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Abstract

While populations are ageing the development of technology to assist the elderly in maintaining their
independence and daily activities becomes important. The majority of in-home accidents are caused by
falls of which most occur during postural transitions. This paper presents the study of postural transitions
recognition based on recordings of accelerations from a wrist-worn device. The Continuous Profile Model was
used in order to obtain the patterns of activities such as: sit-to-stand transition, stand-to-sit transition and
walking. Then, a set of training/testing routines were proceeded to assess the accuracy of the algorithm.
Finally, the classification of both the regualarised and the naturalised data was successfully performed.
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1 Introduction

According to Eurostat [1], in the EU, the share of the
total population aged 65 years or over is projected
to increase from 17.1% in 2008 to 23.5% in 2030. In
2050 situation is predicted to be even more dramatic,
specifically 16.4% of the world population and 27.6%
of the European population are projected to be
65 years and above, and in 14 countries, including
nine European ones, more than 10% of the total
population will be 80 years or older [2]. Therefore
the development of the technology to assist elderly in
maintaining their independence and daily activities
becomes crucially important.

In England and Wales some 260,000 people aged
over 65 attend Accident and Emergency Departments
annually due to in-home accidents [3]. The majority
of are caused by falls, which makes them the principal
threat of health and independence of the elderly.
Studies regarding causes of falls and the assessment
of the risk of falling are important as they may help
to develop appropriate countermeasures.

Nyberg and Gustafson [4] report that the risk of
falls is very high among stroke patients. Most falls
occur during transfers, when initiating walking or
while changing position from sitting to standing or
vice versa. Also, Najafi et al. [5] finds the correlation
between the length of the posture transition and the
risk of fall.

This work is related to the USEFIL project [6]
set up in 2011 that aims to develop advanced but
affordable in-home unobtrusive activity monitoring
solutions. The objective is to use low cost “off-the-
shelf” technology and focus on the software meant to
run on open-source platforms.

The aim of this study is to determine if the postural
transitions can be accurately detected by tri-axial
accelerometer-based device worn on wrist. We de-
cided to collect data using a wrist-worn device as it is
considered to be the least obtrusive location and gen-
erally preferred by the elderly [5]. By analysing the
acceleration we are trying to pick up specific moves
of the wrist indicating the transition. Our goal is to
build a classifier that is able to distinguish between
3 different classes of activities, namely: sit-to-stand
transition, stand-to-sit transition and walking. We
apply the Continuous Profile Model (CPM) in order
to obtain patterns of the activities and to perform
classification. We assess its performance by applying
several training/testing procedures.

The paper is organised as follows: Section 2
describes the experimental setup and the data
collection. Section 3 provides description of train-
ing/testing procedures and introduction of CPM.
Section 4 presents the results and the last sections
focus on discussion and conclusions.

2 Methodology

In order to monitor the activity, especially to be able
to detect the sitting-to-standing and the standing-
to-sitting transitions, first, a set of specific exercises
needs to be recorded. Time series of activity were
recorded in a controlled environment and consist of
both the regularised and more naturalised behaviour
(defined in Section 2.2).
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2.1 Device specification

The data were collected with the Z1 Android Watch-
Phone (Figure 1) which included a built-in 3 axis ac-
celerometer worn on the wrist. The device runs on an
Android 2.2 platform, the specification is: 416 MHz,
256 MB RAM, 8 GB internal memory, which is suffi-
cient for our studies. The recordings were transfered
to the computer by USB.

Figure 1: The Z1 Android Watch-Phone.

2.2 Experimental setup and data col-
lection

The data were collected from 15 healthy subjects, 12
males and 3 females. The age ranged between 22 and
37 years, the height varied from 156 to 187 cm, and
the weight was between 51 to 100 kg. The device was
worn on the left wrist. The participants were asked
to perform 3 activities:

1. 10 repetitions of stand-to-sit-to-stand transi-
tions. The time series were split afterwards into
two sets consisting of the stand-to-sit (StSi) and
sit-to-stand (SiSt) transitions separately;

2. 2 minutes of casual walking;

3. 30 seconds of casual walking followed by StSi and
SiSt transitions, all repeated 3 times.

The transitions were evoked by the beep sound emit-
ted every 5 seconds. Although the change of posture
takes less, a single recording lasts 5 seconds or 250
samples. The first two sessions were designed to pro-
vide the recordings of patterns, being used for training
purposes. These recordings are often refer to as ‘regu-
larised’. The 3rd set will be used for testing purposes.
We will call it the ‘naturalised’ data. Also, in next
sections when classifying we will be assigning activity
into classes as follows:

class 1 : sit-to-stand transition (SiSt);

class 2 : stand-to-sit transition (StSi);

class 3 : walking.

3 Data analysis

In this section we present the preprocessing of the
data and the training/testing procedures that allow
us to assess the performance of different classifiers.
Then we describe the Continuous Profile Model and

mention the underlying mathematics. Next, we in-
troduce the classifiers we apply to detect activities.
Finally, we discuss some measures we employ to asses
the accuracy.

3.1 Extraction of samples

The sampling rate of the device was set to 50 Hz.
However, as the device wasn’t designed for precise
measurements and the resulting sampling frequency
could slightly vary, the recordings were resampled by
software afterwards. We assume 50 Hz is sufficient to
record detailed signatures of transitions.

Figure 2 shows examples of series we have recorded.
Recordings of transitions are divided into 5 seconds
long intervals. StSi and SiSt transitions appear alter-
nately, therefore when extracting, every second sam-
ple is taken. Although the length of the original
recordings amounts to 5 seconds, the actual transi-
tion normally takes about 2 seconds. We have some
arbitrariness in choosing only part of the recording
for future analysis and in the further studies we are
considering series of length: 2.4, 3.2, 4.0 and 5.0 sec-
onds. When obtaining shortened samples we use a
window of a chosen length and select a position in
order to cover the entire transition. In example de-
picted in Figure 2, a 2.4 second long window and 0.8
second delay was set. As the reaction time on a beep
sound varies for different persons, the offset was set
individually. This ensures that the all the transitions
are included.

The recordings of walking are continuous, therefore
in order to obtain samples a sliding window was used.
The length of the window was the same as when ex-
tracting samples of transitions. For training purposes
no overlap was imposed on the sliding window, while
for testing purposes it varied from 50% to 90%.

Due to some artifacts in the recordings (e.g. pulling
up a sleeve) some series were excluded in order to
provide consistent input for training.

3.2 Training/testing procedures

We split the data into separate training and testing
sets in order to evaluate the performance of the al-
gorithm. We apply four different procedures, each of
which answers different questions about the perfor-
mance of the algorithm and deliver valuable informa-
tion of its limitations. We discuss their significance
broadly in Section 5.

3.2.1 Regularised data

Both the training and testing were performed on the
data collected in step 1 and 2 (Section 2.2). It can be
considered as more regularised data, as all the posture
transitions were repeated in regular manner paced by
the beep sounds every 5 seconds.
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Figure 2: Activity recordings. Plots (a) and (d) show original recordings. Shading indicates which parts of signal where
extracted. Plots (b) and (c) show samples of transitions obtained from recording in (a) by extracting a sequence from
every second interval (each interval is separated by a beep sound). A window of length 2.4 seconds and an 0.8 seconds
long offset was used in order to cover the entire transition. Plot (e) presents samples of walking extracted from (d) by
sliding a window of the same length and with no overlap. Some parts where omitted due to artifacts.

• Procedure 1. Training on the regularised
individual data/testing on the regularised individual
data (Leave-one-out).

For each individual all-but-one samples are taken for
training, the testing is performed on the remaining
sample (Figure 3). The procedure is depicted in
Figure 4a. Entire analysis was performed having
used all 3 classifiers and for all window lengths: 2.4,
3.2, 4.0 and 5.0 seconds.

Figure 3: Leave-one-out method. For each person, all but
one regularised series were used for training. Testing was
performed on the remaining series.

• Procedure 2. Training on the regularised com-
bined data/testing on the regularised individual data.

In this approach the regularised recordings over all
the subjects were combined and split randomly into
training/testing subsets in proportion 2/3 to 1/3. The
approach is sketched in Figure 4b.

In order to assess consistency of received results,
the procedure was repeated 10 times, each time, due
to randomization, different combination of series were
constituting training and testing sets. Final scores
were averaged over received results.

3.2.2 Naturalised data

When collecting naturalised data (Section 2.2), no
strict rules about how and when to sit, while walking
were imposed on subjects. Subjects were advised
to sit down after 6 beep sounds (30 seconds of
walking). However, as the location of the subject
varied (sometimes they were closer to or further
from the closest seat) they might have rushed or
slowed down towards a seat. This behaviour causes
two outcomes. First, ‘naturalisation’ of recordings is
desirable. The second is more problematic, as there
is no certain position we can expect a transition
to appear in the recording. Therefore the manual
inspection is needed in order to label each sample
derived from a naturalised recording.

Samples were labelled according to their fitness to
a proper class assessed visually. In case when no class
could have been assigned clearly, the label ‘0’ was
attached and the sample was ignored during testing.

• Procedure 3. Training on the regularised
individual data/testing on the naturalised individual
data.

In this case, similarly to procedure 1, training
is carried out individually on the regularised sets.
Testing, in contrary, is based on naturalised individ-
ual recordings. Results are obtained for each person
separately and then combined together for the overall
assessment, see Figure 4c.
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(a) Procedure 1. For each person, all but one regu-
larised series were used for training. Testing was per-
formed on the remaining one. The procedure was re-
peated for each series. Finally, results over all persons
were combined.
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(b) Procedure 2. All the regularised recordings were
combined and split randomly into training/testing
subsets in proportion 2/3 to 1/3.
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(c) Procedure 3. Training is performed based on
the regularised data and training uses the naturalised
data. Results are obtained for each person separately
and then combined together for the overall assessment.
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(d) Procedure 4. All the regularised recordings are
combined for training purposes. Testing is performed
on the individual naturalised data. Results over all
persons are eventually averaged.

Figure 4: The procedures used for training and testing.

• Procedure 4. Training on the regularised
combined data/testing on the naturalised individual
data.

Similarly to procedure 2, the model was trained
on the data combined over all the subjects. The
testing stage was performed on the individual natu-
ralised data. After obtaining results for each subject,
an average was calculated. Figure 4d illustrates the
procedure.

3.3 Continuous Profile Model

Now, we introduce the algorithm we use both for
training and testing, the Continuous Profile Model.

The time series can be aligned in time and scale
by using CPM [8][9]. The assumption is that the se-
ries come from the same underlying process. In other
worlds, each observed time series is considered to be
a non-uniformly subsampled, noisy version of a latent
trace. The trace can be obtained in a process of data-
driven learning. Then the likelihood that a given se-
ries diverges from the learned trace can be calculated.
The model was successfully applied to align speech

signals [9] from multiple speakers and to investigate
daily behaviour patterns [10].

CPM is based on the Hidden Markov Model
(HMM) [11], see Figure 5. Each hidden state corre-
sponds to a particular location in the latent trace. In
CPM in one time step, the transition between states
can be made only in one direction and the distance to
the next state is limited to few space steps, although
originally it can be arbitrary long.

We enforce the length of the observed time-series to
be equally long (this constraint does not come from
any mathematical restrictions, but due to implemen-
tation), and consists of N samples. Now, the length of
the latent trace needs to be M > N (ideally M � N
so that an observed sample could be mapped more
precisely to the appropriate latent value). A local
distortion in time scale can be accomplished by jump-
ing to a next hidden state less than M/N steps away
(slowing down) or to a one further than this distance
(speeding up).

After each transition an observable being a value
normally distributed around the sample of the la-
tent trace corresponding to the current hidden state
is emitted.
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L ≡
K∑
k=1

[
log p(τ1) +

N∑
i=1

log Aτi(x
k
i |−→z ) +

N∑
i=2

log T kτi−1,τi

]
(1)

P ≡ −λ
M−1∑
j=1

(zj+1 − zj)2 + χ (2)

This method allows as to build a model capable of
representing the set of input timeseries, accounting for
local and global time shifts by altering the speed at
which the model is traversed. Furthermore, the model
can be used to analyse new time series by aligning
them to the latent traces and assessing their compat-
ibility.

z(i-1) z(i) z(i+1) z(i+2)
d1 d1 d1

d2 d2

d3

d1d1

x(i-1) x(i) x(i+1) x(i+2)

A(i-1) A(i) A(i+1) A(i+2)

Figure 5: Simplified HMM: gray circles: hidden states
corresponding to the latent trace, blue squares: emitted
observables, solid arrows: transition probabilities between
hidden states, dashed arrows: emission probabilities of
observables (note: for sake of the transparency, transitions
from/to states outside the diagram were omitted despite
they existence).

3.3.1 Mathematical Model

Let −→x k = (xk1 , x
k
2 , ..., x

k
N ) be the k-th time series,

k = [1..K]. In the experiments the sampling rate was
uniform (50 Hz), although the CPM model introduces
no constraints for its regularity.

Further, let −→z = (z1, z2, ..., zM ) be the latent trace,
the noiseless, high resolution prototype of observed
series −→x k. In our experiments we have set:

M = (2 + ε)N (3)

which is double the resolution, plus ε = 0.05 for some
room on ends.

For a time series to be modelled from the latent
trace, a series of hidden states is needed. We call the
sequence of hidden states corresponding to time series
k, −→τ k ∈ [1..M ] (we assume the activity we record,
especially repetitions of the same exercises, to be in
the same scale. Therefore, we omit the scale state
terms in our further analysis, compare with [9]).

We model the observations xki to be related to the
states τki by the emission probability distribution:

Aτk
i
≡ p(xki |τki ,−→z , σ) ≡ N (xki ; zτk

i
, σ) (4)

where σ is the noise level of observed series and
N (ξ;µ, ς) is a Gaussian probability density for ξ with
mean µ and standard deviation ς.

We also need to define the transition probabilities be-
tween the states:

T kτi−1,τi ≡ p
k(τi|τi−1) (5)

As we allow only forward transitions and we set the
jump length limit Jτ = 3 we have:

pk(τi = a|τi−1 = b) =


dk1 , if a− b = 1
dk2 , if a− b = 2
dk3 , if a− b = 3
0, otherwise

(6)

Knowing the latent trace, the transition and emission
probability distributions and a noise level, the CPM
can be used to model the input time series.

3.3.2 Training

During training, the latent trace, the transition prob-
abilities controlling the Markovian evolution of the
time states and the overall noise level are learned.
The training is performed with the Expectation-
Maximization (EM) algorithm, which includes two
steps.

E-step
In E-step the Forward-Backward (FB) algorithm [11]
is applied that allows to calculate the probability of
the observation sequence −→x k given the model, i.e.

p(−→x k|Aτk
i
, T kτi−1,τi , σ) (7)

where the likelihood depends on probability distribu-
tions of emissions and transitions. For computational
reasons, as values of likelihoods might be very small,
the usual approach is to compute log-likelihoods. The
complete log-likelihood of K observed time series −→x k,
is given by Lp ≡ L+ P, of the form (1).

L is the likelihood term that can be obtained using
FB algorithm, where p(τ1) are priors over the initial
states. P is a penalty term, where the first term is a
smoothing penalty punishing too much variation be-
tween consecutive latent samples. The bigger the λ
is the smoother the latent traces are. In our experi-
ments λ was set to 20. Term χ stands for regulatory
terms such as Dirichlet priors to the time transition
probabilities so that all non-zero transition probabil-
ities remain non-zero [9].

Based on Lp, summing over all possible states for
all input series the expected complete log-likelihood
can be computed.
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M-step
In M-step the above log-likelihood function (1) is max-
imised with respect to the parameters that need to be
optimised, specifically: {zj}, {dkv}, σ. The optimisa-
tion provides the best setting for the parameters and
allows the HMM to be used to compute the alignment
of the input time series.

Expectation-Maximization steps are repeated until
convergence of the values being optimised.

3.3.3 Testing

During the testing, input time series are aligned by
the CPM to previously learned latent traces. The
alignment is based on the Viterbi algorithm [11][12].
The algorithm finds the best state sequence −→τ k for
the observed time series −→x k, linking the observed se-
quence to the latent trace. The fitness of the aligned
series to the latent traces is assessed using different
methods described in Section 3.5.1.

3.4 The implementation

In computations we use the CPM toolbox for Matlab1,
developed by Jennifer Listgarten [8]. The toolbox
consists of scripts allowing us to apply EM procedure
to obtain patterns, align the samples with the Viterbi
algorithm and calculate the related log-likelihoods.
During the project, whole set of additional functions
was implemented to efficiently make use of these tools.

3.5 Experimental Analysis

While training, the set of series corresponding to a
single class (the type of activity, see 2.2) was an in-
put, returning the latent trace and related parameters
as an output. Figure 6 shows an example of outcomes
obtained while training. Among the obtained traces
and examples of alignment we can see also the con-
vergence to the optimal latent trace measured by the
mean log-likelihood of the fitness of input series to
the received trace. These log-likelihoods values vary
for different inputs. Nevertheless, as the input series
are derived from the same underlaying process we ex-
pect them to be similar. Also, the latent trace can
be seen as a higher resolution fusion of them, thus it
should resemble the inputs. Therefore, we expect the
likelihoods of input series fitting to the latent trace
to be approximately even. At the same time, as the
values of likelihoods are based on transition and emis-
sion probabilities and other penalties (1), we cannot
expect the values related to different classes to be on
the same level. Indeed, the distributions of likelihoods
(Figure 7) are concentrated, but the their mean values
differ.

1the CPM implementation for Matlab http://www.cs.

toronto.edu/~jenn/CPM/

3.5.1 Classification

When assigning series to the classes based on the la-
tent traces obtained after training, 3 methods were
used:

1. residuals: first, a sequence is aligned to the la-
tent trace by using the Viterbi algorithm [11]. As
the resulting series may not be of the same length
(thanks to a non-uniform alignment) as the latent
trace (Figure 8), special measure needs to be ap-
plied in order to assess the fitness of the sample
to a certain class.

The disparity between a sample −→x k and a
latent trace −→z is measured by the average of
squared differences between their overlapping
parts. The non-overlapping part contributes to
the disparity score to an extent depending on its
length. The overall error is calcluated according
to the formula:

ECk =

√
1

|ΩO|
∑
i∈ΩO

(xki − zCi )2 ·
(

1 +
|ΩNO|
|ΩO|

)
(8)

where ECk is a measure of the difference between
series k and the pattern of class C, xki is ith sam-
ple of series k, zCi is a corresponding sample from
the latent trace of class C, ΩO is set of indices re-
lated to the overlap between −→x k and −→z C , ΩNO is
set of indices related to the non-overlap between
them, and | · | is the number of entries in a set.

When classifying a sample k, ECk is calculated
for each class in order to find the minimal dis-
crepancy;

2. loglikelihoods: these values come as a di-
rect output from CPM. Based on the forward-
backward algorithm, the log-likelihood that an
observed sequence k was produced by the model
corresponding to class C is calculated and we de-
note it as φCk . The calculation is run for each
class and the sequence is assigned to the class of
the maximum score.

3. evened loglikelihoods: the loglikelihoods re-
ceived via method 2 are shifted to bring the
means together and make them more compara-
ble. Using the mean values of the normal dis-
tributions based on the loglikelihoods computed
while training (see Figure 7), the evened log-
likelihoods are given by:

ΦCk = φCk + ∆φCk (9)

where the size of the shift is given by:

∆φCk = ηC − η (10)

where ηC is the mean loglikelihood corresponding
to class C (the centre of the distributions seen in
Figure 7), η is the average over all ηC .
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Figure 6: The outcome of training performed by CPM. Each row is related to a different class, from the top: sit-to-stand
transition, stand-to-sit transition, walking. In columns from the left: the obtained latent traces; raw input series; the
input series aligned with the Viterbi method. Take notice of alignment of ‘walking’ recordings (bottom right).
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Figure 7: Distributions of likelihoods corresponding to 3 different classes obtained while training. The pink curve is an
adjusted normal distribution. The distribution for class 3 is clearly shifted comparing to others.
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(a) Sample from class 1.
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(b) Sample from class 2.
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(c) Sample from class 3.

Figure 8: Method of residuals. Solid blue line: aligned series, red dashed line: latent traces. Three samples corresponding
to each class: StSi transition, SiSt transition and walking (columns, respectively) are aligned to every latent trace (rows).
According to expectations we can observe the best alignment on diagonal. Particularly, in (b) we can inspect visually
the best match of a recording of SiSt transition to class 2. In this case, the values of errors EC

2 returned by the method
of ‘residuals’ are: {14.3, 2.3, 10.3}. The lowest value correctly corresponds to class 2.
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(a) Loglikelihoods
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Figure 9: Illustration of classification to the proper class based on log-likelihoods. Figures show log-likelihoods that a
given sample fits to one of the classes. In this example, ith sample corresponds to ith class. A sample is classified to the
class of the score. In case (a), sample 3 is not properly assigned due to differences in scales. In case (b), all the values
are shifted to bring the means of distributions together, which implies proper assignment.
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Figure 10: The example of ‘naturalised’ data with the classification performed by the ‘evened log-likelihoods’ classifier.
The upper plot shows the original recording (we can recognize transitions) and values indicating the class each sample
was assigned to. Values in green are assigned properly; values in red signalise mistake; values in black are ignored due
to their ambiguity (see comment in Section 3.2.2). The lower plot shows the values returned by the classifier for each
class. A sample is assigned to the class of the maximal score.
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Figure 9 illustrates the assignment of three samples
corresponding to three different classes respectively.
For each sample the probability of fitting to a par-
ticular class is computed by using methods 2 and 3.
A sample is classified to the most probable class.

3.5.2 Assessment of performance

In order to assess which classifier performs better we
need to have a set of labelled samples to use as the
test data. Due to shortage of time dedicated for the
project we use a simple prototype where labels are as-
signed manually. As the samples were extracted from
the original recording by a sliding window with an
overlap of 90%, many of them contain some parts of
transitions. The main idea is to label only those sam-
ples for which there is no ambiguity to which activity
they correspond. This is assessed visually for each
sample. For each transition only one, the most obvi-
ous sequence is labelled according to its class, all the
neighbouring series are labelled as ‘0’ which excludes
them from further analysis.

The upper plot in Figure 10 shows the original
recording and labels assigned to each of extracted se-
quences of length 5 seconds (the boundaries are not
shown for better clarity). Labels in green indicate
correct assignments, in red - mistakes, the black ones,
manually labelled as ‘0’, are ignored. In this case,
classifier 3 was used. In the lower plot of Figure 10
we can observe the evolution of evened log-likelihoods
for each class. We can clearly see that values related
to classes 1 and 2 increase close to transitions, while
for class 3 they suddenly drop.

Although, this method of assessment of classifiers
is not perfect - we can imagine a case when the tran-
sition is performed in a peculiar way so it is partly as-
signed correct and partly incorrectly. It may happen
that the sample chosen manually would be labelled
wrongly, while the neighbours correctly. In this case
the assignment would be counted as an error, while it
shouldn’t be.

The problem of assessing the classifier based on
multiple assignment of overlapping series can be a
topic for a long discussion and it is important prob-
lem to be solved if this algorithm was to be applied
in real life.

3.5.3 Accuracy Measures

While assessing the performance of algorithm multiple
measures were used. Accuracy is measured by:

Pk =
TPk

TPk + FPk
(11)

Rk =
TPk

TPk + FNk
(12)

where: P is precision, R is recall, TP, FP, TN, FN are
the number of true positive, false positive, true nega-
tive, false negative classifications respectively. Index
k indicates the affiliation to a certain class.

We can interpret precision as the fraction of correct
classifications relative to all the classifications to a
particular class. Recall would be the fraction of cor-
rect classifications compared to all the real samples of
a particular class.

We also introduce the F1 score:

F1k = 2
Pk ·Rk
Pk +Rk

(13)

F1 is a harmonic mean of precision and recall, which
means it is biased towards the smaller of them. We
will often use this useful measure.

It is worth to notice that when there is no sample
assigned to a class, both TP and FP are zero and pre-
cision is undefined 0

0 , thus we receive ‘NaN’. As during
testing, there is always some number of samples from
each class, it is clearly a mistake. In this case, while
calculating averages, we consider these scores as ze-
ros.

Unfortunately, the measures defined as above can
be misleading when the number of samples in classes
is not equal. The common case in our analysis is that
number of ‘walking’ samples significantly exceeds the
number of ‘StSi’ and ‘SiSt’ samples. Often, we observe
the situation when many samples of class 3 (walking)
are assigned as class 1 (StSi) which considerably in-
fluences precision related to class 1, but only slightly
affects recall of class 3.

In order to eliminate this bias, weights related to
the number of samples need to be introduced:2

First, we define the weighted confusion matrix,
C = (cij), where i, j ∈ {1, 2, 3} correspond to classes:
StSi, SiSt, walking, respectively. cij is the weighted
number of assignments of samples from class i (refer-
ence) to class j (prediction). The example for class 1
is shown in Figure 11.

Each entry of matrix C is weighted according to the
number of samples from the respective class, such as:

cij = aijωi (14)

where aij is actual number of assignments of samples
from class i to class j and a weight:

ωi = 1− Ni
N

(15)

where Ni is the number of samples from class i and N
is sum of them. Now we can define weighted measures:

TPk = ckk = akkωk (16)

FPk =
∑
i 6=k

cik =
∑
i

cik − TPk (17)

FNk =
∑
j 6=k

ckj =
∑
j

ckj − TPk (18)

TNk =
∑
i 6=k
j 6=k

cij =
∑
i,j

cij − TPk − FPk − FNk (19)

2Other, easier solution would be to even the number of
samples of each class, regrettably because of the classification
method we use this solution cannot be applied.
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Figure 11: Confusion matrix.

We also define the normalised confusion matrix,
D = (dij). Let alij be the number of assignments of
samples from class i to class j for person l. Also, let
N l
i be the number of samples from class i for person

l. dij is defined as the sum of assignments alij over all
the individuals, normalized with respect to the overall
number of samples in each class:

dij =

L∑
l=1

alij

L∑
l=1

N l
i

(20)

The difference between these two confusion matrices is
that, the weighted CM is modified for each individual
separately, while the normalised CM gives a global
measure of confusion between classes.

4 Results

All 4 procedures were run for 4 different window
lengths. Each time 3 classifiers were applied. For
every setting we produce a table with the individual
and averaged precision, recall and F1 scores for each
class, confusion matrix and also a box plot present-
ing the distribution of individual results. It gives al-
together 48 collections of tables, matrices and plots.
Therefore it is reasonable to focus only on the most
relevant cases. Also, to give a general measure of the
accuracy of classification in certain cases, we will use
the doubly averaged F1 score: first we average over
all subjects receiving means related to classes, then
we average once more over the classes (Table 3 is a
good illustration, we receive the value in the bottom
right corner as the result). From now on we will refer
to this value as ‘averaged F1 score’.

4.1 Procedure 1

In this procedure training and testing were run on
regularised data in ‘leave-one-out’ manner. As we ob-
serve nearly zero misclassifications, we present only
the averaged F1 scores for all methods versus the
window length (Figure 12(a)). Method of residuals
return 100% accuracy for every window length for ev-
ery class. Method of log-likelihoods perform slightly
worse, but still close to 100%. Method of evened
log-likelihoods returns the best averaged F1 score for
the shortest window, namely: 99.09% and declines to
93.93% when the window lengthen.

4.2 Procedure 2

Training was performed on 2/3 of all the regularised
data and testing on the remaining 1/3. The summary
of the results is presented in Figure 12(b). Methods
of residuals and evened log-likelihoods perform satis-
factory, close to 97-98% regardless the window length.
The method of ‘log-likelihoods’ stays below 70%, only
to jump to 85% for the longest window. The best re-
sults were obtained for 4 seconds-long window by clas-
sifier 3 (evened log-likelihoods) with F1 scores reach-
ing: {99.52%, 96.89%, 97.85%} for each class respec-
tively.

4.3 Procedure 3

The CPM was trained on the individual regularised
data and tested on the individual naturalised data.
The averaged F1 scores (Figure 12(c)) are low, ma-
jority under 80%. The classification improves for
the shortest window. The best performer - method
of ‘residuals’ reaches the highest result around 83%,
however, the individual results differ considerably.
Among different subjects, they range from ‘NaN’ (we
consider these scores as zeros) to 100%, see Figure 13.

0
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100

1 2 3
class

F
1
 [
%

]

Procedure 3

Figure 13: Distribution of individual F1 scores obtained
by the method of ‘residuals’ for a window length 3.2 sec-
onds in procedure 3. ‘NaN’ values were considered as ‘0’.

4.4 Procedure 4

Training was performed on combined regularised
data, testing on individual naturalised recordings.
Averaged F1 scores are shown in Figure 12(d). The
best results are returned by method of ‘evened log-
likelihoods’ for the window length 3.2 seconds - the
averaged F1 score reached 92.7%. On page 12, we
present full set of results related to this case. Table
1 presents the precision, recall and F1 averaged over
all persons. The values range between 84.77% and
98.60% among all classes.

However, the mean is not a robust estimator as it
can be considerably biased by outliers. In this case,
the median is more appropriate. In Figure 14 we can
see box plots presenting the distributions of scores
among subjects. The median of all results is 100% and
general performance is quite impressive. Neverthe-
less, there exist some outliers - individuals for whom
the classification comes out very poorly, in worst case

10



2 2.5 3 3.5 4 4.5 5 5.5
40

50

60

70

80

90

100

Procedure 1

a
v
e
ra

g
e
d
 F

1
 s

c
o
re

s
 [
%

]

Window length [s]

 

 

residuals

log−likelihoods

evened log−like.

(a)

2 2.5 3 3.5 4 4.5 5 5.5
40

50

60

70

80

90

100

Procedure 2

a
v
e

ra
g

e
d

 F
1
 s

c
o

re
s
 [

%
]

Window length [s]

 

 

residuals

log−likelihoods

evened log−like.

(b)

2 2.5 3 3.5 4 4.5 5 5.5
40

50

60

70

80

90

100

Procedure 3

a
v
e
ra

g
e
d
 F

1
 s

c
o
re

s
 [
%

]

Window length [s]

 

 

residuals

log−likelihoods

evened log−like.

(c)

2 2.5 3 3.5 4 4.5 5 5.5
40

50

60

70

80

90

100

Procedure 4

a
v
e
ra

g
e
d
 F

1
 s

c
o
re

s
 [
%

]

Window length [s]

 

 

residuals

log−likelihoods

evened log−like.

(d)

Figure 12: The averaged F1 scores for all methods in relation to the window length. Methods and markers:
‘residuals’ - blue crosses, ‘log-likelihoods’ - red circles, ‘evened log-likelihoods’ - green squares.

with the F1 score about 16.84% (person number 14
in Table 3), although in contrast to procedure 3, this
time no ‘NaN’ values appear.

Moreover, the confusion matrix (Table 2) presents
the misclassification between classes. The results ob-
tained are not far from the optimum as all the diag-
onal values are above 90%. As our goal is to detect
transitions, we concern ourselves most with the cor-
rect classification of class 1 and 2, thus it is partic-
ularly admirable that there is no confusion between
them.

5 Discussion

Procedure 1 provides us with very good results (Fig-
ure 12(a)). Almost all the assignments are correct.
CPM seems to be performing very well when dealing
with regularised data, provided that it is trained on
recordings specific to a particular person.

In contrast to training and testing on each in-
dividual separately, in procedure 2 the training is
performed on all the data combined together. It
should help to asses how accurate the classification is
when based on the general patterns.

Although slightly worse than in procedure 1, the
scores are still excellent. It is good news considering
possible future implementations. It means that
algorithm could be suitable for real world use with
no user training period. It is important as a device
ready to measure the activity straight after being put
on the wrist, without additional calibration, would
be most desirable.

Procedure 1 and 2 provide results obtained in
arguably artificial way as the testing was performed
on the regularised data, therefore the variability
of samples were significantly suppressed. The next
approaches focus on more relevant case, when the
testing is performed on the naturalised data.

In procedure 3, although the highest average F1

score amounts to 83%, the performance of the model
is not reliable in a sense that results for different
individuals can differ extremely. Comparing to
procedure 1, when the training set was almost equal
(reduced by one sample being left out, altered each
time) the performance is mediocre. We suppose that
it is because of over-fitting to the regularised data,
in which case another regularised sample should be
recognised properly, while a naturalised sample, due
to its irregularity, might be assigned wrong.

As the over-fitting might be the case when testing
on naturalised data, in procedure 4 we train on com-
bined data. The idea is that inter-person variability
may, to some extent, play a role of intra-person
variability and therefore diminish the over-fitness.

In procedure 4, we observe a significant improve-
ment comparing to procedure 3, especially taking
into account that F1 scores are stable along different
window lengths. The accuracy for majority of
persons reaches 100%, on average scores are close to
90% and there is no confusion between transitions.

The results based on naturalised recordings, which
we consider the most relevant, are optimistic. The
CPM seems to work satisfactory. However, we are
aware that there exist factors that could have affected
the performance of the model and that there are
limitations unrevealed in this project.
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Accuracy scores. Procedure 4: Window length:  3.2 s. 

Approx. number of samples:  training:  105 | 105 | 415 testing:   2 minutes of walking with 3 transitions

 
 

Overall results: 

Method 1: 'residuals': 
  

class precision recall F1 

1 96.45% 36.95% 53.43% 

2 99.27% 86.66% 92.54% 

3 71.78% 98.98% 83.21% 

    
Method 2: 'log-likelihoods': 

 
class precision recall F1 

1 33.95% 100.00% 50.69% 

2 97.91% 97.78% 97.84% 

3 100.00% 0.58% 1.16% 

    
Method 3: 'evened log-likelihoods': 

 
class precision recall F1 

1 84.77% 95.65% 89.88% 

2 98.60% 93.33% 95.89% 

3 94.21% 90.55% 92.34% 

 

 

Confusion matrices: 

 

class 
assignment 

1 2 3 

reference 

1 37.0% 0.0% 63.0% 

2 0.0% 86.7% 13.3% 

3 0.7% 0.3% 98.9% 

number of samples 46 45 3871 

     
class 

assignment 

1 2 3 

reference 

1 100.0% 0.0% 0.0% 

2 2.2% 97.8% 0.0% 

3 98.4% 1.0% 0.6% 

number of samples 46 45 3871 

     
class 

assignment 

1 2 3 

reference 

1 95.7% 0.0% 4.4% 

2 0.0% 93.3% 6.7% 

3 9.0% 0.7% 90.3% 

number of samples 46 45 3871 
 

 
Table 1: Accuracy table returned by classifier 3 for win-
dow length 3.2 s in procedure 4. Precision, recall and
F1 scores are averaged over all subjects.
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Table 2: Normalised confusion matrix returned by clas-
sifier 3 for window length 3.2 s in procedure 4. Shows
the number of classifications divided by the real number
of samples from a certain class (presented in the bottom
row). The diagonal corresponds to correct assignments.
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Figure 14: Boxplots of individual results returned by classifier 3 for window length 3.2 s in procedure 4. On each
box, the central red mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers, and outliers are plotted individually as ‘+’.

Sheet1

Page 1

**evened loglikelihoods**

class 3class 2class 1
subject

average
precision recall F1 precision recall F1 precision recall F1 F1

1 100.00 66.67 80.00 100.00 66.67 80.00 74.80 100.00 85.58 81.86
2 100.00 66.67 80.00 100.00 33.33 50.00 66.43 100.00 79.83 69.94
3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
6 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
7 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
9 99.25 100.00 99.62 100.00 100.00 100.00 100.00 99.62 99.81 99.81
10 74.15 100.00 85.16 93.16 100.00 96.46 100.00 78.60 88.02 89.88
11 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
12 99.18 100.00 99.59 100.00 100.00 100.00 100.00 99.58 99.79 99.79
13 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
14 37.00 100.00 54.02 91.44 100.00 95.53 100.00 9.19 16.84 55.46
15 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

average 84.77 95.65 89.88 98.60 93.33 95.89 94.21 90.55 92.34 92.70

Table 3: Individual results returned by classifier 3 for window length 3.2 s in procedure 4. The table shows
individual results for each subject and the averaged values in the last row. For each class precision, recall and F1

scores are shown. The last column is individually averaged F1 score over all classes (NaN’s were considered as
zero’s). The value in the bottom right corner is averaged F1 score over all subjects and classes and it corresponds
to the value being called the ‘averaged F1 score’.
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First, the number of 100% scores should enhance
our vigilance. We recognize two reasons for such
numerous fraction of the highest possible scores. The
first reason, evident in procedure one, is related to
the exceptional regularity of recordings making the
training and testing sets too similar to leave the
chance for a mistake (unless one of the sequences
vary significantly from the others). Therefore, as we
already have signalised, we don’t consider the first
procedure to be very contributive to the accuracy
assessment. The second reason, apparent in pro-
cedure 4, is connected with insufficient number of
series while testing. There are only 3 recordings of
each transition for each individual (15) which sum
to 45 samples altogether. Further, the data were
collected in controlled way, even so called naturalised
recordings must be much clearer than it would be
if we recorded truly natural activity, as the persons
were trying not to make unnecessary moves.

Another problem is the sensitivity to the position
of the watch on the wrist. We record accelerations
in three dimensional Cartesian coordinate system
relative to the watch. If it is misplaced, new sig-
natures of transitions might not fit to the learned
patterns, however we haven’t specifically checked the
robustness of the model to this issue.

Some data preprocessing could help with tackling
this problem, e.g. calculating the root mean square
of all accelerations. The RMS shouldn’t be affected
by the position of the watch. Unfortunately, the best
averaged F1 score we get is only 47%, but what is
more worrying, the confusion between two transitions
was in the best case 60%.

There are also some methods we have tried and
which are worth to mention as they add some
instructive information about CPM. While looking
at the raw data (Figure 10) the difference between
two transitions is noticeable. It is just change of level
with some transient states between, while walking, if
averaged over many realisations, would be a flat line
due to its oscillations. In order to investigate this, we
applied an 0.3 s long sliding window to calculate the
local trend, and then run CPM on both, the trend
and residuals. As expected, the results for residuals
are hopeless, mainly because the confusion between
the transitions - at least 24% (the averaged F1 score
at best: 62%). For trends, the scores are much better
with no confusion and averaged F1 score at 88% for
the shortest window, although still less than scores
obtained on original recordings. It means that trends
play crucial role, but are not alone responsible for
the classification.

There is still further work to be done to em-
ploy the CPM in activity monitoring. In order to
eliminate very poor performance in some individual
cases, it is necessary to investigate in detail what
differ the outliers from the others. It could be also
worth to try to introduce thresholds while classifying.

So far, a sample is assigned to a class to which it
fits best, regardless of actual fitting score. Some
cutoffs imposed on values returned by classifier (see
bottom plot in Figure 10) would bring about fraction
of samples remaining unknown, but this might be
better than misleading classification.

Also, in order to seriously employ the algorithm,
it is necessary to develop a meta-classifier able to
fairly precisely point the location of a transition. So
far, due to the overlap of series, there are multiple
correct classifications allocated around the transition,
see Figure 10, but this is a positive outcome. Our
prototypical idea of picking up only one, to most
obvious sample (see Section 3.5.2), doesn’t take
advantage of this multiplicity. Nevertheless, we can
imagine a meta-classifier which will take the number
of consecutive assignments to the same class into
account and based on this will be able to exclude false
instances and attach some measure of uncertainty to
the detected activities.

6 Conclusions

The obtained results suggest that CPM can perform
satisfactory in aligning the raw data. A particularly
interesting example is an alignment revealing a walk-
ing rhythm (compare sequences before and after align-
ing in Figure 6). This ability allows to obtain the
underlying pattern and to classify the raw series to
different classes

Even for naturalised data the model is able to sat-
isfactory detect the transitions, commonly with no
mistakes. The accuracy of the activity detection,
measured by the mean F1 score, reaches: 89.9%,
95.9% and 92.3% for stand-to-sit transition, sit-to-
stand transition and waking respectively. Although,
we are aware of the limitations, this preliminary stud-
ies deliver strong arguments to consider the applica-
tions based on the Continuous Profile Model to be
prospective tools in activity monitoring.
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