
Erasmus Mundus Masters in Complex Systems

DYNAMICS OF RANDOMLY

CONNECTED SYSTEMS WITH

APPLICATIONS TO NEURAL NETWORKS

July 9, 2012
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Intro for the layman

Write some stuff here
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Abstract

In this report I analyze the behavior of a randomly connected system of non-
linear neuron analog elements. I complement the existing literature regarding
homogeneous networks by studying finite size effects. I also describe the be-
havior of heterogeneous networks. Perform linear stability analysis. I propose
mean field model
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1 Introduction

A key feature of complex systems is that they exhibit a high variability in their mi-
croscopic characteristics. Very often this variability is averaged resulting in regular
macroscopic behaviors. This does not mean however that macroscopic properties
can be easily deduced from the microscopic description. In fact building the math-
ematical link between the micro and macro scales requires sophisticated techniques
and careful analysis.
In the field of network theory and its applications to neurosciences, variability has
often been modeled as the existence or lack of edges between two nodes. In such
cases the adjacency matrix provides a full description of the network. However in [1]
they show that the behavior of certain neural networks strongly depends on the
synaptic weights. This means that in order to make an accurate description of a
neural network one should consider not only which pairs of nodes are connected but
also what is the intensity of each connection.
Variability in the intensity of connections has generally been implemented through
random matrices. The idea was popularized in [2] with applications to ecological
networks and soon after that an application to neural networks appeared in [3].
The main tools used to understand such systems from a mathematical point of view
have been mean field techniques and linear stability analysis for which many results
coming from random matrix theory are needed.
The aim of this project is to understand rigorously the role of variability within the
synaptic weights in a firing rate neural network model starting from the model used
in [3,4]. Some effort has been devoted to extend the results of the existing literature,
however the main goal of the project has been to describe and understand the be-
havior of the model after including a physiologically relevant feature: the distinction
between excitatory and inhibitory neurons.
The report is structured as follows: in Section 2, I introduce the model presenting
briefly the state of the art and raising the main questions that are to be answered.
In Section 3, I show the observations resulting from numerical simulations of the
system under different conditions and parameter values. These simulations are fo-
cused on the time evolution of the system and they recall the questions raised in
the previous section. In the rest of the report I try to shed some light upon the
underlying phenomena that give rise to the observed behavior using different inde-
pendent approaches. Section 4 contains an heuristic analysis of the main equations
that, far from being mathematically rigorous, should provide some intuitive ideas
about the behavior of the model. In Section 5, I review the linear stability analysis
that can be found in the literature and apply it to our system. I also present a new
theorem regarding the spectral properties of random matrices and apply it to the
model. Finally in Section 6, I propose a system of mean field equations and sketch
how will they be analyzed in a future work.

2 Model

We consider a network consisting of NE = fN excitatory neurons and NI = (1−f)N
inhibitory neurons. The state of the network is given by the value of the membrane
potentials {xi}i=1,...,N whose dynamics obey

ẋi = −xi +
∑
j

wijS(xi) . (2.1)
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The first term on the right hand side accounts for the tendency of the neurons
to equilibrate their inner potential with that of the environment and prevents the
system from diverging. The the second term contains the input that the ith neuron
receives from the rest of the network. The input coming from the jth neuron is a
centered sigmoid of xj with slope 1 at the origin and is proportional to the synaptic
weight wij =

1√
N
(µMij + σJij).

Mij =


√

1−f
f for j < fN

−
√

f
1−f for j ≥ fN

is the deterministic part of the coupling and establishes the category, either excita-
tory or inhibitory, of neuron j. Notice that since the category of the jth neuron is
independent on the neuron receiving the input all rows in M are identical. Further-
more the elements of M are chosen such that each row sums up to 0. Whenever M
appears with only one subindex I will be refering to the vector containing one row
of M . On the other hand J is a random matrix whose elements are drawn from a
distribution such that

E[Jij ] = 0

E[JijJkl] = δikδjl .

J is introduced to model the random variability in the synaptic weights. Note
that J is quenched: it is drawn once and fixed forever therefore the dynamics of
the system are deterministic. This is an important difference with respect to many
other models where the variability is introduced through Wiener processes and hence
the dynamics are stochastic. I will pay special attention to networks with balanced
coupling, that is

∑
j wij = 0. Since Mij is balanced by definition, in order to have

balanced coupling one has to impose
∑

j Jij = 0. Because the matrices that satisfy
the previous condition are a zero-measure subset of the set containing all matrices
J I will use the special notation J̄ for balanced matrices. Note that while J can be
both balanced or non balanced results for J hold almost surely and may not be true
for J̄ . w = (wij)1≤i,j≤N is the connectivity matrix. The scaling 1√

N
is set such that

in the limit of large networks the input term
∑

j wijS(xi) remains O(1).
It is convenient to express the variables xi as a sum of the population average and
a “difference” term. Denoting 〈x〉 = 1

N

∑
i xi one has

xi = 〈x〉+ yi .

Then it is possible to rewrite (2.1) as a system of N+1 equations (one for the average
and N for the difference terms) with the advantage that in the limit N → ∞ the
equations for the difference terms do not depend explicitly on the deterministic part
of the coupling (µM) and the equation for the average does not depend explicitly
on the random part of the coupling (σJ). The equation that governs the dynamics
of 〈x〉 is found taking the average of (2.1)

˙〈x〉 = −〈x〉+
∑
j

〈wij〉S(xj)

= −〈x〉+
∑
j

(µMj + σ〈Jij〉)S(xj) . (2.2)
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The dynamics of the difference terms are given by

ẏi = ẋi − ˙〈x〉 = −yi +
∑
j

(wij − 〈wij〉)S(xj)

= −yi +
∑
j

σ(Jij − 〈Jij〉)S(xj) . (2.3)

Depending on the choice of the parameters the observed behavior changes qual-
itatively:

• µ > 0, σ = 0 : there is no disorder and the whole the system reduces to two
equations whose analysis is trivial. The deterministic coupling is balanced and
hence all membrane potentials decay exponentially to zero. In the steady state
the network remains inactive.

• µ = 0, σ > 0 : the network is homogeneous in the sense that there is no
differentiation between excitatory and inhibitory neurons. This model has
been extensively studied for J non balanced in [3–6]. Mean field solutions and
their stability are known. In the limit N → ∞ there is a phase transition at
σ = 1. For σ < 1 the trivial solution xi = 0 for all i is globally asymptotically
stable. For σ > 1 many attractors exist but the only stable one is chaos. On
the other hand, according to heuristic results in [4], several stable attractors
may co-exist in the region σ ∼ 1 in finite systems. These are either non
zero equilibrium points or limit cycles, and as σ is increased the limit cycles
become more complex, eventually leading to chaotic attractors. The region
where these new attractors exist starts close to the mean field phase transition
and its width shrinks to zero as N is increased.
There are no rigorous results regarding finite size effects, the phase transition
at σ = 1 is not understood from the classical bifurcation theory point of view
and it is not clear whether the known results hold for J̄ or not.

• µ > 0, σ > 0 : the network is heterogeneous since the outputs of excitatory
and inhibitory neurons have different averages. The spectral properties of this
model have been studied [7, 8].
There is no description or explanation for the global behavior which differs
qualitatively from that of µ = 0. Within this setup we study both the balanced
and non balanced coupling scenarios.

3 Numerical exploration

The technical details about the simulations can be found in Appendix A.

3.1 Homogeneous network

Simulations confirm the finite size effects described in [4] (see Fig. 1). Furthermore
one can see that there is a very big variability on the dynamics from one sample
to another. Drawing different random matrices from the same distribution results
in completely different outcomes among the possible behaviors (i.e. fixed points,
limit cycles or chaotic trajectories). The length of the window in σ where finite
size effects are observed also changes significantly from one realization to another.
The average membrane potential fluctuates around 0 and the typical size of the
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fluctuations seems to decrease as the system size is increased suggesting that they
are finite size effects. As a side part of this project I have estimated the probability
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Figure 1: Simulations of the homogeneous model with N = 1000. Top: bifur-
cation diagram for one realization of J and one initial condition. The blue and
red lines represent the maximum and minimum values of the membrane poten-
tial of one neuron over a time interval t ∈ [200, 400], after the transitory regime.
When the minimum and maximum have the same value the system has reached
a fixed point. Otherwise the system oscillates. Regularity in the amplitude of
the oscillations for changing σ suggests that the oscillations are limit cycles, while
irregularity points to chaos. In the interval σ ∈ (0.95, 1.4) there are a series of
classical bifurcations (pitchfork and Hopf) before the chaos settles. Bottom: in
red the average membrane potential of the network. In blue the trajectories of the
individual membrane potentials {xi}1≤i≤N for different values of sigma. From left
to right σ = {0.95, 1.05, 1.2, 1.3} and the respective observed attractors are: fixed
point at 0, fixed point other than 0, periodic oscillations, chaotic oscillations. In
all cases the mean is very close to 0.

of observing spontaneous activity for σ < 1 as a function of N . Numerical results
suggest that there is an optimal N∗(σ) that maximizes this probability. Some details
about the computations and the interpretation of the results can be found in the
appendix B.

3.2 Heterogeneous network, non balanced coupling

The first remarkable numerical observation is that very often 0 looses its stability
for σ < 1. The position of the first bifurcation, despite changing widely from one
realization to another, does not seem to depend on the system size. The second
observation is that in this case the mean has non trivial dynamics whose typical
amplitude does not vary when the system size is modified. Fig. 2 shows a bifurcation
diagram and some typical trajectories. Finally there is some synchronization among
neurons in the sense that Var[xi] is small compared to the homogeneous model. One
way to quantify synchronization is to compute the correlation coefficients between
all pairs of neurons over a time interval and average them. Doing so for different
realizations of the system and different values of the parameters one can estimate
the expected degree of synchronization for a pair (σ, µ). Results in Fig. 3 show that
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this synchronization decreases with increasing system size so it might be a finite size
effect.
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Figure 2: Simulations of the homogeneous model with N = 1000. Top: bifurca-
tion diagram for one realization of J and one initial condition. The first transition
takes place way before σ = 1. Eventually the trajectories become chaotic. Bot-
tom: From left to right σ = {0.6, 1.5, 1.85, 2.2} and the respective observed attrac-
tors are: fixed point at 0, fixed point other than 0, periodic oscillations, chaotic
oscillations. Note that in this case the dynamics of the mean are not centered
around 0.

3.3 Heterogeneous network, balanced coupling

The heterogeneous balanced network is with no doubt the more interesting one from
the phenomenology point of view. Typical trajectories for this system are shown in
Fig. 4. The first observation is that again the average of the membrane potentials
has nontrivial dynamics. Secondly it exhibits strong synchronization that does not
disappear when the system size is increased. Also in some cases, specially when
µ � σ, there are relaxation oscillations. This last observation is specially striking
since no new timescale has been introduced. In general increasing µ results in
stronger synchronization and more regularity of the dynamics of the average.

4 Heuristics

A deeper look at the system consisting of equations (2.2) and (2.3) can provide
useful hints. I will use the shorthand notation

A =
∑
j

(µMj + σ〈Jij〉)S(xj) ,

Bi =
∑
j

σ(Jij − 〈Jij〉)S(xj) , (4.1)

B̄i =
∑
j

σ(J̄ij − 〈J̄ij〉)S(xj) .
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Figure 3: Correlation coefficients averaged over 10 different initial conditions.
The correlations decrease slightly when the system size is increased from N = 1000
to N = 2000.

As the rows of M and J̄ sum up to 0, |A| and |B̄i| will be small if Var[S(〈x〉+ yi)]
is small. However for non balanced J , |Bi| will be large except if all xi are close
to 0, which is very unlikely in the chaotic regime. To understand the behavior of
Var[S(〈x〉+ yi)] it is important to remark that, due to the saturation of S(x) when
|x| → ∞, if |〈x〉| � 1 and Var[yi] . |〈x〉| then Var[S(〈x〉 + yi)] is small. On the
other hand, when |〈x〉| � 1 and Var[yi] is large then Var[S(〈x〉+ yi)] is large. These
relations are summarized in the following table

Var[yi] . |〈x〉| Var[yi] � |〈x〉|
|〈x〉| � 1 A and B̄i small A and Bi large

|〈x〉| � 1 A and Bi small A and Bi large

The first conclusion that can be drawn from this analysis regards the non zero
dynamics of the mean when µ > 0. In the homogeneous network model one has
µ = 0 and 〈x〉 decays exponentially to 0 up to fluctuations generated by 〈Jij〉.
By the central limit theorem 〈Jij〉 = O(1/

√
N). This means that A can be made

arbitrarily small by increasing the system size and the dynamics of the mean are
finite size effects. When µ > 0, A is O(1) and the dynamics of the mean do not
disappear for increasing N .
The second conclusion is that the balance condition together with the saturation
of S(x) allow synchronization when |〈x〉| is large. Since the membrane potentials
are not allowed to grow indefinitely it is unlikely that Var[yi] � |〈x〉|. Therefore
|B̄i| becomes small when |〈x〉| is large resulting in an exponential decay of yi and
consequently of Var[xi].

5 Linear stability analysis

Because 0 is always a solution of (2.1) it is reasonable to start by studying its
stability. Linearization around 0 yields

ẋi = −xi +
∑
j

wijxi (5.1)
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Figure 4: Left: Averaged correlation coefficients for 10 realizations of a system
with N = 2000. Right: Trajectories for N = 2000. The values of the parameters
from left to right and top to bottom are σ = 1.5, µ = 2, σ = 1.5, µ = 20, σ = 4, µ =
2, σ = 4, µ = 20.

and the stability of 0 will be given by the eigenvalue with maximal real part of−I+w.
Computing the eigenvalues of such matrix requires results of random matrix theory.
I first introduce some useful definitions:

Definition 5.1. An iid random matrix is an N ×N matrix J = (Jij)1≤i,j≤N whose
entries Jij are iid complex entries with E[Jij ] = 0 and E[JijJkl] = δikδjl.

Definition 5.2. Given an N×N complex matrix w, we define the empirical spectral
distribution µw to be the probability measure

µw :=
1

N

∑
i

δλi

where {λi}1≤i≤N are the eigenvalues of w.

In general results in random matrix theory only become deterministic in the limit
N → ∞. This means that the application of these results to finite size systems has
to be conducted carefully and paying special attention to the finite size effects that
may arise.

5.1 Infinite systems

Homogeneous network To analyze the homogeneous network model we need to
identify the eigenvalue with maximal real part of −I + σ 1√

N
J . The spectrum of

1√
N
J converges to the circular law, which was first introduced for matrices whose

entries are gaussian random variables in [9] and has been recently generalized to any
iid random matrix in [10].

Theorem 5.3 (Circular law). Let J be any iid random matrix. Then µ 1√
N
J con-

verges almost surely to the circular measure µc, where dµc :=
1
π1|z|≤1dz.

This means that for σ < 1 all eigenvalues of the linearized system have negative
real part and hence 0 is stable. When σ increases above 1 a continuum of eigenvalues
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crosses the imaginary axis. This process is not well understood and does not explain
how the transition to chaos takes place.
In general linear stability analysis provides local information and all the other results
of this section regard the behavior of the system in the vicinity of 0. However
in certain circumstances it is possible to obtain global information using similar
techniques. In the appendix C I proof that in the limit N → ∞ if σ < 1 then 0 is a
globally asymptotically stable fixed point of the homogeneous network model.

Non balanced heterogeneous network When adding the deterministic term
of the coupling µM , the balanced and non balanced scenarios have to be analyzed
independently because their spectra are qualitatively different. For the case of the
non balanced heterogeneous network the following theorem is given in [8]:

Theorem 5.4 (Outliers for small low rank perturbations of iid matrices). Let J be
a N ×N random i.i.d. matrix and let M be a deterministic matrix with rank O(1)
and operator norm O(1).
Let ε > 0, and suppose that for all sufficiently large N, there are no eigenvalues of
M in the band {z ∈ C : 1 + ε < |z| < 1 + 3ε}, and there are j = O(1) eigenvalues in
the region {z ∈ C : |z| ≥ 1 + 3ε}.
Then a.s. for sufficiently large N, there are precisely j eigenvalues of 1√

N
J +M in

the region {z ∈ C : |z| ≥ 1 + 2ε} and λi(
1√
N
J +M) = λi(

1√
N
J) + O(1) as N → ∞

for each 1 ≤ i ≤ j.

In other words there is a finite O(1) number of eigenvalues of w outside the circle
of radius σ. This means that 0 can loose its stability for σ < 1. In such case, as
σ is increased one or more classical bifurcations can take place before the contin-
uum of eigenvalues hits the imaginary axis. After that the dynamics become chaotic.

Balanced heterogeneous network Again in [8] they provide the following result
for J̄ :

Theorem 5.5. Let J be an iid random matrix, let P = (δij − 1
N )1≤i,j≤N so J̄ = JP

is a balanced iid matrix and let M be a zero row sum matrix. Then µ 1√
N
JP+M

converges almost surely to the circular measure µc.

This means that the spectrum of w and 1√
N
J̄ converge to the same law and

the phase transition is identical to the one of the homogeneous network model. In
particular, as the theorem holds for µ = 0, there should be no difference between
balanced and non balanced homogeneous network.

5.2 Finite systems

When it comes to finite systems, the spectra are obviously not continuous. This
reflects on the transition to chaos. In general most eigenvalues are evenly spread
over a circle of radius σ centered at -1.
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Homogeneous network Fig. 5a shows the spectrum of −I + σ 1√
N
J for one re-

alization of J with σ = 1. For σ small enough all eigenvalues have negative real
part. For a certain σ ∼ 1 a real eigenvalue (a pair of complex conjugated eigenval-
ues) crosses the imaginary axis and 0 loses its stability through a Pitchfork (Hopf)
bifurcation. As σ is further increased more eigenvalues cross the imaginary axis acti-
vating their corresponding modes and eventually leading to chaotic dynamics. This
is consistent with the numerical observations and explains the series of bifurcations
in Fig. 1.
It is also interesting to know the probability that the first bifurcation is Pitchfork
(instead of Hopf) as a function of N or in other words, what is the probability that
the eigenvalue with maximal real part is real as a function of N . Fig. 6 shows that
as N is increased the probability of having cycles right after the first bifurcation
increases. This can be due to the well known fact that the density of eigenvalues of
an iid random matrix lying over the real line is O(

√
N). It is also remarkable that

there does not seem to be any difference between J and J̄ .
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Figure 5: Eigenspectra of −1+w for a system with N = 512 neurons and σ = 1.
(a) µ = 0; (b) µ > 0, J non balanced; (c) superposition of µ = 0 and µ > 0, for
the same realization of J̄ , both spectra are identical.

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N

Pr
ob

ab
ili

ty
 P

itc
hf

or
k

 

 
Non balanced
Balanced

Figure 6: Probability that the eigenvalue with largest real part is real.

Non balanced heterogeneous network Fig. 5b shows the spectrum of a finite
size system. The outliers mentioned in theorem 5.4 are also present for finite sizes
(in fact their behavior is independent of N). Therefore, before the bulk of the eigen-
values reaches the imaginary axis, the behavior of the finite system is is the same as
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the one of the N → ∞ system. After that, as the rest of the eigenvalues cross the
imaginary axis, more modes are activated eventually leading to chaos.

Balanced heterogeneous network Fig. 5c shows that the spectra of −I + 1√
NJ̄

and −I + 1√
NJ̄

+ µM , not only converge to the same law, but they are identical

for finite size systems. Here the linearization around 0 fails to explain the striking
differences betwen the two models.

6 Mean field equations

A rigorous derivation of the mean field equations is in the appendix D. They are

Ẋ = −X + µζX,Y , (6.1)

Ẏ = −Y + σξX,Y (6.2)

where ζX,Y and ξX,Y are gaussian fields centered around 0 with

E[ζX,Y
t ζX,Y

t+τ ] = Cov[S(Xt + Yt)S(Xt+τ + Yt+τ )] ,

E[ξX,Y
t ξX,Y

t+τ ] =

{
E[S(Xt + Yt)S(Xt+τ + Yt+τ )] for non balanced J

Cov[S(Xt + Yt)S(Xt+τ + Yt+τ )] for J̄

The main difference between the use of J and J̄ is that, for reasons similar to those
pointed out in section 4, Cov[S(Xt + Yt)S(Xt+τ + Yt+τ )] is likely to become small
and therefore result in synchronization as opposite to E[S(Xt + Yt)S(Xt+τ + Yt+τ )]
which is very unlikely to become small.
These mean field equations reproduce the behavior observed numerically and, what
is more, setting µ = 0 they are consistent with the equations proposed in [4]. In
such case there is no difference between balanced and non balanced couplings because
X = 0 and since E[Yt] = 0, then Cov[S(Yt)S(Yt+τ )] = E[S(Yt)S(Yt+τ )].

7 Conclusions

Based on numerical simulations I provide a description of the behavior of the model
under different sets of parameters. I have been able to reproduce the expected re-
sults for homogeneous networks and investigate the properties of finite size systems.
No difference has been observed between the balanced and non balanced networks.
As a side part of the project the probability of observing spontaneous activity in
finite homogeneous networks for σ < 1 has been investigated. Numerical results
suggest that there is an optimal system size N∗(σ) that maximizes this probability.
Numerical observations of the heterogeneous networks reveal new and interesting
phenomena that had never been mentioned in previous literature. For the non bal-
anced networks they include qualitatively different bifurcation diagrams and nontriv-
ial mean dynamics. When the coupling is balanced synchronization and relaxation
oscillations are the main characteristic features.
Through an heuristic study of the main equations the conditions for having non-
trivial mean dynamics and synchronization can be inferred. First setting µ > 0 will
result on a non vanishing term in the dynamics of the mean. Second imposing the
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balance condition on J will lead to an exponential decay of Var[xi] when 〈x〉 is large.
These conditions are consistent with the numerical observations.
Linear stability analysis was performed using multiple results from random matrix
theory. The stability of the trivial solution is established for all the scenarios con-
sidered. For the homogeneous network linear stability analysis reveals no difference
between the balanced and non balanced J . Furthermore, using a new theorem I
present here I can proof global asymptotic stability of the trivial solution for σ < 1
in the limit N → ∞. For the heterogeneous networks there are critical differences
between balanced and non balanced J these differences and their consequences have
been analyzed. However linear stability analysis fails to provide an explanation for
the new observed phenomena.
Finally I propose a set of mean field equations for the model. I do not proof that
these equations are a solution of the original system but I expect to do so in a near
future following the proof for the homogeneous model in [6]. After that, stability
analysis of the solutions can be performed the same as in [4], specially for the bal-
anced scenario where both gaussian fields have the same covariances.
It will be interesting to generalize these results for not fully connected networks and
study the effects of implementing different topologies. It will be also very useful to
extend the study of variability to other parameters in order to make the model more
biologically plausible.
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A Numerical simulation details

Numerical simulations were done mostly with CUDA using the algebraic library
CUBLAS. The maximal system size efficiently simulated with CUDA was N ∼ 2000
due to the limited memory of GPUs. Larger systems where simulated using Matlab’s
Parallel Computing Toolbox reaching N = 50000 but involving very long computing
times. The integration of the solutions was performed using Runge-Kutta 4 algo-
rithms implemented by myself.
To generate J̄ I used the method in [8] which involves projecting an iid random
matrix onto the hyperplane {(x1, . . . , xN ) ∈ Cn : x1 + . . . , xN = 0}. In [7] it is said
that the balance condition can be relaxed to

∑
j Jij = O(1/

√
N) still having the

same spectral properties. When it comes to the analysis of the trajectories there
was not a clear difference between the systems satisfying the original strict balance
condition and the ones satisfying the relaxed balance condition. However the later
one was avoided because finite size effects became relevant when µ ∼

√
N which for

the systems I was able to simulate in reasonable computing times was µ ∼ 40.

B Optimal system size for spontaneous activity

The spontaneous activity observed in certain neural networks has been subject of
recent experimental and theoretical research. To determine if a network is activated
or not I compute the maximal Lyapunov exponent λ of the system’s attractors.
Depending on the value of λ one can distinguish three cases:

• λ < 0 : the attractor is a fixed point, the network is not activated.

• λ = 0 : the attractor is a limit cycle, the network is activated and exhibits
regular activity.

• λ > 0 : the attractor is chaotic, the network is activated and exhibits irregular
activity.

In terms of λ, we have to estimate P[λ ≥ 0].
Due to finite size effects there seems to be an optimal size N∗(σ) that maximizes
P[λ ≥ 0]. Furthermore, as σ approaches 1 both the N that maximizes P[λ ≥ 0] and
the probability itself increase. In the limit case σ = 1 we do not observe a maximum
since P[λ ≥ 0] tends asymptotically to 1 (see Fig. 7a). The marginal probabilities
corresponding to limit cycles (λ = 0) and chaotic oscillations (λ > 0) have a similar
behavior. The main difference is that the maximums for P[λ > 0] are reached at
larger values of N than the ones for P[λ = 0]. As shown in Fig. 7b, this difference
means that the larger the system is, the more likely is that the spontaneous activity
takes the form of chaotic attractors.
The physical intuitive idea is that as the network grows bigger there is a competition
between two opposite phenomena. On the one hand the increasing dimensionality of
the system makes it more likely to observe complex behaviors. On the other hand,
selfaveraging principles drive the system towards the mean field behavior which for
σ < 1 is the trivial zero solution.
In the numerical simulations λ is computed using the variational equations as shown
in [11]. For each matrix size and each value of σ ≤ 1 I analyzed 40000 realizations
of the random matrix. For each realization of the connectivity matrix we evolve
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Figure 7: (a) Numerical estimation of the probability of observing spon-
taneous activity as a function of N and for different values of σ ∈
{0.95, 0.96, 0.97, 0.98, 0.99, 1}. (b) Probability that the spontaneous activity is
chaotic given that there is spontaneous activity.

one solution until it stabilizes and compute an estimation of the Lyapunov maximal
exponent λ̄. The computations are not exact because of the finite sampling time
and truncation error so we have some numerical error ε = λ − λ̄. In general the
error is small compared to λ̄. As we are only interested in the sign of λ the error
is irrelevant when λ̄ is clearly positive or negative. However for λ ≈ 0 ε becomes
relevant to the analysis. In order to overcome this difficulty we fix λ = 0 when the
trajectories are periodic.

C Proof of the global asymptotic stability of 0 for σ < 1
in the homogeneous network in the limit N → ∞

I use a contracting argument to proof the global asymptotic stability of 0 for σ < 1
in the homogeneous network. Linearization of (2.2) at an arbitrary point of the
phase space x yields

ẋi = −xi +
∑
j

JijS
′(xj) . (C.1)

To know the local properties of this equation at any point in the space one needs
to know the spectrum of a random matrix whose columns have different variances.
In particular, for this problem the jacobian is −I + 1√

N
JD where D is a diagonal

matrix whose elements are di = S′(xi) so JD is a matrix where the entries of the jth
column have 0 mean and variance S′(xj). Since S′(x) is bounded by 1 all variances
are equal or smaller than one. If under that conditions all eigenvalues have negative
real part, the whole phase space is contracting and there can be only one fixed point
which is globally asymptotically stable.
To proof that this is the case I provide the following theorem

Theorem C.1. Let D be a diagonal matrix with elements {di}i=1,··· ,N , then

ρ(JD) →
√

1

N

∑
i

d2i ,

where ρ(JD) is the spectral radius of JD.
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Proof. The proof follows the computations of [7] up to equation (7). After that I
generalize for N different variances {di}i=1,··· ,N instead of two obtaining the system

0 =
1 + |ω|2

d2i

1 +
∑

j rj
−

|ω|2
∑

j
rj
d2j

(1 +
∑

j rj)
2
− 1

Nri
. (C.2)

Setting ri = r1qi and comparing the terms of (C.2) that are not common to all
equations one gets

|ω|2

d21(1 +
∑

j rj)
− 1

Nr1
=

|ω|2

d2i (1 +
∑

j rj)
− 1

Nr1qi
(C.3)

which implies qi = d2i . Hence one has
∑

j rj = r1
∑

j d
2
j

Using the theorem it is clear that the whole spectrum of −I+ 1√
N
JD lyes within

a circle of radius ρ(JD) =
√

1
N

∑
i S

′(xi)2 centered at −1 and therefore for σ < 1

the whole phase space is contracting.

D Derivation of the mean field equations

I will use the notation defined in (4.1). They mean fiel equations are obtained
taking the N → ∞ limit of eqs. (2.2) and (2.3) and assuming propagation of chaos.
The gaussian fields µζX,Y and σξX,Y are the N → ∞ limits of A and Bi assuming
that propagation of chaos holds (i.e. in the limit all trajectories are independent
stochastic processes given by the same law).
Lets first remark that as Jij are iid random variables with finite variance.By the
central limit theorem 〈Jij〉 will converge to a gaussian random variable with variance
1/

√
N . Assuming that in the limit the correlations between different neurons vanish

then 1√
N

∑
j〈Jij〉S(xi) is an infinite sum of independent gaussian variables with

mean 0 and variance S(xi)/N and it converges to a gaussian with varianceO(1/
√
N).

Since the variance tneds to 0 as the system size is increased, this term vanishes when
N → ∞ and can be neglected.
A similar analysis can be performed for Jij

E

 lim
N→∞

σ√
N

∑
j

JijS(xj)

 = 0 . (D.1)

The main difference is that in this case the variance is O(1) so this term will not
vanish and should not be neglected. For A, as M is balanced one can always choose
to write

µ√
N

∑
j

MjS(xj) =
µ√
N

∑
j

Mj (S(xj)− E[S(x)]) (D.2)

and this has obviously expectation 0. Putting these last results together one has

E
[
ζX,Y

]
= E

[
lim

N→∞
A

]
= 0 , (D.3)

E
[
ξX,Y

]
= E

[
lim

N→∞
B

]
= 0 . (D.4)
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The next step is to find the covariances of ζX,Y and ξX,Y . Using again the balance
properties of Mj , the fact that NE

1−f
f +NI

f
1−f = 1 and statistical independence of

every pair of neurons we have

E[ζX,Y
t ζX,Y

t+τ ] = E
[
lim

N→∞
AtAt+τ

]

= E

 lim
N→∞

µ2

N

∑
j

Mj

(
S(xj)t − E[S(x)]t

)∑
k

Mk

(
S(xk)t+τ − E[S(x)]t+τ

)
= E

 lim
N→∞

µ2

N

∑
j

M2
j

(
S(xj)t − E[S(x)]t

)(
S(xj)t+τ − E[S(x)]t+τ

)
= µ2Cov[S(x)tS(x)t+τ ] (D.5)

and similarly for B̄i

E[ξX,Y
t ξX,Y

t+τ ] = E
[
lim

N→∞
(B̄i)t(B̄i)t+τ

]

= E

 lim
N→∞

σ2

N

∑
j

Jij
(
S(xj)t − E[S(x)]t

)∑
k

Jik
(
S(xk)t+τ − E[S(x)]t+τ

)
= E

 lim
N→∞

σ2

N

∑
j

J2
ij

(
S(xj)t − E[S(x)]t

)(
S(xj)t+τ − E[S(x)]t+τ

)
= σ2Cov[S(x)tS(x)t+τ ] . (D.6)

However if J is not balanced one can not subtract the expected value and hence one
simply has

E[ξX,Y
t ξX,Y

t+τ ] = E
[
lim

N→∞
(Bi)t(Bi)t+τ

]

= E

 lim
N→∞

σ2

N

∑
j

JijS(xj)t
∑
k

JikS(xk)t+τ


= E

 lim
N→∞

σ2

N

∑
j

J2
ijS(xj)tS(xj)t+τ


= σ2E[S(x)tS(x)t+τ ] , (D.7)
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