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Abstract

Receptive fields are used in neuroscience as a tool to understand how the spatio-temporal
properties of the stimulus affects the neuronal response. Receptive fields in particular are used
to classify cells in the visual cortex in simple or complex cells. There is, on the other hand, no
consensus in the definition of the receptive field and some definitions depend on the particular type
of stimulus used. In this work, we studied how the receptive fields of the neurons in the visual
cortex depend on the stimulus used to estimate them. To do this, we built a model of the the visual
cortex consistent with most of the biological facts found so far. We used the Volterra expansion
to study how the linearities and the non-linearities of the receptive field varied with the statistics
of the stimulus. We found systematic variation both at the level of the receptive field and in the
response.



1 Introduction

1.1 Receptive Fields
Definition

The concept of the receptive field was introduced by Sherrington in the context of the sensitivity of
the body surface to certain mechanical stimuli [Sherrington, 1966]. In a more general way a definition
that encompasses different sensory modalities can be given as: “The receptive field is a portion of
sensory space that can elicit neuronal responses when stimulated appropriately”. The sensory space
can in some cases be a single dimension (e.g. carbon chain length of an odorant), two dimensions
(e.g. skin surface) or multiple dimensions (e.g. space, time and tuning properties of a visual receptive
field) [Alonso and Chen, 2009].

If we concentrate on the the visual system the receptive field usually involves two spatial dimensions
and a temporal one. The spatial dimensions represent how the spatial distribution of the stimulus
affects the response and the temporal dimension captures how the time trajectory of the stimulus
affects the cell’s activity. The three dimensions together can then be called a spatio-temporal receptive
field (STRF).

Simple vs Complex Receptive Fields

In figure 1 we present the basic scheme of how information is processed in the visual system, that is,
we present the visual information pathway. At the start of the visual pathway, a photon coming from
the outside world elicits a response in the retina. The response is in turn relayed to a structure deep
in the brain called the thalamus, in particular it goes to the structure called the Lateral Geniculate
Nucleus (LGN). From the thalamus the information is further processed and finally relayed to the
rear part of the brain where the visual cortex is located. It is important to mention that along most
of the stages of this process recurrent connections exist that convey information back in the hierarchy;,
making the system highly non-linear and therefore not easy to analyse.
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If we look at the visual pathway a natural question to ask is how the structure of the receptive fields
varies as we move through it. It turns out that the receptive fields present variability in two ways:
first, the receptive fields vary within each particular stage of the visual pathway, that is, there is a
variability at each level of the hierarchy. Second, the receptive fields vary even more as we move
through the different stages of processing.

As an example of the first type of variability we have the retina. In the retina of humans there exists an
area where sharp vision takes place called the fovea. The cells in the fovea have the smallest receptive
fields whereas as we move away from the fovea and towards the the visual periphery the cells posses



progressively bigger receptive fields [Carandini, 2012]. This fact is consistent with our generally good
resolution for central vision and poor resolution for peripheral vision [Alonso and Chen, 2009].

On the other hand as we move to higher stages of the visual pathway the spatio-temporal structure
of the receptive field not only changes in size but also in structure. For example, most cells in the
retina and in the LGN have a simple structure that consists of two concentric areas of inhibition and
excitation respectively, as illustrated in figure 2. This concentric structure was named center-surround
by Kufler and Hubel, its discoverers [Kuffler et al., 1953].

On-center Off-center

Figure 2: Here we show the on-center and off-
center receptive fields. The on-center structure
are tuned for bright spots up to certain size (like
glowing eyes in the night) whereas the off-center
are tuned for dark spots.

However, the structure of the receptive fields becomes more complex in the visual cortex. There
are a few cells that have the typical center-surround structure of the receptive field presented above
for the LGN and retinal neurons but most of the cells present a bigger variety of structures. There
are receptive fields which present localized but separated regions that respond to light or dark spots
respectively and some that have areas that respond to both light and dark spots for big areas. There
are even some cells that do not respond to spots at all [Carandini, 2012].

Neurons in the part of the cortex called V1 where the information from the thalamus arrives directly
are classically classified into two types according to their structure: simple cells and complex
cells. Simple cells are defined straightforwardly as the ones with separate subregions for dark and
bright stimuli. Complex cells are defined as all the other cells that do not have separate subregions
[Martinez and Alonso, 2003]. We illustrate both types of cells in figures 3 and 4.

Figure 4: Typical complex receptive field in V1 [DeAngelis
et al., 1995]

Figure 3: Typical receptive field in V1 of a simple cell.
[DeAngelis et al., 1995]

Other classification methods proposed include the response of cells to a sinusoidal grating stimulus.
The first group of neurons, in this scheme, are classified as the neurons whose response to the stimulus
is a rectified sinusoid and it corresponds more or less to simple cells. The second group can be
characterised as the one that responds by increasing the mean firing rate and corresponds mainly
to complex cells [Skottun et al., 1991]. Other additions and substitutions (e.g. spontaenous activity



level, length summation, response to patterns of random dots, etc [Skottun et al., 1991]) have been
added in the hope of presenting a better scheme to classify neurons but, to the date, there is no
consensus in the scientific community about which criteria to accept in general [Alonso and Chen,
2009].

In this work we are interested in studying how the structure of the receptive fields depends on the
nature of the stimulus involved on its calculation. In order to do that we first present a definition
of the receptive fields that allows us to distinguish between the linear and the non-linear part of
receptive fields and a method for their estimation. Secondly we present the stimuli that we used
and the details of the model of visual that we use. A systematic relationship between the variation
of receptive fields in V1 cells and varying stimuli has been found previously [Fournier et al., 2011].
We use their structure metrics to study whether this phenomenon is present in our model of visual
processing or not.

2 Materials And Methods

2.1 Estimating Receptive Fields

In mathematical terms the receptive field can be thought as a function that captures how the stimulus
is related to the response and allows us to map the stimulus onto the response of the neuron. In this
section we briefly review two quantities that can play the role of such a function: The Spike Triggered
Average and the Volterra Kernel.

Spike Triggered Average (STA)

In this section we briefly review two methods to estimate the receptive field of a given neuron. First,
the classical method is the spike triggered average. The STA is the mathematical average of the
stimuli that produced a response in the system (Figure 5). As a first approximation it provides us
with a useful estimate of the linear receptive field.
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Figure 5: To calculate the STA we average the stimuli before each of the spikes in a given time window. Here in the x
axis we have each of the spikes of the system (three) marked with arrows. We then average the values of the stimulus
in a given time window, here marked with red, to obtain the STA (figure taken from Wikipedia Commons).



Volterra Expansion

One of the most commonly used techniques to estimate the firing rates is the linear non-linear model
LNL. In this method a linear filter K is used to take into account the values of the stimulus at all
earlier times through a convolution with our stimulus S. Then the convolution output is used as the
argument of a non-linear function VL in order to take into account the non-linearities of the system
[Dayan et al., 2001]. If Ry is the mean response we can write the response at time ¢ as :

R(t) = Ro + NL {/ K(r)S(t — 1) dT}

In other words, the linear kernel K dictates at which times the stimulus matters most for the response.
The Non-linear N L part after that is applied to take into account simple non-linearities of the system
like rectification.

A more general approach to estimate the response, which takes into account all the non-linearities, is
the Volterra expansion of a signal [Volterra, 1887] [Wiener, 1958]. In the same spirit as the classical
Taylor series we can decompose a particular signal into operators that successively add degrees of
non-linearity in the following way:

R(t) = ho + /hlst(xlaylaTl)S(:U:yat_71)d71d$1dy1
+ /hQnd(l‘laylaTlafE%yZa7'2)5(331’y17t_71)5(1'27y2at_7'2)d7'1d331d3/1d7'2dl‘2dy2

+ /h3rd(961, Y1, T1, 2, Y2, T2, €3, Y3, 73) S (21, y1,t — 71)S (22, Y2, 1 — 72)

S(xl, Y2, t — Tg) d7'1dwldyldngxgdynggdxgdyg 4+ ...

Here R(t) represents the cell’s response in time, which is decomposed in the terms of first hjg, second
hona and third hs.q Volterra kernels. S stands for the stimulus and in order to take into account the
stimulus over the whole space we integrate also over the space coordinates x and y . The 7 terms
account for delays in time and are the terms that allows us to take into account the correlations at
different times. The spatial correlations appear as multiplications of the stimulus terms at different
points in space.

This particular decomposition is useful to us because we can use the size and structure of the coeffi-
cients h,, as a measure of how the different degrees of non-linearity play a role in the response of the
system.

In order to make a concrete use of the series we have to restrict ourselves to the discrete representation
of the series which can be written in the following way:

R(t) :hO + Z hlst(l'ayaT)S(mv yat - 7-)

$7y77—

+ > S(@1,y1, 7)) hond (21, Y1, 71, T2, Y2, 72) S (22, Y2, T2)

T1,Y1,T1,22,Y2,72



Ultimately in this work we are interested in determining how the linearity or non-linearity of a
particular receptive field varies with the stimulus. In order to do this we only need to take into
account the minimal model that allows us to distinguish between linear and non-linear components
of the receptive field. Therefore, we limit the Volterra expansion up to second order with the aim
of reducing the number of parameters that we need to estimate from the kernels. Taking this into
account our expression above is reduced to:

R(t) :hO + Z hlst(xayaT)S(l‘ayat - 7—) + Z h2Diag(maya7-)S2(xayat - 7—)

xT,Y,T z,Y,T

Where hopiag represents the diagonal terms of the second order response and is the minimal non-
linearity that can be added to a system if we want to take fully into account the spatial and temporal
characteristics of our system.

From this point forward we will use interchangeably the terms hy, simple part of the receptive field
and linear part. The same for ho, complex part and the non-linear part.

Estimation of the Volterra coefficients

Our objective now can be defined as to estimate the coefficients hig; and hopiag in the reduced Volterra
expansion, which can be thought as a regression problem in the following way. If R(#) is the response
of our model at a given time t* we can define H (t") (for hypothesis) as the current fit to our expansion:

H(tz) = hO + Z hlst(x7y7T)S($7yvti - 7—) + Z hQDiag(xyva)S2(x’y7ti - T)

Z7y7T xasz

With this in mind the problem of finding the best fit is the same as the problem of minimizing the
following cost function:

J(hOv hast, h2Diag) = Z(R(tl) - H(ti))z

)

where the index ¢ goes all over the examples that we have in our measurements.

2.2 The Stimuli

We want to probe whether the receptive fields of the system under study are subject to stimulus
dependent variations or not. In order to probe this we use two stimuli with different spatio-temporal
statistics to study the differences of the receptive fields estimated under those conditions: dense
noise and sparse noise. In the following graphical description we will represent the background
luminance by gray, that is, the neutral valueswith respect to which we measure the differences. Black
and white on the other hand represent smaller and bigger luminance values respectively equidistant
in luminance value from the gray background as illustrated in figure 6 and figure 7. From now on in
the text we use interchangeably the terms black, dark or negative and white, bright or positive.



We proceed now to describe the stimuli that we used. In the case of dense noise, at a given point in
time we choose a value for each of the pixels with equal probability between black, gray and white.
We then do the same for each point in time and in this way we have a succession of pixel grids like
the one illustrated in figure 6. In the case of sparse noise, for each point in time we chose randomly
only one of the pixels in that grid and then chose with equal probability whether the pixel is black
or white. The rest of the pixels at each time are assigned the value of gray as they represent the
background luminance value. We represent four of these grids in the figure 7.

17.5
0 17.5 17.5
1259 1259
c c
(] (0]
£ £
£ €
12.5 75 3 7.5 3
[}
e 25 25
= . .
£
g 17.5 17.5
|
7.5 1259 1259
= [
© ©
£ £
£ £
75 3 7.5 3
25 2.5
‘ 25 0 5 10 15 0 5 10 15
0 5 10 15

Figure 7: Sparse Noise. For each of the grids a pixel is
chosen randomly and then with probability % it is decided
if the pixels is white or black. The rest of the pixel are set
to the value of the background luminance (gray).

Figure 6: Ternary dense noise. Here the grid represents our
stimulus at a particular point in time. At that particular
moment we pick randomly the value of each pixel from a
uniform distribution of black, gray or white values.

It is important to note that although the stimuli posses the same differences in their values of contrast
their spatio-temporal statistics differ greatly. To illustrate this we can see that in the dense noise
condition all pixels are activated more or less at the same time and the three values are represented
equally. In consequence we have a stimulus power of P? = 302 for elementary contrast of value c.
Sparse noise on the other hand has a very low power with only one pixel activated at a time. In a
10 x 10 grid the power of the stimuli would be P? = 5650 -2_¢2. This equals a ratio of 8.16 in the respective
standard deviation of luminance values of the stimuli.

2.3 Metrics of Structure

After estimating our kernel terms hiy and hopiag With the two different types of stimuli we would like
to see whether there are structural variations in them. In order to do so, we use the metrics proposed
in the literature to characterise each estimation.

In the same spirit as [Fournier et al., 2011] we can define a quantity that captures how linear or
non-linear a cell is in the following way:

Z T,Y,T h%st(x Yy, T )

SI =
Zz,yﬂ' hlst(‘r Y, T ) + Z z,Y,T 2Diag(x’ Y, T)

(1)

This quantifies the energy of the linear term hig with respect to the total kernel energy. It is close
to 0 for complex like cells and cluster towards 1 for the ones that are simple-like.



The above metric allow us to assign a simpleness value to each cell. However, we would like to
have a metric that allow us to appreciate how the linear and non-linear component of the cell vary
individually as we move from one stimulus to another. In order to quantify this we calculate the ratio
of the kernel’s norms calculated with the two different stimuli for each component:

| Ve BN (9, 7)?
hgaingn/pN = — - (2)
Vi WP (@, 7)

Where the super-index SN or DN indicates that the quantity was estimated using sparse noise or
dense noise respectively.

Finally, we would like to quantify how the respective components of the receptive field vary when

convolved with the respective stimuli. To do this we also define a simpleness index after convolution
STx.

> (hast * Sp)°
2ot (hase = St)? + 374 (hopiag * St)?

SIx = (3)

Where the % denotes the convolution operator. This last quantity allows us to study the effective
effect upon a cell of each stimulus and receptive field structures.

2.4 The model

In this section we will present the model of the visual system that we used. The model here is based
on previous work by Kremkow [Kremkow, 2011] and Antolik in our lab and is basically a small model
of V1 that nevertheless shows the emergent properties that have been found experimentally in V1:
orientation tuning, contrast invariant orientation tuning, appropriate conductance regime, correct
statistics of firing, etc.

The structure and parameters of the model are taken mostly from the experimental literature but it
is important to emphasize that the model also contain parameters that were adjusted to reproduce
experimental values. In other words the model presents both fitted and biological parameters.

Lateral Geniculate Nucelus

The model is largely based on previous work in the visual system by [Troyer et al., 1998]. We
constructed a realistically dense LGN layer that covers 6.8 x 6.8 degrees of the visual field. To do
so,we utilised a lattice of 61 x 61 ON cells and 61 x 61 OFF cells.

To each cell we can associate a spatio-temporal receptive field (STRF). The profile of the STRF
consists in a spatial structure modelled after the center-surround architecture mentioned above and
also illustrated in the left part of figure 8. The temporal filter on the other hand possesses a temporal
profile with a bi-phasic profile as proposed in [Cai et al., 1997]. In particular the sizes of the center
and surround areas were set in such a way as to respect the values found in the literature [Allen and
Freeman, 2006].



In order to model the input to LGN neurons a given stimulus was convolved with the STRF; this
result in turn was injected into the neuron as a current. We also amplify the current with a gain
factor to map the injected values to biologically relevant domains [Kremkow, 2011]. In addition, in
order to introduce variability, white noise was also injected into the neurons. This was done in such
a way that in the absence of external stimulus the neurons elicit a background firing rate of around
10 Hz.

Cortical Layer

Following the work of Troyer [Troyer et al., 1998] the cortex is represented by two layers: one inhibitory
with 400 neurons and one excitatory with 1600 neurons [Braitenberg and Schiiz, 1991]. This is
illustrated in the right part of figure 8. In order to obtain Gabor-like receptive fields a sampling
mechanism from the LGN cells was implemented. In this mechanism, on-cells are sampled with
probability equal to the positive values of the Gabor function center in that position and off-cells
are sampled with the negative part. The phase and the orientation of each Gabor function were
drawn from a uniform distribution. The optimal spatial frequency was set to 0.8 cycles per degree
in agreement with in-vivo recordings and the receptive field positions are within 40.2° of the same
visual fields. Finally, the diameter of the center of the receptive fields and the aspect ratio were taken
from the literature [Reid and Alonso, 1995] [Banitt et al., 2007].

The mechanism to build the connections between two neurons in the cortical layer was based on the
correlations between their receptive fields [Miller, 1994] [Troyer et al., 1998] [Kandel et al., 2000].
For excitatory connections this assumed a high connectivity when the phase and orientation were the
same. For inhibitory synapses, on the other hand, the connection probability was highest at the same
orientation but at a phase difference of 180°. Furthermore, short-term plasticity was added to the
model of excitatory synapses in order to agree with results in the literature [Tsodyks and Markram,
1997]. To reproduce membrane fluctuations observed in vivo [Destexhe et al., 2003] noise coming from
a Poisson process generator was also added to the cortical neurons.

Gabor Connectivity

excitatory

Center-surround
Receptive Field

——-

Correlation
——- Based
LGN Connectivity
——-
——-

inhibitory

Gabor Connectivity

Figure 8: A schematic of our model. In the leftmost part we represent the spatial center-surround structure of the STRF.
This, convolved with the stimuli produces the input that is injected in the LGN’ cells. In the center of the image we
represent the Gabor connectivity between the cells in the LGN and the excitatory and the inhibitory layer of the cortex
shown in the rightmost part of the figure. Finally between those last two layer we have a correlation based connectivity
described in the text above.



The Neurons

The neurons in LGN and V1 were modelled as leaky integrate and fire point neurons with synaptic
inputs represented as transient conductance changes. Every time the membrane potential of a neuron
reached the threshold voltage Vi, a spike was emitted and then the neuron was reset to an assigned
value Vi, and kept in that state for 2ms. For excitatory neurons the parameters used were cm =
0.29nF, 7, = 10.0ms, Vi, = —57mV, Ve = —65mV, and Vit = —65mV. For the inhibitory neurons
the parameters were cm = 0.141 nF, 7,, = 6.5ms, Vi, = —=57mV, V.. = —65mV, and Viest = —65mV.

Synapses

The synapses’ transient changes were modelled as exponentially decaying conductances changes. The
parameters corresponding to the exponential functions were 7ez. = 1.5ms and 7;,;, = 10ms for the
excitatory and the inhibitory neurons respectively [Kuhn et al., 2004]. The delays between the spike
and the response were set to 2ms and the peak conductance to 1.5nS

2.5 Tools

All the simulations were carried out in the Python language. This allowed us to profit from the
software machinery that the neuroinformatics community has built around it. In order to integrate
our work-flow between model and parameter specification, experiment design and simulations we
have used the Mozaik software [Antolik and Davison, 2013]. Mozaik in turn relies on PyNN [Davison
et al., 2008] for the model building part. Finally from PyNN the simulator NEST is called. The
NEST software is optimized for large simulations of point neurons and allows us to carry out our
experiments with well tested code and standard routines [Gewaltig and Diesmann, 2007].

In the spirit of open science, all the routines and code that we used are made available in the following
repository:

https://github.com/h-mayorquin/M2_complexity_thesis

3 Results

In order to test our algorithms we first apply our algorithms to data from a real cell. The data were
obtained under in-vivo recording conditions subjected to a form of dense noise that is consistent with
the one we constructed for our model

3.1 Real Cell

Response Curves

Before calculating a fully fledged regression we would like to see whether the receptive field possesses
any kind of structure. In order to do so in figure 9 we show how the voltage looked on average after
either a bright (blue trace) or a dark (green trace) stimulus is presented in a particular pixel.
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Figure 9: Time traces of the voltage corresponding to the pixel in the center x = 5 and y = 5. We show the time trace
corresponding to 200 ms for the bright or positive value (blue) and the the one corresponding to the dark or negative
value (green)

In figure 9 we can see that the kernel possesses a temporal bi-phasic structure when stimulated with
the negative stimulus (green line in the figure). That is, starting from the mean value the voltage
decreases its magnitude and then rises above the average before returning again to the starting point.
This behaviour is consistent with the expected behaviour from the literature [Cai et al., 1997].

In order to reveal the spatial structure we performed the same analysis as before for every pixel in
our stimulus grid. We illustrate the results in figure 10. In the figure we can see that the cell is
particularly receptive to stimuli that fall in the center of the receptive field where we can see the
spatio-temporal structure in more detail. The outer cells, on the other hand, are consistently more
noisy and they lack any kind of structure.

Note that the response to a dark stimulus change its polarity as we move in a horizontal line from the
left to the right. In the left of the center the membrane potential increases after a short time and then
decreases after an interval of approximately the same duration. In the center of the picture, however,
the order of the event reverses, that is, the membrane potential first decreases the magnitude of its
response and only then increases it. Finally for the traces that are on the right part of the center
the situation is analogous to the one described for the left. This behaviour appeared again in a more
striking way when we calculated the receptive field in full detail.
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Figure 10: Response traces from a real cell under dense noise. In this plot every cell in the grid represents a particular
pixel of our stimuli. For each one of them we plotted how the signal looked on average 200 ms after a bright stimuli
appeared (blue trace) or a dark stimuli appeared (green trace). For each cell the x axis represents the time window that
we have chosen (200ms). They y axis represents the membrane potential and its values range from —67mV to —65mV.

Receptive Fields

We can then proceed to estimate the receptive field of the cell. In figures 11 and 12 we present the
linear part of the kernel h; and the non-linear one ho respectively. In the figures we can see a very
well defined structure in the center. This is consistent with the results from the time traces that
we showed above where the polarity of of the appropriate stimulus is inverted as we move along a
horizontal line that passes through the center.
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Figure 11: Estimation of h; for a real cell under the dense
noise condition and for 7 = 56 ms. Here the blue areas
represent regions of the visual field where dark stimulation
will increase the magnitude of the cell response and a bright
stimulus will decrease it. The red areas on the other hand
represents the opposite situation where a bright stimulus
will increase the magnitude of the cell’s response and a

-60

Figure 12: Estimation of hs for a real cell under the dense
noise condition and for 7 = 56 ms. Here a stimulus present
in the red area will increase the magnitude of the cell re-
sponse regardless of the the sign whereas one present in the
blue area will decrease the magnitude of the cell’s response
for both bright and dark stimuli. Note that even if the
structures of the linear and the non-linear part look very

dark stimulus will decrease it. similar their interpretations differs.

It is important to note that the kernels can be multiplied by a constant and still give the same overall
response if properly adjusted with gain. That is, the overall magnitude of the receptive field is not as
important as its structure. Following this in the next discussion we would like to draw attention to
the overall pattern instead of the particular magnitudes of the receptive field.

Figure 13: Estimation of hy for a real cell under dense noise
conditions. Here the time advances in reading order, that
is, from left to right and from top to bottom. Every change

Figure 14: Estimation of hs for a real cell under dense noise
conditions. Here the time advances in reading order, that
is, from left to right and from top to bottom. Every change

of frame corresponds to a jump of 7 = 4 ms. of frame corresponds to a jump of 7 = 4 ms.

Finally in figure 13 and figure 14 we present the whole structure of the receptive field. For small
delays it starts with an overall pattern that fluctuates around zero. This means that very recent
stimuli do not play a big role in the response of the neuron, or in other words there is a delay of
approximately 24 ms before the images start to affect the neuron. This can be interpreted as the time
that it takes for the signal to arrive from the retina to the cortical areas. We also can see that at
some point around 60 ms the polarity of the filters is inverted which is consistent with the structure
we saw for the traces. Finally at some point the receptive field becomes very weak again which means
that the system has a finite memory and events from time further than that do not play a big role in
the response of the neuron.

13



3.2 Simulations

Once we are sure that the methodology works and gives the expected result for the experimental data
we apply the routines to the data produced in our simulations. For the simulations we used a stimulus
that consisted of 3000 frames for both sparse and dense noise with a duration of 21 ms each.

Response Curves

In order to probe the structure we show first the response curves in figure 10. As in the real cell
the central traces are the ones that show most organization. Taking this into account we opted for
showing only the traces corresponding to the central pixels in figures 15 and 16.

In the dense noise case we can appreciate a central bi-phasic structure of opposite polarity for the
dark and bright stimulus. In the sparse noise case, on the other hand, we can see an overlap in the
direction of the effects for both the dark and the bright stimulus.

Figure 15: Stimulus traces for the center of the grid from a
simulated cell subjected to dense noise. In this plot every
cell in the grid represents a particular pixel of our stimulus.
For each of them we plotted how the signal looked on av-
erage 200 ms after a bright stimulus appeared (blue trace)
or a dark stimulus appeared (green trace). For each cell
the = axis represents the time window that we have chosen
(200ms). They y axis represents the membrane potential
and its values range from —67mV to —65mV.

Receptive Fields

Figure 16: Stimulus traces for the center of the grid from
simulated cell subjected to sparse noise. In this plot every
cell in the grid represents a particular pixel of our stimulus.
For each of them we plotted how the signal looked in av-
erage 200 ms after a bright stimulus appeared (blue trace)
or a dark stimulus appeared (green trace). For each cell
the = axis represents the time window that we have chosen
(200 ms). They y axis represents the membrane potential
and its values range from —67mV to —65mV.

In figure 17 we show the linear part of the estimated receptive field for the dense noise condition. We
can see that again we do not have structure for small delays of the kernel but approximately at 30 ms
two small blobs of opposite polarity appear. The whole pattern then last until approximately 100 ms
and then disappears.

We also show the estimation for the non-linear part of the receptive field in figure 18. The spatial
structure of ho here consists in a central bob where any kind of stimulus excites the cell and a central
sea of inhibition. Interestingly the spatial structure for the non-linear part lasts a shorter time than
the linear part.
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Figure 17: Estimation of the hy component of the receptive
field for a simulated cell under the dense noise condition.
Here time advances in the reading order, that is, from left
to right and from top to bottom. Every change of frame
corresponds to a jump in 7 = 4 ms.

Figure 18: Estimation of the hy component of the receptive
field for a simulated cell under the dense noise condition.
Here time advances in the reading order, that is, from left
to right and from top to bottom. Every change of frame
corresponds to a jump in 7 = 4 ms.

In figure 19 we present the estimation of the linear part of the receptive field in a cell subjected to
sparse noise. Here we see a very similar pattern as for the same component estimate under dense
noise condition. We see, however, that in general the structure is weaker and less organised. This is
consistent with the experimental results, which show that the linear component of the receptive field
becomes weaker when the stimulus used to estimate it changes from dense to sparse noise [Fournier
et al., 2011].

We also present the non-linear part of the receptive field estimate under sparse noise stimulation in
figure 20. Here we also note that the the non-linear part estimated with sparse noise possesses a
greater spatial extent than the one from estimated under the dense condition. This last result is also
consistent with what people have found so far in experiments.

Figure 19: Estimation of the h; component of the recep-
tive field for a simulated cell under sparse noise condition.
Here the time advances in the reading order, that is, from
left to right and from up to down. Every change of frame

Figure 20: Estimation of the ha component of the recep-
tive field for a simulated cell under sparse noise condition.
Here the time advances in the reading order, that is, from
left to right and from up to down. Every change of frame

corresponds to a jump in 7 = 4 ms. corresponds to a jump in 7 = 4 ms.

Dependence on the Stimuli

We have shown that the structure of the receptive field varies with the type of stimulus that we use
to estimate it. In order to study this systematically at the population level we simulated 21 cells and
calculated the Simpleness Index that we presented in equation 1 for each of them. We did this for the
receptive fields estimated both under sparse and dense noise and then compared them. In figure 21
we can see that the cells are systematically simpler with dense noise than with sparse noise, which is
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consistent with the results from the experiments.

Furthermore, in figure 22 we present the gain analysis for the population as proposed in equation 2.
That is, for both the linear and the non-linear component we calculate the ratio between the norm
of the Volterra kernel under dense and sparse noise. In agreement with the experiments [Fournier
et al., 2011] we conclude that the non-linear part is consistently the component of the receptive field
subjected to the greater grain.

1.

2 ,
- /
//
/
19 /
//
/

g /
= S /
o & /
@ c 10 /

£ y

o

o~ /

=

/
//
085 02 04 06 08 1.0 /
SI SN 0 5 10 15 20
h1 gain SN/DN

Figure 21: Here we calculated the Simpleness Index for
21 cells under dense noise and plotted it against the Sim-
pleness Index calculated under sparse noise. In order to ) . .
compare we also show the identity as a black trace. In red changing from simple to dense noise. In order to compare

we show the the analytical value based on the gain fit from we show t.he the identity as a black trace. W? ?hOW in red
figure 22. the best linear fit that crosses through the origin.

Figure 22: Here we calculated the gain in the non-linear
part of the receptive field against the linear part when

Finally, in order to quantify how much of the total response is attributable to either the linear or
non-linear part we convolved the estimated receptive field with the corresponding stimulus. We can
see in figure 23 that under sparse noise the non-linear part contributes the most while in the dense
noise the opposite situation is true. This result is not consistent with experimental results where,
when convolved, both components have equal contributions.
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Figure 23: Here we calculated the SI* (convolution of the images with the Volterra kernels) for 21 cells under dense
noise and plotted it against the SI* calculated under sparse noise. In order to compare we also present the identity as a
black trace.
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4 Discussion

The aim of this project was to study the links between the receptive field of a cell and the type of
stimulus that we use to estimate it. In order to achieve such a goal we first constructed an appropriate
model of V1 and also built suitable stimuli to make the comparisons. Secondly, we used the regression
machinery to create the algorithms to estimate the required Volterra kernels. Finally, with these tools
in our hands we studied the systematic variations of the receptive fields and the metrics described
above when the system is subjected to differing stimuli.

In short we have constructed the machinery and metrics to allow us to reliably and promptly estimate
and study an emergent property of the neural system: the receptive field. Furthermore, we have
shown that this property is dependent on the stimulus used to estimate it in a systematic way. First,
the Volterra kernel estimated under dense noise is simpler than the Voleterra kernel estimated under
sparse noise. Second, the gains in the Volterra kernel when switching from dense noise to sparse noise
of the Volterra kernel are consistently higher for the non-linearity part. Both results are qualitatively
consistent with the literature [Fournier et al., 2011].

Finally, we have calculated the component of the response than can be attributed to the linear and
the non-linear part (SIx). We have found that the convolved receptive fields under dense and sparse
noise do not equilibrate. It is important to state that this last result is the one that is not compatible
with experiments conducted to the date [Fournier et al., 2011].

A series of questions then naturally arise on how the linear and the non-linear components of the
response equilibrate in experimental conditions. The natural path to continue the project is then
clear in the following questions: what mechanisms are responsible for the equilibrium of the linear
and non-linear contributions of the response?” How we can apply connectivity rules to have quantitative
and qualitative agreement with the simpleness index throughout the population.

We propose that the same mechanisms that are responsible for the property of contrast-independent
orientation tuning play a role amplifying the non-linearities of the system under sparse noise condi-
tions. In future work, we would like to modify the temporal profiles of receptive fields in the LGN in
order to see whether we can explain the results already found in the literature.
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Appendix

Regresion

Along this work we estimated the volterra parameters in two ways. First we used the algorithm of
Stochastic Gradient Descent (SGD). SGD is the standard approach on the literature to deal with
learning in conditions where we have both a large set of training examples and parameters [Wilson
and Martinez, 2003]. Here we describe the algorithm:

while (Cost Function < Threshold) do
Training <— Permutation Of Training Examples
for i in Training do
for all x,y, 7 do
ho < ho + a(R(t") — H(t"))
hise (2, y,7) < hise (2, y,7) + a(R(t") — H(t))S(z,y, t" — )
hobiag (T, Y, T)  hopiag(z,y, ) + a(R(t) — H(t"))S*(z,y, t" — )
end for
end for
end while

Furthermore, we added extensions to the algorithm including momentum, adaptation, learning rate
annealing as suggested elsewhere in the literature [Zeiler, 2012] in order to look for the optimal
implementation. We also apply the well know suggestions of standardizing the input and output in
order to optimize the work-flow and convergence ratio [LeCun et al., 2012]

We also implemented the method of least squares regression. In order to adapt this technique to
the large quantity of examples and parameters that our system possesses we utilised the fact that
linear parameters can be estimated independently. With this knowledge we estimated the parameters
for each of the delay independently using only one training example per image in order to assure
independence between inputs.

In this work we show the estimation provided by the second method to be comparable with the
method provided in the literature [Fournier et al., 2011].

Repository

As mentioned in the text we have made available all the routines that we used in this work in a public
repository:

https://github.com/h-mayorquin/M2_complexity_thesis

In this section we briefly describe the hierarchy and logic of the files that you can find there. We have
two main folders: Model and Analysis. We describe them in the following paragraphs.

First, in the Model folder we have the model specifications that Mozaik is going to use to run our
simulation. The folder param contains in general the parameters of the different neuronal layers that
we used: LGN and cortical. We also have here the recording files that define which quantities and from
which neurons are we recording. In the main directory of Model again we have the experiments.py
file with the specification of our stimuli. The file analysis_and_ visualization.py contains
the routines to extract the voltage and the images from our experiments. This file contains the routines
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to resize the images from the class instances and was vital in order to avoid memory overflow. The
file model . py loads the neuronal structure of the network using the parameters defined in the param
folder.

Second we have the analysis file. In order for the files in the Analysis folder to run we need to have
the pickled files produced by the Simulation folder in the Analysis’ folder named data. The files with
the experimental data are provided in the folder named Cyrill. To avoid repetition in the name of the
files we use the convention that a start * can be any string. Now we describe what each file does in
the following list.

e The file anlysis_functions.py contains data to process the data.

e The file plot_functions.py contains the functions that we used to make the plots and other
visualization files.

e The file error_functions.py contains functions to estimate the errors of predictions and
estimations.

e The file store_functions.py contains the machinery to store the estimated kernels in dif-
ferent formats.

e The file learning_functions.py contains the hypothesis (convolution) and the SGD learn-
ing functions.

e Thefiles regresion_simulation.py and regresion.experiment .py estimate the Volterra
kernels for the experimental data and the data produced boys the simulations respectively.
This file can be used to experiment with variations in the estimation parameters. The file
regresion_simuation_total.py estimates and stores the Volterra kernel in the kernels
folder for the complete cell population.

e Once we have the Volterra kernels in the kernels folder we can calculate the metrics of structure.
The analysis_01.py and analysis_02.py calculate the metrics defined in equations 3 1
and 2 for a population of cells and produces the plots that we show in figures 22, 21 and 23.

e Once we have the estimations of the receptive fields in the kernel folder we can extract plots of
them with the files receptive_field_graph_=*.py. We can extract the complete kernels for
the experiments and the simulated data. We can also extract the receptive field at a particular
point in time using the files that end with the string example.

e The files time_traces«*.py extracts the time traces for the data of the experiments and the
simulations that was used to plot figures 10, 15, 16. Finally, the program ending with the string
example can be used to extract the trace for only one cell in the pixel grid and was use to plot
figure 9.

References

Elena A Allen and Ralph D Freeman. Dynamic spatial processing originates in early visual pathways.
The Journal of neuroscience, 26(45):11763-11774, 2006.

Jose-Manuel Alonso and Yao Chen. Receptive field. Scholarpedia, 4(1):5393, 2009.

Jan Antolik and Andrew P Davison. Integrated workflows for spiking neuronal network simulations.
Frontiers in neuroinformatics, 7, 2013.

19



Yoav Banitt, Kevan AC Martin, and Idan Segev. A biologically realistic model of contrast invariant
orientation tuning by thalamocortical synaptic depression. The Journal of Neuroscience, 27(38):
10230-10239, 2007.

Valentino Braitenberg and Almut Schiiz. Anatomy of the cortex: Statistics and geometry. Springer-
Verlag Publishing, 1991.

Daqing Cai, Gregory C Deangelis, and Ralph D Freeman. Spatiotemporal receptive field organization
in the lateral geniculate nucleus of cats and kittens. Journal of Neurophysiology, 78(2):1045-1061,
1997.

Matteo Carandini. Area V1. Scholarpedia, 7(7):12105, 2012.

Andrew P Davison, Daniel Briiderle, Jochen Eppler, Jens Kremkow, Eilif Muller, Dejan Pecevski,
Laurent Perrinet, and Pierre Yger. PyNN: a common interface for neuronal network simulators.
Frontiers in neuroinformatics, 2, 2008.

Peter Dayan, Laurence F Abbott, and L. Abbott. Theoretical neuroscience: Computational and
mathematical modeling of neural systems. MIT press Cambridge, MA, 2001.

Gregory C DeAngelis, Izumi Ohzawa, and Ralph D Freeman. Receptive-field dynamics in the central
visual pathways. Trends in neurosciences, 18(10):451-458, 1995.

Alain Destexhe, Michael Rudolph, and Denis Paré. The high-conductance state of neocortical neurons
in vivo. Nature reviews neuroscience, 4(9):739-751, 2003.

Julien Fournier, Cyril Monier, Marc Pananceau, and Yves Frégnac. Adaptation of the simple or
complex nature of V1 receptive fields to visual statistics. Nature neuroscience, 14(8):1053-1060,
2011.

Marc-Oliver Gewaltig and Markus Diesmann. NEST (neural simulation tool). Scholarpedia, 2(4):
1430, 2007.

Eric R Kandel, James H Schwartz, Thomas M Jessell, et al. Principles of neural science, volume 4.
McGraw-Hill New York, 2000.

Kremkow. Correlating excitation and inhibition in visual cortical circuits: Function consequences and
biological feasibility. PhD Thesis, 2011.

Stephen W Kuffler et al. Discharge patterns and functional organization of mammalian retina. J
Neurophysiol, 16(1):37-68, 1953.

Alexandre Kuhn, Ad Aertsen, and Stefan Rotter. Neuronal integration of synaptic input in the
fluctuation-driven regime. The Journal of neuroscience, 24(10):2345-2356, 2004.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Miiller. Efficient backprop. In
Neural networks: Tricks of the trade, pages 9-48. Springer, 2012.

Luis M Martinez and Jose-Manuel Alonso. Complex receptive fields in primary visual cortex. The
neuroscientist, 9(5):317-331, 2003.

Kenneth D Miller. A model for the development of simple cell receptive fields and the ordered
arrangement of orientation columns through activity-dependent competition between on-and off-
center inputs. Journal of Neuroscience, 14:409-409, 1994.

R Clay Reid and Jose-Manuel Alonso. Specificity of monosynaptic connections from thalamus to
visual cortex. Nature, 378(6554):281-283, 1995.

Charles Scott Sherrington. The integrative action of the nervous system. CUP Archive, 1966.

20



Bernt C Skottun, Russell L De Valois, David H Grosof, J Anthony Movshon, Duane G Albrecht,
and AB Bonds. Classifying simple and complex cells on the basis of response modulation. Vision
research, 31(7):1078-1086, 1991.

Todd W Troyer, Anton E Krukowski, Nicholas J Priebe, and Kenneth D Miller. Contrast-invariant
orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intra-
cortical connectivity. The Journal of neuroscience, 18(15):5908-5927, 1998.

Misha V Tsodyks and Henry Markram. The neural code between neocortical pyramidal neurons
depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences,
94(2):719-723, 1997.

Vito Volterra. Sopra le funzioni che dipendono da altre funzioni. Rend. R. Accademia dei Lincei 2
Sem, pages 97-105, 1887.

N Wiener. Nonlinear problems in random theory, 1958.

D Randall Wilson and Tony R Martinez. The general inefficiency of batch training for gradient descent
learning. Neural Networks, 16(10):1429-1451, 2003.

Matthew D Zeiler. Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

21



