distribution

at time t. In equation (D.6), the numbers of larvae at the equilibrium, L∗i/j(TL), are not analytically

determined yet. In order to get a analytic result for the larvae, one should solve the coupled equation.

However, because of complexity of coupled nonlinear equations, it is hart to obtain analytically.
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Appendix E

The larval survival probability and the
average lifetime of larvae

The larval survival probability θi∗L (TL) = e−(µ+αiL̃
∗β
i )TL and the average larval life time θi∗LD =

∫ TL
0 θi∗L (l)dl =

1−e−(µ+αiL̃
∗β
i

)TL

µ+αiL̃
∗β
i

can be considered. In Figure E.1, the numerical results of larval survival probability

θi∗L (TL) (left) and the average larval life time θi∗LD (right) are given at equilibria for various migration rate

m. Solid lines and dot-dashed lines are the case of β = 0.2 and β = 1.0, respectively. Green lines are the

results of the big patch and blue lines are the results of the small patch. Red lines show the single-patch

system (i.e. In the single patch system, the larval survival probability is fixed as θ∗L(TL) = 2c
λ , regardless

of values of α and β (see Appendix A).). When β = 0.2, The larval survival probability in small patch

rapidly decreases as migration rate increases. This is because of the influx from the big patch.
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Figure E.1: The larval survival probability θi∗L (TL) (left) and the average larval life time θi∗LD (right).
Equation (3.9) is used with parameters, λU = 15, TL = 10, µ = 0.1, and c = 0.1. The solid lines with
circles are the case of α1 = 0.1, α2 = 0.1/30.2 ≈ 0.0802, β1,2 = 0.2, and the dot-dashed lines are the case
of α1 = 0.1, α2 = 0.1/3, β1,2 = 1.0. Green lines are the results of the big patch and blue lines are the
results of the small patch. Red solid lines show a case of the corresponded single-patch system.
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