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ABSTRACT: Finding appropiate spatio-temporal features of electroencephalography (EEG) signals to build a brain computer interface

(BCI) is an extremely complex and challenging problem. In this study, motivated by new perspectives on the brain computer interface’s

research community and new methods developed in topological data analysis, we propose a framework to explore features in the EEG

signal domain in an unsupervised way, such that a subject aided by machine learning and self labeling could establish the basis of a

completely personalized and accurate BCI. In this study, we show the viability of an exploratory framework methodology based mainly on

the detection instead of classification perspective and the Mapper method that belongs to the domain of persistent homology, and discuss

further research and development necessary to implement the framework.

——————————  ——————————

1. INTRODUCTION

Electroencephalography (EEG) is a recording of the electrical
activity around the scalp. Specifically, as explained in Piotr
Olejniczak review [1], it is a graphic time series representation
of the difference in voltage between two different cerebral lo-
cations. The obtained signal is influenced by diverse factors
like the electrical conductive properties of the tissues that lie in
the middle of the electrical source and the electrode employed
to measure the potentials, the conductive properties of the
electrode itself and the orientation of the potential source in
the cortex.

The EEG is made possible thanks to the current flow that
passes through the tissues between the source of electrical ac-
tivity inside the brain and the recording electrode. But then
EEG only provides a two-dimensional picture of a three di-
mensional process, which degenerates into the inverse prob-
lem, since the electrical source can not be uniquely determined
from EEG and so different tasks extracted from brain activity
might not be easy to differentiate. Also the bone tissue and
skin tissue with the influence of the environment add addi-
tional noise to the signal that further complicates analyzing
EEG recordings.

Even though EEG presents the inverse problem and a low sig-
nal to noise ratio, it is still employed for its extremely high
time resolution, its non invasive nature and recent develop-
ments in commercial products, like the Emotiv headset , that
lower the costs of the hardware. Turning EEG into an accessi-
ble solution for diverse applications like the NeuroPhone sys-
tem proposed by researchers in Darthmouth College [2].

In this study, EEG will be employed as the main tool to ex-
plore the construction of a Brain-computer Interface (BCI),
which consists on interpreting the signals obtained from the
brain to control commands in a computer program, for exam-
ple selecting characters to write a word.

Most BCI applications developed so far are aimed towards
aiding disabled people. In a similar fasion to eye glaze devices,
BCI applications allow writing, selecting items on a screen or
controlling the direction of a wheelchair. Moreover the most

successful algorithms relay on motor imagery and event based
potentials, since particularly paraplegic people can use these
intentions without the interference of muscle activity on the
EEG signal.

The P300 Wave, as presented by Picton [3], is a great example
of a context specific feature that can be extracted from the
waveforms of EEG activity signals to detect the conscious in-
tention of a subject to select an improbable target. Donchin et
all [4], show how the P300 wave effect can be employed to
implement a BCI for spelling with high accuracies that only
depends on visual stimuli and the intention of a subject. This
particular implementation commonly known as the the P300
speller in the BCI community is one of the promising illustra-
tions of the potential and possibilities of BCI employing only
EEG to record brain activity.

However, Schalk et all [6], identify in their study two im-
portant issues regarding the construction of a BCI, the signal
identification problem and the signal identification paradox.

The signal identification problem explains that the selection of
EEG signals and their location, originated by specific brain
activity, is not completely understood yet (there is essentially
no theoretical basis), since even the fundamental processes
behind brain activity are not well comprehended.

The BCI signal identification problem is fundamentally differ-
ent to a normal classification problem in the sense that data
classes are not easily defined a priori to consequently select
the features. It has been only empirically shown sometimes
that particular mental tasks have particular effects on specific
brain signals, and still the definition of the tasks and signal
features to implement some kind of classification is difficult,
suboptimal and ill defined. Moreover the identified signal
features are normally subject-dependent and non-stationary.

So it is expected that multiple alternative features like the P300
wave could still be identified and employed for BCI applica-
tions. Furthermore, motor imagery and tasks normally defined
to implement a BCI for disabled people could not be that use-



ful when considering completely healthy individuals in di-
verse contexts aimed at machine control, critical applications
and augmented reality.

This unexplored domain of signal features and defined tasks
pose an interesting challenge that might be addressed by per-
sonalized unsupervised learning. In this study, topological
data analysis will be presented as an approach to aid the ex-
ploration of the features of EEG signals under different brain
activity states. Particularly the Mapper method [5] will be im-
plemented as a tool to explore and visualize the signals in con-
junction with hard and soft clustering algorithms.

On the other hand, the signal identification paradox is due to
the fact that there is no a priori basis for selecting mental tasks
and signal features, so the possible choices increase with in-
creasing signal fidelity and the latter improves by defining
and discriminating more classes of brain activity (signal speci-
ficity), which means that also the identification procedure and
algorithmic training increase in complexity.

Moreover signals might change in time and under learning
and interaction conditions in ways that are difficult to identify
to retrain the algorithmic classifiers. Under this scenario of
increasing complexity in the dynamics of the feature/task
space, it is possible that the BCI performance may degrade
even with better signal recording.

As an anwer to the mentioned paradox, Schalk et all [6] pro-

pose the SIGFRIED (SIGnal modeling For Real-time Identifica-
tion and Event Detection) methodology. Which consist on the
perspective of detecting events that are unlikely to belong to a

general class which is uninteresting for control, like a resting
state, to then use the unlikelihood of events as a control pa-

rameter in the construction of a BCI. This approach greatly
simplifies the collection of labeled information on an explora-
tory framework and will be employed in this study in conjunc-

tion with the Mapper method to try to reveal interesting areas
on the feature space that might be discriminated to build con-
trol mechanisms on a BCI.

Furthermore there is an interesting phenomena appreciated
during the development of BCI with different subjects under
similar experimental conditions called BCI illiteracy. This con-
sist on the inability of the algorithms that were able to build
accurate classifiers based on the identified relation between
signal features and tasks to work on a non-negligible portion
of the subjects population (between 15% and 30%), as ex-
plained by Vidaurre et all. [7]. It is possible that employing
personalized unsupervised learning to detect relevant signal
features for each subject will address this problem, as there
seems to be in many cases no completely universal solution to
relate specific brain states and feature signals.

Considering the potential of EEG and all the mentioned chal-
lenges to build a BCI, the main proposal of this study will con-
sist on developing an exploratory framework based on per-
sonalized unsupervised learning, topological data analysis
and the detection instead of classification perspective to tackle
the emphasized problems while at the same time looking for

new insights in the identification of useful EEG signal fea-
tures.

2. TOPOLOGICAL DATA ANALYSIS

Nowadays data is being produced at increasing rates thanks
to new experimental methods and developments in high pow-
er computing. Furthermore the nature of data is changing,
now it is more high-dimensional and noisier with more miss-
ing parts then ever. As explained by Gunnar Carlsson [8], de-
velopments in geometry and topology might be employed to
bring to light many informative features of this kind of da-
tasets for which conventional methods that depend on specific
metrics or low dimensional spaces might fail.

According to Gunnar [8] there are several key points regard-
ing data analysis that justify the use of geometric and topolog-
ical methods. For instance: That to obtain knowledge about
how data is organized in a large scale is desirable, like finding
out patterns or clusters that show something about the da-
taset; That metrics are not theoretically justified in many do-
mains of problems like in biology; That spaces and their coor-
dinates are not natural in any sense and are also commonly
unjustified; And that summaries over the whole range of pa-
rameters when analyzing data can be more valuable than in-
dividual choices, like keeping the whole dendogram when
realizing hierarchical clustering procedures to analyze data.

Then topology turns out to be a good candidate to address the
mentioned issues, since, as stated by Gunnar [8], it is the
branch of mathematics which deals with qualitative geometric
information. In general it is the study of connectivity infor-
mation, so topological methodologies like homology can help
study the datasets. Also the geometric properties studied by
topology are less sensisitive to the choice of metrics and do not
depend on chosen coordinates on specific spaces.

Furthermore, the idea of building summaries over complete
domains of parameters, when analyzing datasets, involves the
notion of functoriality that is at the heart of algebraic topology
and allows the computation of homological invariants from
local information. Also in general it is known that information
about topological spaces can be learned by simplicial approx-
imation.

A great example of how topology can be applied to data anal-
ysis can be appreciated in the research done by Gunnar et all
[9], where they found a new type of breast cancer from micro-
array data, with a significant biological signature, that was
completely ignored by previously employed clustering algo-
rithms. This discovery was done in a completely unsupervised
way by looking at the shape of the data obtained with the ap-
plication of the Mapper method [5] and the selection of func-
tions representative of the problem at hand, like the abnormal-
ity of the cancer tissue. Then the discovery was confirmed by
going back to the specific clustered points of the dataset and
studying their relation.

Moreover the mentioned research was one of the main moti-
vations to apply topological data analysis and particularly the



Mapper method in this study. Since EEG signal features can
constitute a very high dimensional and still quite unexplored
dataset, like the microarray dataset employed to understand
cancer tissue.

2.1 Details on the application of topological data
analysis for this study

Point clouds, understood as a finite set of points for which a
distance function applies, are the main objects to which the
geometric and topological techniques are applied. As ex-
plained by Gunnar [8], one can think of point clouds as finite
samples taken from a geometric object, perhaps with noise.
The notion of point clouds is quite abstract and therefore any
set of points defined in an n-dimensional space for which a
distance function can be defined is a candidate for topological
data analysis.

Then the features of a finite segment of an EEG signal, which
is a discrete multidimensional time series, can be represented
as a point of data. This implies that by considering consecutive
segments of the EEG signal, one can obtain point clouds repre-
sentative of brain activity and so of sets of tasks behind that
brain activity. In this study the features of overlapped seg-
ments of the same length of an EEG signal will be considered
to form the point clouds.

Once a point cloud is defined, one needs to represent some-
how its topology to be able to apply any of the tools of homol-
ogy to find homological invariants that will give us an insight
on the properties of the underlying object analyzed. As ex-
plained by Gunnar [8], intuitively, a simplicial complex struc-
ture on a space is a representation of the space as a union of
points, intervals, triangles and higher dimensional analogues.
And it turns out that a simplicial complex provides a particu-
larly simple combinatorial way to represent topological spac-
es.

There are several methods to build simplicial complexes to
approximate the topology of the space represented by the
point cloud, like the Cech, Vietoris-Rips and Witness com-
plexes methods. But in this study clustering algorithms will be
employed as explained in the Mapper method [5].

Clustering algorithms take a finite metric space as an input
and produce as output a partition of the underlying space,
where the subspaces defined by the partition are considered as
clusters. In the context of a metric space, this means that
points inside a cluster are nearer to each other than to points
in different clusters.

As stated by Gunnar [8], clustering should be thought of as the
statistical counterpart to the geometric construction of the
path-connected components of a space, which is the funda-
mental block upon which algebraic topology is based. This
justifies the use of clustering as an alternative tool for the con-
struction of simplicial complexes as outlined in the Mapper
method [5].

Nonetheless an important problem in the construction of the

simplicial complexes under any method is the selection of the
values of the parameters that in each case will result on the
simplicial complex that best approximate the true topology of
the object underlying the point cloud. This problem can be
addressed by the ideas behind persistent homology. Specifi-
cally by looking at all the simplicial complexes defined by the
whole range of values of the parameters considered and ana-
lyzing how the topological properties vary as the parameters’
values change.

Robert Ghrist [10] surveys throughly how persistent homolo-
gy can be employed on diverse point cloud datasets, by em-
ploying a representation of the induced algebraic characteriza-
tions called barcodes. Moreover Balakrishnan et all [11] intro-
duce some statistical ideas to persistent homology to separate
short lived topological properties considered as “topological
noise” from the real approximated “topological signal” with
measures of statistical confidence.

This opens up the possibility of exploring the brain processes
behind the EEG signals in this study in an unsupervised way
under general considerations of time (by progressively con-
sidering new datapoints in time) and space (by considering
features of multiple combinations of electrode locations on the
scalp at a given time).

2.2 Details on the Mapper method

The Mapper method, presented by Singh et all [5], allows the
representation of a point cloud dataset as a simplicial complex.
It is based on the idea of partial clustering of the data guided
by a set of meaningful functions defined on the data.

After applying the method to the dataset, the obtained simpli-
cial complexes can be analyzed with the techniques of persis-
tent homology to reveal qualitative information about the un-
derlying object represented by the point cloud dataset. More-
over the simplicial complexes generated by this method can be
used to visualize and interpret the dataset directly thanks to
the meaning assigned to the functions that guide the partial
clustering.

The Mapper method steps, represented in Figure 1, can be
summarized as:

1. Determining the point cloud dataset.
2. Selecting a small set of meaningful functions to map

the points to a low dimensional space.
3. Segmenting the low dimensional space into intervals

of length “l” overlapped with percentage “o”.
4. Generating the subdatasets corresponding to the de-

fined intervals in the low dimensional space.
5. Applying a clustering algorithm with automatic de-

tection of the number of clusters in each subdataset to
obtain the nodes of the simplicial complex.

6. Evaluating the intersections of clusters belonging to
consecutive overlapped intervals to obtain the con-
nections of the simplicial complex.

7. Building the simplicial complex for further analysis
8. In the case of further visualization of the simplicial



complex, define additional visual properties to ana-
lyze the dataset, like color or size of the nodes.

Fig. 1. Diagram of the Mapper method

The visual properties that can be stablished to have a more
informative representation of the dataset when visualizing the
resulting simplicial complex are numerous. For example one
can define the color to the nodes to represent the average val-
ue of the meaningful functions used for the low dimensional
mapping or define the size of the nodes to represent the pro-
portion of points belonging to each cluster with respect to the
whole dataset.

In the case of this study, coloring the nodes, using pie charts to
replace the nodes and maintaining spatial configurations of
the nodes, when drawing the simplicial complex, are the visu-
al properties that will be defined to get an informative view on
the structure of the brain processes and tasks underlying the
EEG signals.

Furthermore, a more comprehensive explanation of the map-
per method along with its application on multiple examples of
trivial and non trivial point cloud datasets belonging to di-
verse problems on shape and object recognition can be found
in the paper published by Singh et all [5].

3. SIGFRIED (SIGNAL MODELING FOR REAL-TIME

IDENTIFICATION AND EVENT DETECTION)

As was pointed out in the introduction, the BCI classification
problem is peculiar in the sense that not only the features that
represent classes but also the classes themselves have to be
found and defined. This is an important problem, since there
is no fundamental theoretical basis to define the tasks that are
expected to generate changes on the signals recorded from
brain activity and as greater signal fidelity is desired then
more complex task definitions are also required.

Schalk et all [6] explains the signal identification problem and
paradox and how they greatly increase the time cost of devel-
oping and implementing brain computer interfaces.This delay
the adoption of BCI technology even though there has been
important advances in the production of mass consumption
inexpensive devices for EEG.

The time and effort that a subject requires to train the algo-

rithmic classifiers grows fast with the complexity of the task
definitions even when details about the relationship between
the signal and the task are known. Moreover the procedures
based on specific features of EEG signals might not work for
all subjects. Furthermore, to complicate even more the prob-
lem, signal features have shown to be non stationary and high-
ly sensitive to feedback conditions imposed by interacting
with the digital interfaces.

SIGFRIED constitutes an anwer to the mentioned difficulties
because it only needs a small sample of only one reference
class to be able to discriminate other classes. It might also use
more than one class as reference and the resulting output in
any case is a continuous feature that can be employed as an
input for computer commands. In addition the methods be-
hind it are not expensive computationally and easy to imple-
ment.

Schalk et all [6] propose to define a rest category that could be
used as a main reference to detect and analyze non rest activi-
ty that might be used as input for a BCI. In this study this sug-
gestion will be taken into account to create a meaningful func-
tion to map the point cloud of the EEG signal to the low di-
mensional space in the Mapper method. This will allow to
interpret the structure of the simplicial complex in terms of
non rest or extreme events and to see if some distinction can
be made between labeled tasks with respect to specific EEG
signal features.

3.1 Details on SIGFRIED

SIGFRIED can be summarized in the following steps:

1. Specify signal features that will constitute the repre-
sentation of brain activity in the segments of EEG sig-
nals.

2. Retrieve a labeled sample of the desired reference
class. In this study a class representing an approxi-
mated rest state will be employed as reference.

3. Fit a Gaussian mixture model to the reference class.
4. Compute loglikelihood of each data point with re-

spect to the fitted Gaussian mixture model.
5. Employ the loglikelihood of points as a continuous

detection signal. In this study this measure will be
employed to give meaning to the structure of the
simplicial complex obtained from the application of
the Mapper method.

In the original proposal of Schalk et all [6], the Gaussian mix-
ture model (GMM) is fitted to the reference class by employ-
ing and Expectation-Maximization procedure complemented
with the Akaike Information Criterion to automatically deter-
mine the number of gaussian distributions in the mixture.

But in this study a more promising approach called free
split/merge expectation maximization (FSMEM), presented by
Wagenaar [12] and developed as an extension to the work of
Ueda et all [13], will be used to fit the GMM with an automatic
detection of the number of Gaussian distributions in the mix-
ture. In addition this approach will also be employed as a soft



clustering alternative when determining the clusters of the
subdatasets corresponding to intervals of the low dimensional
mapping when implementing the Mapper method.

4. EXPLORATORY FRAMEWORK (PARTIALLY

DEVELOPED)

The main idea behind this study is to propose a framework
that would allow any subject to set up a BCI by exploring the
personalized and dynamic relationship between his self de-
fined tasks on specific contexts of action and the EEG signals
features’ space derived from brain activity.

There are many challenges behind this idea. The first one is to
counteract the signal identification problem and paradox. This
is the main motivation to adopt the detection instead of classi-
fication paradigm and apply some of the ideas behind SIG-
FRIED.

The second challenge is determining the moment at which a
fundamental change on a feature of the EEG signal has taken
place in a high time resolution and continous signal setting.
This can be addressed by considering multiple time scales on
the segments of the EEG signal with a relative time point in
common. That translates into two possibilities: an even higher
dimensional space characterizing a point in time by the fea-
tures of different segment lengths in the signal or studying the
persistent topological properties of different time scales. Then
topological data analysis can play an important role in the
development of the framework.

The third challenge is that labeling can not be exact because of
the fast and noisy changes on the EEG signal. Even in the cur-
rent most carefully set up experiments with labeling, a big
segment is considered in which the action that should gener-
ate a change in a signal feature takes place. But the exact seg-
ment of the signal that should correspond to the realized task
is quite difficult to define. This motivates considering multiple
time scales, unsupervised learning and a probabilistic perspec-
tive on the likelihood of the cloud points to try to find patterns
in the EEG signal.

The fourth challenge is that the feature space can become very
high dimensional thanks to spatial resolution (electrodes dis-
tributed around the scalp) and the huge amount of possible
features that can be obtained from a signal. This again moti-
vates employing topological data analysis as a way to explore
the high dimensional nature of this dataset without trying to
make too many assumptions about which features are im-
portant from the start.

The fifth challenge would be to implement computationally
efficient unsupervised learning algorithms to assist the sub-
ject. Since the feedback of the framework and the desired BCI
should work as fastest as possible to give the subject an intui-
tive and viable experience. This motivates the exploration of
clustering algorithms and methods optimized for the specific
nature of the EEG signal dataset, like a stream collaborative
clustering.

Finally it is of most importance to create an interface intuitive
enough so the subject can easily learn to navigate and com-
prehend the feedback from the machine learning algorithms
that assist him to be able to successfully discriminate and
choose areas of the feature space to stablish the BCI control
structure. It is also important for the framework to allow the
implementation, in the future, of any fundamental break-
through on neuroscience or on the condition and activities of
the subject. This can be achieved by exploiting the visualiza-
tion capacities of the mapper method and minimizing as-
sumptions during the exploration process.

The framework steps can be summarized as:

1. Settting up the online/offline exploration data gener-
ation

2. Exploring as much fundamentally different features
of the EEG signal as possible.

3. Exploring the possible meaningful functions that can
be defined for detection of unlikely events which can
constitute the BCI control structure and the visualiza-
tion tools.

4. Implementing the Mapper method with considera-
tions on the partition of the low dimensional mapping
and the clustering algorithms that would be optimal
for the nature of the EEG signal and the BCI construc-
tion problem.

5. Implementing bayesian methods to asses any task
classification and confidence statistics on the topolog-
ical persistent properties of the dataset.

6. Computing the persistent topological properties of
the dataset.

7. Visualizing and interacting with the exploration
framework to build the BCI.

The main objective of this study is to confirm, up to step four,
the viability of the framework to find structure in the EEG
signal features. So the development of the rest of the frame-
work and its optimization remain as justified and necessary
further research.

4.1 Online/Offline exploration data setup

In this study, we employ a dataset taken from the BCI compe-
tition IV1 that is actually part of a bigger dataset from a study
of Blankertz et all [14]. The selected dataset is labeled and con-
tains a category that can be understood as rest before intruc-
tions to execute a task like moving the right or left hand or
foot are presented to subjects.

We considered the training dataset belonging to subject A,
consisting of 200 trials for which the subject was randomly
asked to move his left hand or foot after a period of rest. In
each trial, the first 2 seconds consist of a white screen, then a
cross appear in the center of the screen for the next 2 seconds
and finally the instruction to move the left hand or foot ap-
pears over the cross and remains for 4 seconds. An example of
a trial with the time segments categorized can be appreciated

1 Dataset published on: http://www.bbci.de/competition/iv/desc_1.html



in Figure 2.

Fig. 2. Trial example with categories of time segments indicated

The EEG was setup with 59 channels (electrodes around the
scalp), the signal have a time resolution of 1000Hz, which
means a 1000 samples per second and was band-pass filtered
between 0.5 and 200 Hz.There are in total four categories that
are accurately labeled, two types of rest, left hand movement
and foot movement.

Then we considered time segments of 300ms sampled consec-
utively from the signal of every trial, every 40ms in the case of
the rest categories and every 20ms in the case of the move-
ment categories. The length was selected to be 300ms since it is
long enough to contain the big perturbations observed in the
signals during the movement task. Nonetheless more time
scales should be considered in future research.

So we ended up with a point cloud of 50200 points. Of these,
15200 points belonged to rest categories, 17500 points to left
hand movement and 17500 points to foot movement. With a
dimensionality of 17700 that correspond to the 300 time
measures of the time series of each of the 59 channels (elec-
trodes).

We did not consider a point every millisecond in this first ap-
proach of the framework for practical computational con-
straints in time and memory, since we would end up cluster-
ing datasets with millions of points in that case. Also signals
are not expected to change radically from 1ms to the next so
we would just be oversampling segments of signals with al-
most identical features.

4.2 Exploring features of EEG signals

The list of spatio-temporal features that have been considered
for EEG signals in the literature is numerous. McFarland et all
[15] makes a good review of the most popular ones and their
application on BCI. From these the Fourier Transform is num-
ber one on the category of temporal features and will be em-
ployed in this study to show the capacity of the framework to
capture structure in the EEG dataset.

To test the framework, the average of the power spectrum,
computed with the Fast Fourier Transform in Mathematica, in
the frequency bands Beta (13-30Hz), Gamma A (30-100Hz)
and Gamma B (100-200Hz) was considered for each datapoint.
An example of the power spectrum of a datapoint and the cor-
responding band frequencies can be appreciated in Figure 3.

Fig. 3. Power Spectrum example with frequency bands indicated

Moreover we considered the averaged signal of the trials for
each movement task.Then a subset of 12 channels was selected
from the 59 channels set, based on the greatest difference be-
tween the average of the power spectrum in the mentioned
frequency bands of the two tasks. The selected channels were
"AF3", "Fz", "CFC5", "C5", "CCP5", "CP5", "P4", "P6", "PO1",
"PO2", "O1" and "O2". How the difference on the average of
power for the different tasks’ averaged signal in the Beta band
can be appreciated in Figure 4, as an example of the channel

Fig. 4. Difference in the averaged power spectrum of the two movement

tasks’ averaged signal for the Beta frequency band (The channels are ar-

ranged as the 2d projection of their positions in the scalp) / (One can see

the big difference in the channels PO1, PO2, O1 and O2, so these were part

of the selected set of channels)



selection, although the Gamma bands were also considered.

Finally each datapoint is represented by the average of the
three frequency bands for each of the 12 selected channels,
which results in a 36 dimensional representation of the cloud
points. However in future research multiple additional fea-
tures should be considered simultaneously. We are limiting
the application of the framework to this feature extraction
technique and to a smaller number of preselected channels, for
practical computational constraints in the dimensionality of
the data, particularly for working with soft clustering based
on fitting a gaussian mixture model.

4.3 Exploring meaningful functions for detection

In this study we will explore the EEG signal point cloud from
two different perspectives. The first one is implementing
Schalk et all [6] proposal to fit a GMM to rest categories to
then be able to discriminate samples of other classes based on
their loglikelihood. In this way we would be characterizing
extreme events of activity as a continuous function.

The second one consists on considering notions of complexity
as defined by Christopher James et all [16] to characterize the
brain activity. Particularly we will present the Fisher’s infor-
mation measure and contrast it with the perspective of SIG-
FRIED when analyzing the existence of structure in the EEG
signal dataset.

In figure 5 the frequency of the loglikelihood of the points in
the case of SIGFRIED and of the logarithm of the complexity
measure can be appreciated. It is noticeable that the loglikeli-
hood of SIGFRIED greatly separates a small portion of the

Fig. 5. Histogram of distribution of point categories for SIGFRIED and the

information measure

points from the mountain of points likely to belong to rest ac-
tivity, the loglikelihood of some points is even lower than -400
in contrast with the main distribution centered above 0. This
makes a big contrast with the distribution of the values of the
Fisher’s information measure that seems to approximate more
a normal distribution with short tails for all categories, which
means that the complexity captured by the measure does not
necessarily relate to the idea of rest vs non rest activity.

As an additional clarification, the Fisher’s information meas-
ure is obtained by: First constructing a matrix with consecu-
tive overlapped subsegments of length 100 ms belonging to
the segment of 300ms that represents the EEG signal point for
each channel; Then stacking the matrices of all channels to
create a global matrix for the point; After a singular value de-
composition (SVD) is employed to get the singular values;
Finally the singular values are used as probabilities in the in-
formation measure formula. The formula for the Fisher’s in-
formation measure can be seen in Figure 5 and an illustration
of the computation of complexity measures taken from the
work of Christopher James et all [16] can be appreciated in
Figure 6.

Fig. 6. Illustration of the computation of complexity measures



4.4 Implementing the Mapper method

The implementation of the mapper method realized in this
study, considering the same structure of steps presented be-
fore, can be summarized as:

1. The dataset if formed by the cloud of points of seg-
ments of the EEG signal, also represented by a 36 di-
mensional vector that encodes the information of the
average power spectrum for 3 different band frequen-
cies for 12 different electrode locations in the scalp.

2. The SIGFRIED methodology and the Fisher’s infor-
mation measure will be employed as the meaningful
functions to map the point cloud to a low dimensional
space.

3. The low dimensional mapping will be partitioned by
different number of intervals and varied overlaps to
appreciate changes on the data structure due to reso-
lution considerations.

4. The subdatasets corresponding to the defined inter-
vals in the low dimensional space are generated.

5. Two different clustering algorithms will be employed
with the Mapper method. The first one, as proposed
by the Mapper method [5], is single linkage clustering
[17] with the addition of an automatic detection on
the number of clusters employing the Silhouettes sta-
tistic [18]. The second one is fitting a GMM with
FSMEM2 [12] as in the SIGFRIED methodology to ex-
plore the application of soft clustering for further
Bayesian analysis in posterior research. In this way
we obtain the nodes of the simplicial complexes.

6. The intersections of clusters belonging to consecutive
overlapped intervals are evaluated to obtain the con-
nections of the simplicial complexes.

7. The simplicial complexes are built for further analy-
sis.

8. Pie charts will be employed instead of nodes to repre-
sent the proportion of the categories of points inside
every node. Also a coloring of nodes will be em-
ployed as an alternative representation to show the
value of the meaningful functions associated with the
node’s intervals. Moreover the simplicial complexes
will be spatially arranged sometimes in such a way
that it can be interpreted from the perspective of the
meaningful function and the pie charts at the same
time.

4.5 About the obtained simplicial complexes

The final result of the mapper method are the simplicial com-
plexes on which persistent homology can be applied to reveal
the most relevant and persistent topological properties of the
underlying object, which in this case is the brain processes and
tasks represented by the EEG signal features.

But before applying persistent homology, it is important to
confirm that some interesting structure is being captured by

2 Matlab code obtained from : http://www.mathworks.com/ matlabcen-
tral/fileexchange/22711-free-split-and-merge-expectation-maximization-for-
multivariate-gaussian-mixture

the Mapper method and the functions defined to implement it.
So considering that the power spectrum of white noise ap-
proximates a constant value we can model how the simplicial
complex of completely unstructured white noise would look
like and compare it with the structures of the simplicial com-
plexes that we get with the proposed functions and features of
the EEG signal.

In figure 7, an important difference between the structure of
white noise and the methods employed to analyze the EEG
signal dataset can be observed. Moreover there is also an im-
portant difference between the information measure and the
SIGFRIED perspective on the structure of the generated sim-
plicial complex. The nodes in figure 7 are represented as pie
charts showing the proportion of the labeled categories that
were clustered inside each node, and the spatial arrangement
of the simplicial complexes is aligned with the notion of in-
creaing complexity or decreasing loglikelihood as corresponds
to the underlying perspective. In this case all the low dimen-
sional mappings where partitioned in 20 intervals with a 50%
overlap.

Fig. 7. Comparison of the structure of data in the simplicial complexes

produced under the fisher’s information and SIGFRIED perspective

against white noise.

It seems that SIGFRIED effectively improves the discrimina-
tion capacity of the framework to separate the rest from non
rest tasks and then also improves the capacity to further find
important differences between the non rest tasks in an unsu-
pervised way. But on the other hand the information measure
is showing more patterns and structures that although might
not be directly connected with the defined tasks, might give
some important insight into some brain processes or different
tasks in a different context, which is also important if we are
exploring the feature space on an unsupervised way.

This might imply that both functions, SIGFRIED and the in-
formation measures, can be useful and perhaps complemen-
tary. Suggesting the possibility of combining them on a two
dimensional mapping of the dataset when projecting the point
cloud on a low dimensional space to partition it during the
implementation of the Mapper method

Furthermore, in Figure 8, it is possible to see the rich struc-
tures that arise at a different level of resolution (considering 40
intervals with 50% overlap) in the case of the information



measure perspective. This confirms the potential of the pro-
posed methods in the exploratory framework to discover
structures in the EEG signal, possibly allowing the desired
development of a BCI and a better comprehension of particu-
lar brain processes for a specific subject.

Fig. 8. Simplicial complex represented visually in different ways, pro-

duced under the Fisher’s information measure and single linkage cluster-

ing.

In addition to Figure 8, Figure A1, in Appendix A, shows the
important structural changes that can be seen in the generated
simplicial complexes at different resolutions (different parti-
tions on the low dimensional mapping and percentage of
overlap). This shows the importance of applying the tools of
persistent homology to be able to establish which of the ap-
preciated topological features of the complexes are actually
approximating the underlying object to the point cloud.

5. NECESSARY FURTHER DEVELOPMENT
OF THE FRAMEWORK

After checking the potential of the Mapper method and in
general of the notions of persistence homology, and of the per-
spective of detection instead of classification to explore EEG
signals to build a BCI, there is still plenty to develop to com-
plete a preliminary full implementation of the framework.

As part of the topics that need further development we can
consider mainly:

1. Extending the use of Bayesian methods for detection
and classification in framework, so that confidence
measures can be taken at the different stages of the
methodology.

2. Implementing clustering mechanisms optimized for
the nature of the EEG signal dataset and the persistent
homology techniques. Lets consider the high
throughput nature of the EEG signal, the need to clus-
ter different time scales and the possibility of under-
standing channels as diferent populations with simi-
lar features. Then it would be reasonable to propose
the implementation of a stream collaborative soft
clustering inspired on the works of Song et all [19]
and Pedrycz et all [20]. In addition it would be inter-
esting to consider the ideas of Chazal et all [21] on
clustering also based on persistent homology.

3. Implementing the persistent homology analysis to

characterize the persistent topological properties of
the EEG signals in time, space and resolution.

4. Implementing additional techniques to extract infor-
mation from the simplicial complexes, like the ap-
pearance and persistence of branching structures that
are not captured by homology.

5. Extending the number of meaningufl features for de-
tection and for the clustering of EEG signal’s point
cloud.

6. Defining the visualization methods that will be em-
ployed to receive feedback and interact with the
framework once it is implemented. To employ a two
dimensional meaningful mapping on the Mapper
method seems like a good alternative in contrast with
the current one dimensional mapping.

7. Finally most of the algorithms and computations at
different scales can run in parallel, so it would be cru-
cial to exploit GPU parallelization to turn the frame-
work into a fast and responsive interface for a BCI.

6. FINAL REMARKS

This study have presented important challenges on the con-
struction of BCI and at the same time proposed a framework
that might encode a solution to them, based on new mathe-
matical methodologies and new paradigms in the BCI com-
munity.

The preliminary results of the potential of the proposed
framework and its methods to characterize EEG signals, to
understand the relationship between tasks and brain activity
and very likely to construct in an easier and more accurate
way a brain computer interface, seem very promising.

Nonetheless there is still quite a lot ahead to develop and ex-
plore before claiming the usefulness of the framework or set-
tling down for the specific algorithms, methods and perspec-
tives that assisted the different steps of the proposed explora-
tory framework.

7. APPENDIX A (SIMPLICIAL COMPLEXES)

In the following Figure A1, the effect of different levels of
resolution due to changes on the number of intervals and the
percentage of the overlap during the implementation of the
Mapper method can be appreciated.



Fig. A1. Simplicial complexes based on the Fisher’s information measure

and single linkage clustering, with different resolutions of intervals with a

50% overlap followed by different resolutions of overlap with a 100 inter-

vals.
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