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Abstract

Master of Complex System

Multi-Armed Bandit Problem and Its Applications in Intelligent Tutoring Systems.
by Minh-Quan NGUYEN

In this project, we propose solutions to exploration vs exploitation problems in Intelligent
Tutoring Systems (ITS) using multi-armed bandit (MAB) algorithms. ITSs on one side want
to select the best learning objects available to recommends to learners in the systems but
they simultaneously want to recommend learners to try new objects so that it can learn the
characteristics of new objects for better recommendation in the future. This is the exploration
vs exploitation problem in ITSs. We model these problems as MAB problems. We consider
the optimal strategy: the Gittins Index strategy and two other MAB strategies: Upper Con-
fidence Bound (UCB) and Thompson Sampling. We apply these strategies in two problems:
recommender courses to learners and exercises scheduling. We evaluate these strategies using
simulation.
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1 Introduction

One of the main tasks of an Intelligent Tutoring System (ITS) in education is to recommend
suitable learning objects to learners. Traditional recommender systems, including collabora-
tive, content-based and hybrid approaches [1], are widely used in ITSs and effective at pro-
viding recommendations at an individual level to learners in the system [2]. Content-based
recommendation recommends learning objects that are similar to what the learners has pre-
ferred in the past. While collaborative recommendation, by assuming the similarity between
learners, recommends learning objects that are useful to other learners in the past. The hybrid
approach is developed to combine these two recommendation types or other types (utility-
based, knowledge-based [3, 4]) in oder to gain better performance or address the shortcoming
of each type.

However, with the rapid development of online education, Massive Open Online Courses
(MOOCs) and other learning systems such as French Paraschool, the learning objects in many
ITSs undergoes frequent changes, new courses, new learning materials added and removed.
And a significant number of registered learners in these systems are new with few or no
historical data. It is thus important that an ITS can still makes an useful recommend to
learners even when both the learning objects and learners are new. The ITS should try to learn
the characteristic of both the learners and the learning objects. But, the cost of acquiring these
information can be large and this can really be harmful to learners. Education is a high-stakes
domain. This raise the question of optimally balancing the two conflict purposes: maximizing
the learners gain in the short term and gathering the information about the utility of learning
objects to learners for better recommendation in the future. This is one of the classic problem
between exploration and exploitation appearing in all level and time-scale of decision [5-8].

In this article, we will formulate exploration vs exploitation problems in ITSs as multi-armed
bandit (MAB) problems. We first consider the Gittins index strategy [9, 10], which is an
optimal solution to MAB problems. We also consider two other MAB strategies: UCB1 [11]
and Thompson sampling [12, 13]. We will define the bandit model for these two tasks of
ITSs: recommending new courses to learners and exercise scheduling, and then propose the
strategies to solve each problem. We will test the strategies using simulation.

The structure of the article is organized as follows. The next chapter discussed the MAB
problem, Gittins index strategy and other approximate strategies. Chapter 3 presents the
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application of MAB in ITS with simulation results. A closing chapter is for conclusion and
future works.

2 Multi-armed bandit problem

2.1 Exploration vs exploitation problem and multi-armed bandit.

The need to balance exploration and exploitation is faced at all level of behavior and decision
making from animal to human. It is faced by pharmaceutical companies to decide what drug
to continue develop [14] or by computer scientists to find the best articles to recommend to
web users [15]. This problem is not limited only to human. It is also faced by fungi in deciding
to grow at local site or send out hyphae to explore distant sites [16], or by ant in finding the
site for the nest [17].

In general, there are no optimal policy for the trade of between exploration and exploita-
tion, even when the goals is well defined. The only optimal solution for the exploration vs
exploitation problem is proposed by Gittins [9] for a class of problem when the decision is
made from a finite number of stationary bandit processes in which the reward of each process
is unknown but fixed and is discounted exponentially over time.

Bandit process is a popular framework to study the problem of exploitation vs exploration.
In the traditional bandit problem, a player has to choose between the arm that give the best
reward now (exploitation) or trying other arms with the hope of finding better arm (explo-
ration). For an multi-armed bandit problem, there is N arms and each arm has an unknown
but fixed probability of success p;. A player has the option to play one arm at one time. The
state of the arm at state x that is played changes to a new state y with a transition probability
Py, and gives a reward r. The states of other arms do not change. The purpose is to find the
maximum expected reward, when the reward is discounted by a parameter B exponentially
over time (0 < B < 1).

E !i (:Btrit(xit))] (2.1)

t=0

2.1.1 Gittins index

For a particular form of MAB with stationary arms and no transition cost, Gittins [9] proposed
this strategy and proved that it is optimal:
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e Assign to each arm an index called the Gittins index.
e Play the arm with the highest index.

Where the Gittins index of an arm i is:

Vi = Wl&le [Z(;OZO (‘Btrit(Xit))]

2.2
e EL, B 22)

which is a normalized sum of discounted reward over time. 7 is the stopping time when

selecting the process i is terminated.

This Gittins index of an arm is independent of all other arms. Therefore, one dynamical
programing problem in state space of size k" is reduced to N problem on state space of size
k with k is the state space of each arm and N is the number of arms.

Since Gittins propose this strategy and prove its optimality in 1979 [9], researchers have re-
proved and restated the index theorem. They include Whittle’s multi-armed bandit with
retirement option [18], Varaiya et al.’s extension of the index from Markovian to non Marko-
vian dynamics [19], Weber’s Interleaving of Prevailing Charges [20] and Bertsimas and Nino-
Mora’s conservation law and achievable region approach [21]. Second edition of Gittins’
book [10] has many information about the Gittins index and its development since 1979. For
a review focus on the calculation of Gittins index, see the new survey of Chakravorty and
Mahajan [22].

For the Gittins index of Bernoulli process with large number of trials n and discount param-
eter B, Brezzi and Lai [23], using a diffusion approximation for Wiener process with driff,
showed that the Gittins index can be approximated by a closed form function:

o? 1
o= 1r v (s ) =10 (g -
Withn = p+q; p = ﬁ and ¢? = % is the mean and variance of Beta(p,q)
distribution; and p? = ﬁ = u(1 — p) is the variance of Bernoulli distribution. ¥(s) is a

piecewise nondecreasing function:

Js/2 if s < 0.2

0.49 — 0.11s~1/2 if02<s<1
P(s) =1 0.63 —0.265"1/2 ifl<s<b5 (2.4)
0.77 — 0.58s~1/2 if5<s<15

2In(s) — In(In(s)) — In(167)"* if s > 15

This approximation is good for g > 0.8 and min(p,q) > 4 [23].

In this article, we focus on the Bernoulli process, where the result is counted as correct (1)
or failure (0). But our arguments can be applied for normal processes. For the calculation of
Gittins index of normal processes, see Gittins” book [10] and the review paper of Yao [24].
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Gittins index is the optimal solution to this particular form of MAB problem. The condition
is that the arms are stationary, which means that the state of an arm does not change if it is
not play, and there is no transition cost when players change arm. If the stationary condition
is not satisfied, the problem is called restless bandit [25]. No index policy is optimal for this
problem. Papadimitriou and Tsitsiklis [26] proved that the restless bandit problem is PSPACE-
hard, even with deterministic transitions. Whittle [25] proposes an approximate solution to
the problem using LP relaxation, in which the condition that exactly one arm is played per
time step is replaced by the condition that one arm on average is played per time step. He
generalizes the Gittins index and people call it Whittle index. This index is widely used in
practice [27-31] and it has good empirical performance even though the theoretical basis is
weak [27, 32]. When there is transition cost when player changes arm, Banks and Sundaram
[33] showed that there is no optimal index strategy even in the case that the switching cost is
a given constant. Jun [34] gives a survey of approximate algorithms that are available for this
problem.

There are some practical difficulties for the application of Gittins index. The first one is that it
is hard to compute the Gittins index in general. Computing the Gittins index is intractable for
many problem that it is known to be optimal. Another issue is that the arms must be indepen-
dent. The optimality and performance of Gittins index with dependent arms or contextual
bandit problem [35] is unknown. Finally, Gittins” proof requires that the discount scheme is
geometric [36]. In practice, arms usually are not played at equal time intervals which is a

requirement for geometric discount.

2.1.2 Upper Confidence Bound algorithms

Lai&Robbin [37] introduced a class of algorithms called Upper Confidence Bound (UCB) that
guaranty that the number of time that inferior arm i is played is bounded

EIN]] < <M> n(T) (2.5)

With K(i,i*) is the Kullback-Leibler divergence between the reward distributions for any arm
i and the best arm i*. T is the total number of play on all arms. This strategy guaranty that
the best arm is played exponentially more often than other arm. Auer et al. [11] proposed a
version of UCB which has uniform logarithmic order of regret bound. This strategy is called
UCBI. The strategy is to play the arm that has the highest value of

2In(T)
n;

Mi+ (2.6)
with p; is the mean success of the arm, n; is the number of times that arm i is played and
T is the total number of plays. The algorithm for Bernoulli proccess is the algorithm 3 in

Appendix A.
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Define the regret of a strategy after T plays as

R[T| =p'T - 2Vi”i(T) (2.7)

with p* = max (u;). Define A; = p* — p;. The expected regret of this strategy is bounded by
<i<
[11]

RITI< Y, <8l’f)> + (1 + if) i(Ai) 2.8)

i <p*

UCB algorithms is an active research field in machine learning, especially for contextual ban-
dit problem [38—44].

2.1.3 Thompson sampling

The main idea of Thompson samping (also called posterior sampling [45] or probability
matching [46]) is to randomly select an arm according to the probability that it is optimal.
Thompson sampling strategy was first proposed in 1933 by Thompson [12] but it attract little
attention in literature on MAB until recently when researchers started to realize its effec-
tiveness in simulations and real-world applications [13, 47, 48]. Contrasting to promising
empirical results, the theoretical results are very limited. May et al. [48] prove the asymp-
totic convergence of Thompson sampling but the finite time guaranty is limited. Recent works
showed the regret optimally of Thompson sampling for basic MAB and contextual bandit with
linear reward [49-51]. For Bernoulli process with Beta prior, Agrawal&Goyal [50] proved that
for any 0 < € << 1 the regret of Thompson sampling will satisfy:

E[RIT] < (1+¢) Y K(Zfi*)Aﬁo @2’) 2.9)
i< is

where K(p;, pu*) = pilog(pi/uw*) + (1 — pi)log (11:;;1) is the Kullback-Leibler divergence be-
tween y; and p*. N is the number of arms. For any two functions f(x), g(x), f(x) = O(g(x)) if
there exist two constants xo and ¢ such that for all x > xo, f(x) < cg(x). These regret bound
is scaled logarithmically in T like UCB strategy. Other regret analysis of Thompson sampling
for more general or complicated situations are also proposed [45, 52-54]. Regret analysis of

Thompson sampling is an active research field.

The advantage of Thompson sampling approach compared to other MAB algorithms such
as UCB or Gittins index is that it can be applied to a wide range of applications which is
not limited to models that observed individual rewards alone [53]. It is easier to combine
Thompson sampling with other Bayesian approaches and complicated parametric models
[13, 47]. Furthermore, Thompson sampling appears to be more robust to observation delays
of payoffs [13].



The algorithm of Thompson sampling for Bernoulli process [13] is algorithm 2 in the Ap-
pendix A.

2.2 Partially Observed Markov Decision Proccess Multi-armed Ban-
dit

When the underlining Markov chain is not fully observed but the observations of a Markov
chain are probabilistic, the problem is called Partially Observed Markov Decision Process
(POMDP) or Hidden Markov Chain (HMC). Krishnamurthy and Michova [55] showed that
POMDP for multi-armed bandit can be optimally solved by an index strategy. The state space
now is 2(N, + 1), in which N, is the number of states of Markov chain p. The calculation is
costly for large N,. Follow Krishnamurthy [56] and Hauser et al. [57], we will use an sub-
optimal policy called Expected Gittins Index (EGI) to calculate the index of POMDP MAB.

VE (ik) = E PkrVir(air/ bir) (2~10)

with py, is the probability that learner k is in type r. v;, is the Gittins index of the course i to
learners in type r with a;, successes and b;, failure. vg(ik) is the EGI of course i to student k.
This policy is showed to be 99% of the optimal solution [56]. We also expand the Thompson
sampling and UCBI strategy for this problem and call them Expected Thompson Sampling
(ETS) and Expected UCB1 (EUCB1). The EGI, ETS and EUCBI1 algorithm for Bernoulli process
are in the Appendix A (algorithm 4, 5 and 6).

3 Application of multi-armed bandit algo-
rithms in Intelligent Tutoring Systems

3.1 Recommend courses to learners.

One of the most important task of an ITS is to to recommend new learning objects to learners
in e-learning systems. In this problem, we will focus on recommending courses to learners
in e-learning systems but the method can be apply to other types of learning objects such
as videos, lectures or reading materials ... with a proper definition of success and failure.
Assuming that the task is to recommend courses to learners with the purpose of giving the

6
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learners courses with highest rate of finishing. There are N courses that the ITS can recom-
mend to learner. Each course has an unknown rate of success p;. a; and b; is the historical
number of success (number of learners that finished the course) and failure (number of learn-
ers that dropped the course). Note that the definition of success and failure is depended
on the purpose of the recommendation to learners. For example, in MOOCs, learners are
classified in to different subpopulations with different learning purposes: completing, au-
diting, disengaging, sampling [58]. For each subpopulation, the definition of success and
failure should be different. For our purpose, assuming that we are considering learners in
completing group and the definition of success and failure is as above.

We will model this problem as a MAB problem. Each course i is considered to be an arm of
a multi-armed bandit with a; success and b; failure. This is a MAB with Bernoulli process
and we know that the Gittins index is the optimal solution [10]. We compare Gittins index
strategy with three other strategies: UCB1, Thompson sampling and greedy. The simulation
results are in Figure 3.1 and Figure 3.2. The Gittins index is calculated using Brezzi and
Lai closed form approximation [23] (equation 2.3). The algorithms for these strategies for
Bernoulli process are in Appendix A.

In figure 3.1, we plot the regret (2.7) of different MAB strategies. There are 10 courses that
the ITS can recommends to learners and the probability of each course is randomly sampled
from Beta(4,4) distribution for each run. The regret is averaged over 1000 runs. On the left
is the mean and confidence interval of the regret of different strategies. On the right is the
distribution of the regret at 10000 recommendation. The reason why we do not plot the
confidence interval of the regret of greedy strategy is that it is very large and the skewness is
large too (see the right hand side). In Figure 3.2, we plot the mean and confidence interval
for four other distributions in 3.1. We can see that the Gittins index strategy give the best
result but the Thompson sampling work as well as the Gittins index strategy. While the UCB1
strategy guarantees that the regret is logarithmically bounded, its performance with finite
number of learners is not good as good as other strategies. After 10000 recommendation,
UCBI strategy even performs worse than greedy strategy in distributions with large number
of courses. The standard deviation of regret of greedy strategy is very large because this strat-
egy exploit too much. Greedy strategy sometimes gets stuck at courses with low probability
of success (incomplete learning) and this cause the linear increase of regret. In contrast UCB1
strategy has high regret because this strategy sends too much learners to inferior options for
exploration which means that it explores too much. The choice of B for Gittins index strategy
is depended on the number of recommend that the ITS will make. Suppose that ITS will
makes about 10000 recommendations and the discount is spread out evenly then the effective
discount from one learner to the next is about 1/10000 suggesting f3 is about 0.9999. The value
of B is TLH if the number of recommendation is T. 1 — § can be understand as the probability
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that the recommendation can stop. The distributions of probabilities we used are:

Distribution 1: 2 courses with p = 0.4,0.6; (3.1)
Distribution 2: 4 courses with p = 0.3,0.4,0.5, 0.6;

Distribution 3: 10 courses with p = 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75;
Distribution 4: 10 courses with p = 0.30,0.31, 0.32,0.40,0.41, 0.42,0.50,0.51,0.52, 0.60

500 - . L L 10° T T T
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a0 Thompson Sampling i
ucB1 10°4

v— Greedy A N
300 v,x’_ . . i
== % —
2004 ,,r' ]
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* f—] e»
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(a) Mean regret and confidence interval. (8) Distribution of the regret at 10000 recom-
mendation.

FiGure 3.1: The regret of different strategies: Gittins index, Thompson Sampling, UCB1 and
greedy. There are 10 courses that the ITS can recommends to learners and the probability
of each course is randomly sampled from Beta(4,4) distribution for each run. The regret
is averaged over 1000 runs. Left: mean regret and the confidence interval as a function of
number of recommendations. The confidence interval is defined as £1 standard deviation.
The confidence interval of greedy strategy is not showed because it is very large (look at the
right figure). Right: distribution of the regret at 10000 recommendation. The star is the
mean, the circle is the 99 % and 1 % and the triangle is the maximum and minimum.

The problem with ITS is that learners are not homogeneous. In the learning context we have
to consider that learners will have various individual needs, preferences and characteristics
such as different levels of expertise, knowledge, cognitive abilities, learning styles, motivation,
preferences, and that they want to achieve a specific competence in a certain time. Thus, we
can’t not treat them in a uniform way. It is of great importance to provide a personalized
ITS which can give adaptive recommendation taking into account the variety of learners’
learning styles and knowledge levels. To do this, ITS often classified learners into groups or
types based on characteristics of learners [2, 59]. Different types of learners will have different
probability of success to a course. If we know exactly what are the types of learners, we can
use the data from learners of this type for calculating the Gittins index and recommend the
best course to them. If a learner stay long in the systems, we can identify well the type of the
learner. But the ITS has to give recommendation to learners when they are new and the ITS
can only have a limited information about the learner. Assuming that student are classified

into F group and we know the type f of the learner k with probability Ps. Given both the
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F1GURE 3.2: Regret of different recommending strategies: Gittins index, Thompson sampling,

UCBI and greedy for four different distributions of probabilities in 3.1. The regret is average

over 500 runs. The confidence interval is defined as £1 standard deviation. The confidence
interval of greedy strategy is not showed because it is very large.

uncertainty of the type of learner and the usefulness of the course to the type f, we will model
this problem as a POMDP MAB, where each course is an arm in multi-armed bandit but it is
only partially observed with probability Pr,. We will solve this problem using EGI, ETS and
EUCBI strategy. The conceptual diagram for EGI is in Figure 3.3. The algorithms of EGI, ETS
and EUCBI strategies for Bernoulli process are in Appendix A.

The simulation results are in Figure 3.4 (for 2 types of learners) and 3.5 (for 3 types of learn-
ers). The probabilities are randomly sampled from Beta(4,4) distribution for each run and the
regret are average over 1000 runs. We can see that in general, EGI strategy has the lowest re-
gret compared with ETS, EUCB1 and greedy strategy. ETS strategy has excellent performance
with two types of learners but the performance at three types of learner is not as good as EGI
strategy. EUCBI has the worse performance. It is even worse than greedy strategy. All strate-
gies’ regret still increase with number of recommendations because the uncertainty in the
types of learners means that there is incomplete learning. All strategies’ regret increase when
Py decrease. The less we know about the types of the learners, the worse the performance
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of the strategies. Simulation results for other distributions of probabilities in the Appendix B
(Figure B.1, B.2 and B.3) gives the same conclusion.

3.2 Exercise scheduling.

In an ITS, after a student finish learning a concept or a group of concepts, the ITS has to give
him exercises to practice these concepts. The purpose is to give a student easy exercise first
and hard exercise latter. Assume that we know the student type perfectly now, the problem
is to schedule the exercise so that we can both achieve the goal above and learn about the
difficulty of an exercise to this type of student. The main problem in this is that the ability of
a student to solve an exercise is not constant but depends on many factors. One of the most
important factors is how many times this student have use the concept needed to solve this
exercise before. This is the theory of learning curve that the ability of a student to successfully
use a concept to solve a problem depends on how much he use the concepts before. There is
many model of a learning curve [60-62]. For our purpose, we will use this model of learning

curve:

ezx+’yx

PO = g1 (3.2)

with x is the number of experience with the concept needed to solve the exercise. P(x) is the
probability that the student can successfully solve the exercise. a is a parameter related to
the difficulty of the exercise and v is the parameter related to the speed of learning (learning
rate). This function of P(x) has the form of logistic function. This learning curve is used in
Learning Factor Analysis [63] and is related to Item Response Theory which is the theory
behind standardized tests.
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FIGURE 3.4: Regret of different recommending strategies: Expected Gittins Index (EGI), Ex-

pected Thompson Sampling (ETS), Expected UCB1 (EUCB1), and greedy. There are two types

of learners and five courses. The probabilities are randomly sampled from Beta(4,4) distri-

bution for each run. The regret is average over 1000 runs. In the large figure is mean regret

as a function of number of recommends. The small figure is the distribution of the regret at

10000 recommendation. The star is the mean, the circle is the 99 % and 1 % and the triangle
is the maximum and minimum.

We will formulate the exercise scheduling problem as an MAB problem. The ITS will sequen-
tially select exercises to give to student based on the history of the success and failure given
the number of experience x, while it also has to adapt the selection strategy to learn about
the exercise suitability to the student to maximize learning in the long run. Each exercise
at each value of x is consider to be an arm of a multi-armed bandit. An naive approach is
to treat each exercise at each value of x to be an independent arm and use Gittins index to
calculate the index. A better approach is to use the information that the arms of one exercise
(with different value of x) is related through the learning curve. To use this information from
the learning curve, we propose two strategies: Parametric Gittins Index (PGI) and Parametric
Thompson Sampling (PTS) with the idea of replacing the mean of success of each exercise at
each value of x by the mean of success estimated from the learning curve from the history of
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of learners and five courses. The probabilities are randomly sampled from Beta(4,4) distri-
bution for each run. The regret is average over 1000 runs. In the large figure is mean regret
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is the maximum and minimum.

success and failure of an exercise with all x. The algorithms are in the Appendix A (Algorithm
7 and Algorithm 8). Note that the PGI and PTS are better than the independent Gittins only
when the number of dependent arms (the value of x) are more than the number of parameters

of the learning curve (two parameters in our model).

In figure 3.6, we compare the PGI and PTS strategy with the independent Gittins index strat-

egy (without using the information from the learning curve). There are 3 exercises with
parameter « = (—3,—2,0) and B = (0.8,0.5,0.15) respectively. This mean that the first ex-
ercises is quite hard at first but has a high learning rate while the third exercises is easy at
tirst but has slower learning rate. The ITS has to find the exercise with highest probability of

success given the number of experience x of the learner with the concept needed to solve the



exercise. The value of x for each learner is a random number between 1 and 7. Each learner
is recommended one exercise only. The regret is averaged over 200 runs. From the figure, we
can see that the PGI has the best performance while the PTS is a little worse. Both strategies
work extremely well with small regret compared with the independent Gittins index strategy.

In figure 3.7, we plot the regret of PGI, PTS as a function of number of learners. Now,
assuming that there are 11 exercises that the ITS can give learners to practice concepts. And
the ITS want to give each learner 7 exercises sequentially, easy one first and hard one latter,
to maximize the success. All of these exercise is related to one concept and after solving each
exercise the number of experience x of the learner will increase one. The initial number of
experience is 0. To speed up the simulation, we use batch update (delay) for the learning
curve. The learning curve is updated after each group of three learners. Small delay like this
will not affect the performance of these strategies. PGI strategy has the best performance as
expected. But PTS performance is very similar to PGI strategy. After recommending exercises
to 5000 learners (total 35000 recommendations), the regret is just about 100 which is very
small. These strategies have very good performance. The result in figure 3.8 is the same.
Now there is 8 exercises and the ITS want to give 5 exercises to each learners. The parameters
of each exercises now are different and there are small different of learning rate between these
exercises.

100 . L . L . I . L

|—=— PGl (0.995)
—e— PTS

80 Gittins Independent 4

regret

T T T T T T T T T
0 1000 2000 3000 4000 5000
number of learners

F1GURE 3.6: The mean reget and the confidence interval (1 standard deviation) of Parametric
Gittins Index (PGI), Parametric Thompson Sampling (PTS) and Independent Gittins Index.
The ITS wants to give each learner one in three exercises given the number of experience x
with the concept needed to solve the exercise. x is a random number between 1 and 7 for
each learners. The parameters of exercises are: « = (—3,—2,0) and g = (0.8,0.5,0.15).
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F1GURE 3.7: The mean reget and the confidence interval (1 standard deviation) of Parametric

Gittins Index (PGI) and Parametric Thompson Sampling (PTS) strategy. The ITS gives student

7 in 11 available exercises sequentially, easy one first, hard one latter, to maximize the success.

The parameters of exercises are: « = (—2: 0.3 : 1) and p = 0.4. Each exercise has different
difficulty but similar learning rate.
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Gittins Index (PGI), Parametric Thompson Sampling (PTS), Parametric UCB1 (PUCB1). The

ITS gives student 5 in 8 available exercises sequentially, easy one first, hard one latter, to

maximize the success. The parameters of exercises are: « = —2:04 :1and f =04:0.02:
0.54.
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4 Conclusion and future work

In this project, we take an multi-armed bandit approach to ITS problems such as learning
objects recommendation and exercises scheduling. We propose methods and algorithms for
these problems based on MAB algorithms. We test the optimal strategies, Gittins index,
together with Thompson sampling and Upper Confident Bound (UCB1) strategy. We also
propose strategies to solve the learning objects recommendation with multiple types of learn-
ers: Expected Gittins Index, Expected Thompson Sampling and Expected UCBI1. For the task
of exercises scheduling, we modify the Gittins index strategy and the Thompson sampling to
utilize the information from the learning curve and propose the Parametric Gittin Index and
Parametric Thompson Sampling. We still don’t know how to find the confidence bound for
the UCBI1 strategy in this case. We test all of these strategy using simulation. Gittins index and
Gittins index based (EGI and PGI) strategies have the best performance but the Thompson
sampling and Thompson sampling based (ETS and PTS) have very good performance. While
Gittins index has one parameter f, Thompson sampling does not has any parameter. This
is one advantage of Thompson sampling over Gittins index strategy. Furthermore, Thomp-
son sampling has at the collective level the good property to be asymptotically convergent

because all arm are tried an infinity number of time.

However, the stochastic feature of Thompson sampling can raise at the individual level some
ethical criticism: it is considering learners as "cobaye". Gittins index is taking into account
for each learner the parameter B, that represent the compromise between exploration and
exploitation for his/her own future. There is a deep relation for a given learner and a given
concept between  and the mean number of times a concept will be used in his/her future (at
least until the final exam).

In the future, we want to investigate this multi-armed bandit approach to other tasks in ITSs.
The recommending objects now are not only simple objects like courses or exercises but can
be a collection of learning objects such as a learning paths. The result now are not Bernoulli
result but we can use Gittins index, Thompson sampling or Upper Confidence Bound strategy
for normal processes. The grand task we want to tackle is designing a complete ITS with
there important part: a network of concepts for navigation, and a methods for classification
of learners and a recommending strategies for the balance between exploration vs exploitation

in the systems. This project is the first step for this task.



At all level of an Intelligent Tutorial System, there are adaptive systems with their own com-
promise between exploration and exploitation and with their own "life time horizon" that
are equivalent to some parameter . Thus the multi-armed strategy and its approximations
will remain a must for future direction of research, especially in the context of MOOCs in
education. Such big data context will allow more and more categorization for more accurate

prediction at all level of each ITS.
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A Multi-armed bandit algorithms

A1 Algorithms for independent Bernoulli Bandit

Algorithm 1 Gittins Index

a;, b;: number of success and failure of arm i until time t-1

1. Calculate Gittins index using Brezzi&Lai approximation

ni=a;+b;

_ 4

l_nl

o i1 — i) 1
V=M ‘D((niﬂ)ln(ﬁ—l)

2. Select arm and observe reward r
i* = argmax {v;}
3. Update:

Ajpx = Ajx +r
bi* = bz‘* + (1 — 1")

17
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Algorithm 2 Thompson Sampling

a;, b;: number of success and failure of arm i until time t-1

1. Sample data from Beta distribution
¢; ~ Betala;, bj

2. Select arm and observe reward r
i* = argmax {¢;}

3. Update:

Apr = A + 7

bi* = bi* + (1 —1")

Algorithm 3 UCB1

a;, b;: number of success and failure of arm i until time t-1

1. Find the index of each arm

a 2in(t—1)
a; + b; a; + b;

Vi =

1. Select arm and observe reward r
i* = argmax {v;}
3. Update:

A= = Ajx + 1
bi* = bi* + (1 —7")
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A.2 Algorithms for POMDP Bernoulli Bandit

Algorithm 4 Expected Gittins Index
Pgi: probability that player k are in group f. ay;, by;: number of success and failure of arm i

of group f until time t-1.

1. Find the index of each arm i for each group f of learners.

nfi:afi—kbfi
Llfl'
P‘fi:nTi
(=) 1
=T T Y\ (e D)

2. Find the expected Gittins index of each course i to learner k
vig = 3 P
f
2. Select arm and observe reward r
i* = argmax {1/,5}
3. Update:

llz‘*f = al‘*f—i—rpfk
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Algorithm 5 Expected Thompson Sampling
Pgy: probability that player k are in group f. ag;, br;: number of success and failure of arm i

of group f until time t-1.

1. Sample data for each arm i of each group f of learners.

(,bfi ~ Beta(aﬁ, bfz)

2. Find the expected Thompson sampling of each course i to learners k
9ii = L Pridsi
f
2. Select arm and observe reward r
i* = argmax {cp,ﬁ}
3. Update:

[lz‘*f = lli*f+rpfk
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Algorithm 6 Expected UCB1
Pgy: probability that player k are in group f. ag;, br;: number of success and failure of arm i

of group f until time t-1.

1. Find the index of each arm i for each group f of learners.

l’lﬂ‘:aﬁ—Fbﬁ
a .
o Ufi
.ufl = nfi
20n(CN  ngj
Vi = pfi+ AL )

nfi

2. Find the Expected UCBI1 index of each course i to learner k
Vi = L Ppevyi
f
2. Select arm and observe reward r
i* = argmax {1/,5}
3. Update:

ajsf = ai*f—krPfk
bi*f = bl*f + (1 — V)Pfk
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A.3 Algorithms for Exercises Scheduling

Algorithm 7 Parametric Gittins Index

a;(x), bij(x): number of success and failure of an exercise i with x is the number of experience
with the concept needed to solve the exercise. x; is the number of experience with concept

needed to solve the exercise i of current learner.
eﬂz+7x

Learning curve model: P(x) = 25y

1. Estimate the learning curve P;(x) from a;(x), b;(x) using logistic regression.
2. Find the index of each exercise i given x;

"y = il<ai<x> bi(x)) /2
ui = Pi(x;)

_ i(1— pi) 1
R e "’((m+1>1n<ﬁl>>

2. Select arm and observe reward r
i* = argmax {v;}

3. Update:




Algorithm 8 Parametric Thompson Sampling

a;(x), bi(x): number of success and failure of an exercise i with x is the number of experience
with the concept needed to solve the exercise. x; is the number of experience with concept

needed to solve the exercise i of current learner.
ea+'yx

Learning curve model: P(x) = ey

1. Estimate the learning curve P;(x) from a;(x), b;(x) using logistic regression.
2. Find the sample of each exercise i given x;

ni = ilwi(x) T bi(x))/2
ui = Pi(x;)

¢i ~ Beta(pin;, (1 — pi)n;)
2. Select arm and observe reward r
i* = argmax {¢; }

3. Update:

B More simulation results

B.1 Simulation results for Expected Gittins index and Expected Thomp-

son sampling.

In this section, we present some more simulation result for POMDP with different configura-
tion of courses, types of learners and probabilities. The distributions of success probability of

23
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each course i with each types of learners Pf; we use are:

Distribution 1: 4 courses with 2 types of learners (B.1)

p_ (080 060 040 0.20
~ \020 040 060 0.80

Distribution 2: 3 courses with 3 types of learners

0.80 0.20 0.50
P= 1050 0.80 0.20
0.20 0.50 0.80

In figure B.1, we plot the mean regret and the confidence interval of Expected Gittins Index
(EGI), Expected Thompson Sampling (ETS), Expected UCB1 (EUCBI1), and greedy for the dis-
tribution 1 in B.1 with two types of learners. In figure B.2, we plot the mean regret and the
confidence interval of Expected Gittins Index (EGI), Expected Thompson Sampling (ETS), Ex-
pected UCB1 (EUCBL1), and greedy for the distribution 2 in B.1 with three types of learners. In
figure B.3, we plot the mean regret and confidence interval with different randomly sampled
probabilities from Beta(4,4) distribution. The probability of knowing the types of learner k is
Ps = (0.6,0.3,0.1).

B.2 Effect of delay

In real ITSs, the feedback of learners is usually not sequential. There is usually an delay in
feedback. The reason can be various runtime constraints or learners learning at the same
time. So the data of success and failure normally arrive in batches over a period of time. We
now try to quantify the impact of the delay on the performance of MAB algorithms.

Table B.1 show the mean regret of each MAB algorithms: Gittins index, Thompson sampling
and UCBI after 10000 recommendations with different value of delay. We consider 10 courses
with the probability of each course is drawn from beta(4,4) distribution. The first conclusion is
that the regret of all MAB algorithms increase when the delay increases. Thompson sampling
is quite robust to the delay. It is because Thompson sampling is a random algorithm and this
alleviates the effect of the delay. On the other hand, Gittins index and UCBI1 are deterministic
strategies so they have larger regrets when the delay increase. In figure B.4, we plot the regret
of each strategies with different delays as a function of number of recommends.

Table B.2 show the mean regret of strategies for POMDP MAB: Expected Gittins Index (EGI),
Expected Thompson Sampling (ETS) and Expected UCB1 (EUCB1). As in the case with orig-
inal MAB algorithms, ETS is extremely resilient with delay. Even with delay equals 500, the
regret of ETS does not change much. EGI and EUCBI are not so resilient with delay but
the regret of these strategies does not increase so much as the Gittins index and UCB1. We
can think of two reason for this. The first reason is because of the uncertainty in the type of
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F1GUre B.1: The mean regret and the confidence interval (4 standard deviation) of different

recommending strategies: Expected Gittins Index (EGI), Expected Thompson Sampling (ETS),

Expected UCB1 (EUCBL1), and greedy for the distribution 1 in B.1 (two types of learners). The

regret is average over 200 runs. Note that with this distribution, the confidence interval of

greedy strategy is very large while the confidence interval of EGI, ETS and EUCBI1 is quite
small.

learners. This make EGI and EUCBI less deterministic. The second reason is because of the
type of learners. There are three types of learners so it means that the effective delay for each
type of learners is the delay divided by three. In figure B.5, we plot the mean regret of these
3 strategies as a function of number of recommends with different delays.
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F1GURE B.2: The mean regret and the confidence interval (& standard deviation) of different
recommending strategies: Expected Gittins Index (EGI), Expected Thompson Sampling (ETS),
Expected UCB1 (EUCB1), and greedy for the distribution 2 in B.1 (Three types of learners).
The regret is average over 200 runs. Note that with this distribution, the confidence interval
of greedy strategy is very large while the confidence interval of EGI, ETS and EUCBI is quite

small.

TaBLE B.1: The effect of delay on the regret of MAB strategies after 10000 recommendations.
There are ten courses and the probability of each course is randomly sampled from Beta(4,4)
distribution for each run. The regret are averaged over 500 runs.

delay 10 30 100 500
Gittins Index 83.08 9820 124.11 276.81 1261.8
Thompson Sampling | 100.31 10293 105.23 106.44 177.06
UCB1 44583 457.66 484.82 560.02 1360.8
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F1Gure B.3: The mean regret and the confidence interval (& standard deviation) of different
recommending strategies: Expected Gittins Index (EGI), Expected Thompson Sampling (ETS),
Expected UCB1 (EUCB1), and greedy for four distributions of probabilities. There are three
courses and three types of learners and the probabilities are randomly sampled from Beta(4,4)
distribution. Py = (0.6,0.3,0.1). The regret is average over 200 runs. The confidence interval

of greedy strategy is not show because it is very large.

TaBLE B.2: The effect of delay on the regret of Expected Gittins Index (EGI), Expected Thomp-
son Sampling (ETS) and Expected UCBL strategy after 15000 recommendations. There are five
courses and there types of learners and the probabilities of each run are randomly sampled

from Beta(4,4) distribution. Py = (0.7,0.2,0.1). The regret is average over 1000 runs.

delay ‘ 1 10 30 100 200 500
EGI 822.34 81597 828.12 828.27 919.27 1097.1
ETS 92472 920.27 93545 910.44 954.75 951,54
EUCB1 | 1142.7 1121.5 11374 11389 1191.7 1255.3
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FIGURE B.4: Regret of MAB strategies with different delays. There are 10 courses and the
probability of each course is randomly sampled from Beta(4,4) distribution for each run. The
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