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Abstract

In this article, a new strategy for super hedging European options
with a given success probability, is presented. In this strategy, the port-
folio could be readjusted in just a finite number of times, which is a very
realistic assumption, given that not only continuously readjusting is im-
possible in practice, but also the existence of transaction costs constrains
the number of portfolio rebalancing times. In this strategy, a discrete-
time stock price process is defined by discretizing the continuous stock
price process in its stopping times, and then by using American options
hedge ratios on the binomial tree, the initial European option is super
hedged. The performance of our strategy is also compared with that of
a benchmark strategy by using Monte Carlo simulations, and it has been
shown that it has a better functioning.

1 Introduction

In this article, we propose a strategy for super hedging European option with
a given success probability when it is possible to readjust the hedging portfolio
just in discrete times. In complete markets, any contingent claim could be
perfectly hedged in continuous time. However, hedging in continuous time in
practical terms is not possible, and also the existence of transaction costs further
constrain the number of rebalancing times. A general contingent claim could
not be perfectly hedged in discrete time even in the complete markets, like that
of Black Scholes. So, here comes the notion of super hedging, that is when the
portfolio makes at least the same payoff as that of the contingent claim in all
states of the world. However, perfect super hedging requires a high amount of
initial capital, so it would be desirable for many investors to have super hedging
strategies that succeed with a high probability since in this sense the cost of
the strategy would be reduced ([3]). Therefore, the purpose is to make a super
hedging strategy which succeed to make such a portfolio with the least possible
hedging error or shortfalls, from both number of occurrences and size point of
views.

Here in our strategy, the rebalancing times are neither equidistant nor deter-
ministic, and in fact they are a sequence of stopping times. The intuition is the
same as what traders do in financial markets that is to rebalance the portfolio
when the price has moved more than some extents. The price process is then
discretized at the rebalancing dates, and the continuous time model is embed-
ded into a Binomial tree. The American option hedging rations on the Binomial
model is then used as the hedging ratios for the initial European option. So,
the initial value of the hedging portfolio would be the same as the price of the
American option, and at the rebalancing times, it is readjusted according to the
American option hedging ratios.

In the literature, among the earliest works which address option hedging
strategies in discrete time is [10], in which a hedging strategy is proposed, given
both zero and positive transaction costs. The rebalancing times are equidistant,
and the hedging error approaches zero as frequency of rebalancing increases. [7]
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studies discrete time option hedging errors, and shows that the rate of con-
vergence of this error term depends on the regularity properties of the payoff
function. In [8], the asymptotic distribution of the hedging error has been de-
rived, and in [13], the results are extended for option with discontinuous payoffs
in jump-diffusion models. [5] constructs explicit robust hedging strategies under
a continuous semi martingale model with small transaction costs. The rebal-
ancing dates are a sequence of stopping times, the same as in our strategy, and
the main result is the stable convergence of the discrete time hedging strategy
as transaction costs converge to zero. Some other recent researches in this area
include [4], [1], [11], and [6].

This paper is organized as follows. In section 2, our strategy for super
hedging European options is introduced. Section 3 elaborates the numerical
framework for analyzing the performance of the strategy, and section 4 compares
the performance of the strategy with that of the Black Scholes discrete time delta
hedging strategy and shows that our strategy has a better performance.

2 The Super Hedging Strategy

Let (Ω,F ,P) be a probability space endowed with a filtration F = (Ft)t≥0.
We consider a financial market consisting of a risk-free asset and a risky asset
with price process (St)t≥0 such that the log stock price Xt = logSt follows a
one-dimensional Markov process:

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x, (1)

whereW is a standard F-Brownian motion and µ and σ are Lipschitz continuous.
We are interested in finding discrete-time strategies which allow to super hedge,
with a given probability, a European option with pay-off GT = f(eXT ) at date
T . Since the terminal date is fixed, we can assume without loss of generality
(by using the risk-free asset as a numeraire) that the interest rate is zero.

2.1 Discretizing the price process

Let Bn = {−1, 1}n and define a sequence of mappings an : Bn → (0,∞),
n = 0, . . . ,∞ (by convention, a0 is a constant). We then introduce a sequence
of F-stopping times (τi)i≥0 (readjustment dates of our discrete-time strategy)
by

τn+1 = inf{t > τn : |Xt −Xτn | = an(I1, . . . , In)}, τ0 = 0 (2)

In+1 =

{
1 if Xτn+1 −Xτn = an(I1, . . . , In),

−1 if Xτn+1 −Xτn = −an(I1, . . . , In).
(3)

Further, let the discrete filtration F̂ be defined by F̂n = σ(I1, . . . , In). Note that

the discrete-time process (Ŝn)n≥0 defined by Ŝn := Sτn is F̂-adapted.
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2.2 The auxiliary American option

Let θ1 and θ2 be F̂-stopping times with θ1 ≤ θ2. We consider a path-dependent
American-style option on the discrete-time process Ŝn, which can be exercised
at the earliest at date θ1 and at the latest at date θ2, and has pay-off f(Sn)
if exercised at date n. By the classical theory of American option pricing in
the binomial model, the super hedging price of this option at date n is a F̂n-
measurable random variable Pn := pn(I1, . . . , In), which can be computed via

Pn = ess sup
θ∈T̂n, θ1≤θ≤θ2

Ê[f(ex+
∑θ
k=1 Ikak−1(I1,...,Ik−1))|F̂n], (4)

where T̂n is the set of F̂-stopping times θ with θ ≥ n and Ê denotes the expec-
tation with respect to the risk-neutral probability of the binomial tree, that is,
the probability P̂ such that

ean(I1,...,In)P̂[In+1 = 1|F̂n] + e−an(I1,...,In)P̂[In+1 = −1|F̂n] = 1, n ≥ 0. (5)

Similarly, let ∆n = δn(I1, . . . , In) denote the amount of the risky asset which
must be held in the portfolio between dates n and n + 1 to super hedge this
option. This amount can be computed as

∆n =
Pn+1(I1, . . . , In, 1)− Pn+1(I1, . . . , In,−1)

Sn(ean(I1,...,In) − e−an(I1,...,In))
. (6)

2.3 Embedding the continuous-time model into a binomial
tree

Consider a self-financing strategy in the original (continuous-time) market, which
is readjusted at dates (τi)i≥0, has initial cost P0, and for which the quantity
of risky assets held between dates τn and τn+1 ∧ T is given by ∆n. The cost
process of this strategy will be denoted by V u and is given by

V uT = P0 +
∑

0≤n≤θ2:τn≤T

∆n(Sτn+1∧T − Sτn). (7)

Theorem 1. On the event that τθ1 ≤ T ≤ τθ2 ,

i. Let f be convex. Then, V uT ≥ f(ST ).

ii. Let f be Lipschitz with constant K. Then

V uT ≥ f(ST )−2K max
θ1≤n≤θ2

max
(I1,...,In)∈Bn

ex+
∑n
k=1 Ikak−1(I1,...,Ik−1) sinh an(I1, . . . , In)

.

Proof. Assume that τθ1 ≤ T ≤ τθ2 and let θ∗ = inf{n : τn ≥ T}, so that
τθ∗ ≤ τθ2 .

V uτθ∗−1
+ ∆θ∗−1Sτθ∗−1

(eaθ∗−1(I1,...,Iθ∗−1) − 1) ≥ f(Sτθ∗−1
eaθ∗−1(I1,...,Iθ∗−1))

V uτθ∗−1
+ ∆θ∗−1Sτθ∗−1

(e−aθ∗−1(I1,...,Iθ∗−1) − 1) ≥ f(Sτθ∗−1
e−aθ∗−1(I1,...,Iθ∗−1)).
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By definition of θ∗, τθ∗−1 < T ≤ τθ∗ , and therefore, by continuity of (St), there
exists α ∈ [0, 1] with

ST = αSτθ∗−1
e−aθ∗−1(I1,...,Iθ∗−1) + (1− α)Sτθ∗−1

eaθ∗−1(I1,...,Iθ∗−1)

In part i. we then conclude by convexity of f that

V uτθ∗−1
+ ∆θ∗−1(ST − Sτθ∗−1

) ≥ αf(Sτθ∗−1
e−aθ∗−1(I1,...,Iθ∗−1))

+ (1− α)f(Sτθ∗−1
eaθ∗−1(I1,...,Iθ∗−1)) ≥ f(ST ).

In part ii. we get, by the Lipschitz property of f ,

V uτθ∗−1
+ ∆θ∗−1(ST − Sτθ∗−1

) ≥ f(ST ) + α{f(Sτθ∗−1
e−aθ∗−1(I1,...,Iθ∗−1))− f(ST )}

+ (1− α){f(Sτθ∗−1
eaθ∗−1(I1,...,Iθ∗−1))− f(ST )}

≥ f(ST )− αK|Sτθ∗−1
e−aθ∗−1(I1,...,Iθ∗−1) − ST | − (1− α)K|Sτθ∗−1

eaθ∗−1(I1,...,Iθ∗−1) − ST |

≥ f(ST )−K|Sτθ∗−1
eaθ∗−1(I1,...,Iθ∗−1) − Sτθ∗−1

e−aθ∗−1(I1,...,Iθ∗−1)|
= f(ST )− 2KSτθ∗−1

sinh(aθ∗−1(I1, . . . , Iθ∗−1)).

In view of Theorem 1, our aim is to find F̂-stopping times θ1 and θ2 such that
τθ1 and τθ2 approximate T . It is natural to consider stopping times based on
the discrete quadratic variation of X, which can be computed from the values
of the process at the readjustment dates. We define

Qn :=

n∑
i=1

(Xτi −Xτi−1)2

σ2(Xτi−1
)

=

n∑
i=1

a2n−1
σ2(Xτi−1

)
∈ F̂n−1. (8)

By the integration by parts formula,

Qn =

n∑
i=1

∫ τi

τi−1

σ2(Xt)

σ2(Xτi−1
)
dt+ 2

n∑
i=1

∫ τi

τi−1

Xt −Xτi−1

σ2(Xτi−1
)
dXt = τn + εn (9)

with

εn =

n∑
i=1

∫ τi

τi−1

σ2(Xt)− σ2(Xτi−1
)

σ2(Xτi−1
)

dt+ 2

n∑
i=1

∫ τi

τi−1

Xt −Xτi−1

σ2(Xτi−1
)
dXt. (10)

Define F̂-stopping times

θ1 = inf{n ≥ 0 : Qn+1 ≥ T − δ} (11)

and
θ2 = inf{n ≥ 0 : Qn ≥ T + δ} (12)

Then,
Qθ1 ≤ T − δ and Qθ2 ≥ T + δ,

and therefore, the event τθ1 ≤ T ≤ τθ2 is implied by the event {εθ1 ≥ −δ} ∪
{εθ2 ≤ δ}.
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3 Numerical Analysis

Since a great amount of machinery for the numerical analysis of the Wiener
process has been developed, here it is assumed that the Markovian log-price
process (Xt) is a Wiener process. In other words, its drift term (µ(Xt)) is zero
and its volatility term (σ(Xt)) is constant and equals to one. So, the strategy
rebalancing dates ((τi)i≥0 could be inferred from the Brownian motion hitting
times to the boundaries [−ai(I1, . . . , Ii), ai(I1, . . . , Ii)]i≥0.

The Laplace transform of the Brownian motion hitting time to [−b, b], γb, is
Equation (13). Here for notation simplicity ai(I1, . . . , Ii) = b.

E[exp−λγb] =
1

cosh b
√

2λ
(13)

The proof could be done by applying optional sampling theorem to the

martingale Ns
t = cosh (sWt) exp (− s

2

2 t), s =
√

2λ (the complete proof could
be found in Appendix 4). By taking the differentiation with respect to λ in
Equation (13), and letting λ go to zero, it could be inferred that E(γb) = b2.

The simulation of such hitting time is a laborious work. if the hitting time
of the Wiener process x + Wt, −1 ≤ x ≤ 1, t > 0 to the boundary [−1, 1]
is called γ1x, according to [12], the following boundary value problem holds for
v(t, x) = P(γ1x < t)− 1.

∂v

∂t
=

1

2

∂2v

∂x2
, t > 0, −1 < x < 1

v(0, x) = −1, v(t,−1) = v(t, 1) = 0

(14)

If this problem is solved with the method of change of variables, Equation
(15) could be concluded for the cumulative density function of the hitting time
γ1 = γ10 .

Fγ1(t) = 1− 4

π

∞∑
n=0

(−1)n

2n+ 1
exp (−1

8
π2(2n+ 1)2t), t > 0 (15)

If Equation (14) is solved by the Cauchy problem resulted from extending
initial data in an odd way on the axis, Equation (16) would hold for the same
cumulative density function.

Fγ1(t) = 2

∞∑
n=0

(−1)kerf(
2n+ 1√

2t
), t > 0

erf(x) =
2√
π

∫ ∞
x

exp (−s2)ds, erf(0) = 1

(16)

For the calculation of large t, Equation (15) is apt, while for that of small t,
Equation (16) is suitable. It is worthwhile noting that the density function
derived from Equation (16) is the same as the one derived by inverting the
Laplace transform in Equation (13). [2] gives some description about the shape
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of the distribution, such that it is unimodal, and derives some expressions for
both its right and left asymptotics.

In order to generate random numbers from γ1 distribution, it is required to
solve the equation Fγ1(t) = U , when U is a uniform random number in [0, 1]
interval. A simple way to solve the equation is to use the Newton method. It
is important to note that when it could be possible to generate random num-
bers from γ1 distribution, using Brownian motion scaling property, generating
random numbers from the desired γb distribution is also possible. For more
information about the hitting time distribution function, please refer to [12], [9]
and [2].

The initial rebalancing happens at time 0, and the difference between any two
successive rebalancing dates is generated from the distribution of the Brownian
motion hitting time, γb. So, the rebalancing dates and the stock price at those
times are generated without doing any simulation of the stock price process by
using time discretization, and as a result, there is not any discretization error
involved.

The initial value of the hedging portfolio is the date zero price of the option
calculated by Equation (4) when n = 0. At rebalancing date n, the amount
of the risky asset which is held in the portfolio between times τn and τn+1 ∧
T , is changed to ∆n, that is calculated according to Equation (6). In the
benchmark strategy, ∆n is the delta hedging ratio. For a given stock price
process, the number of rebalancing dates would be θ ∧ θ2 (θ2 is the maximum
possible number of rebalancing dates, for which hedging ratios exist). For the
benchmark strategy, it would be θ, since hedging ratios exist till the option
expiration, and θ is computed via Equation (17).

θ = inf{n : τn+1 ≥ T} (17)

According to part i of the Theorem 1, on the event that θ+1 ≤ θ2, it is expected
that portfolio payoff (V uT ) be greater than or at least equal to the option payoff
(GT ), or in other words, the hedging error, defined as V uT − GT , must be non-
negative. However, when this event does not hold, the hedging error could be
negative.

In order to find out the payoff of the option at the expiration time, T , the
stock price at T is required, which could be generated from the distribution
function of WT−τn given that τn+1 ≥ T . This distribution follows either of
Equations (18) and (19).

P(Ws ≤ β|τ b ≥ s) =
1

1− Fγ1(s)

2

π

∞∑
n=0

1

2n+ 1
((−1)k

+ sin(
π(2n+ 1)β

2
)) exp (

−1

8
)π2(2n+ 1)2s, s = T − τn

(18)
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P(Ws ≤ β|τ b ≥ s) =
1

1− Fγ1(s)

∞∑
n=0

(−1)n

2
(erf(

2n− 1√
2s

)

−erf(
2n+ β√

2s
)− erf(

2n+ 2− β√
2s

) + erf(
2n+ 3√

2s
)), s = T − τn

(19)

The proof could be found in [12]. The method for generating random number
from distributions (18), which is more suitable for large s, and (19), which is
more appropriate for small s, is the same as the one for distributions (15) and
(16).

4 Strategy Performance: General Results

In this part, the performance of the strategy is analyzed and compared with
that of a benchmark strategy that is Black Scholes (BS) delta hedging. In
our simulations, it is supposed that ai(I1, . . . , Ii)i≥0 = a is constant, and it
is determined by the expected frequency of rebalancing times, such as daily,
weekly, etc. So, in fact, the intuition is the same as what traders use in financial
markets that is one rebalances the portfolio when the price has moved more
than some certain portion of the price of the previous rebalancing date, or in
other words, the new rebalancing date is the time when the difference of the
log-price with that of the previous rebalancing date is greater than or equal to
some threshold value, called a here.

The European option which is tried to be hedged is vanilla European call
with payoff GT = (ST −M)+ at date T when M is the strike of the option.
Since here the payoff function is convex, part i of the Theorem 1 must hold.

In the model, there are two parameters, including a and δ. a is calibrated
by the five expected rebalancing dates frequencies, including daily, weekly, 2-
weekly, monthly, and seasonly. δ, which is introduced in equations (11) and
(12), implies the shortfall probability of the super hedging strategy, that is how
likely it is that the strategy fails to make a non-negative hedging error. So,
the larger is the shortfall probability of the super hedging strategy, the smaller
would be the initial value used to super hedge the option.

For any values of δ and a, several stock price (St) trajectories are generated,
and for any trajectory, the hedging error for both of the strategies is computed.
Here 100000 trajectories are generated from the stock price process, whose initial
value (S0) is 20 Euros. Then for all of the five expected rebalancing dates
frequencies, the shortfall probability is plotted against the hedging price, that
is the initial price (P0) used to super hedge the call option (with strike M = 22
euros, and maturity T = 2 years), for both of the strategies.

As it is shown in Figure 1, for any expected rebalancing dates frequencies,
our strategy performs much better than the benchmark strategy (delta hedging
strategy) with the criterion of shortfall probability, since for any given hedging
price, it has a much smaller shortfall probability in comparison with that of the
benchmark strategy. However, it is important to note that shortfall probability,
individually, could not be a perfect criterion, because although the likelihood
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Figure 1: Shortfall probability versus hedging price, for all of the five frequencies
of portfolio rebalancing, and for both the above strategy and the BS delta
hedging strategy

of shortfall is small, the size of it could be big. So, it is also important to take
its size into account, and as a result, Figure 2 plots expected negative hedging
error, that is the average of negative hedging error times its probability (shortfall
probability), versus the hedging price.

According to Figure 2, our strategy still performs better than the benchmark
strategy, since for any given hedging price, it has a bit larger expected negative
hedging error in comparison with that of the BS delta hedging strategy. How-
ever, the difference between the two strategies is not as significant as the one
observed in Figure 1, which indicates that the shortfall size in our strategy is
usually larger than that of the BS delta hedging strategy. In general, it could
be concluded that our strategy performs to some small extent better than the
benchmark strategy for super hedging the European option in discrete time,
given the two criteria of shortfall probability and expected negative hedging
error.
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ponential lévy models. International Journal of Theoretical and Applied
Finance, 14(06):803–837, 2011.

8



Figure 2: Expected negative hedging error versus hedging price, for all of the
five frequencies of portfolio rebalancing, and for both the above strategy and
the BS delta hedging strategy

[2] Z. Burq and O. Jones. Simulation of brownian motion at first-passage
times. Mathematics and Computers in Simulation, 77(1):64–71, 2008.
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Appendix: Laplace transform of the Brownian
motion hitting time

Here the Laplace transform of the Brownian notion hitting time to the bound-

ary [−b, b], shown by γb, has been derived. Since Ms
t = exp (sWt − s2

2 t) is

a martingale, so as to Ns
t =

Ms
t+M

−s
t

2 = cosh (sWt) exp (− s
2

2 t). Then, based
on the optional sampling theorem, it could be concluded that Ns

t∧γb is also a
martingale.

Ns
t∧γb = cosh (sWt∧γb) exp (− s

2

2 (t ∧ γb))

limt→∞Ns
t∧γb = limt→∞ I(γb <∞) 1

2 exp (− s
2

2 (t ∧ γb))[exp (sb) + exp (−sb)]

limt→∞ E[Ns
t∧γb ] = limt→∞ E[I(γb <∞) 1

2 exp (− s
2

2 (t ∧ γb))[exp (sb) + exp (−sb)]]

If s = 0, then:

1 = E[I(γb <∞]) = P(γb <∞)

Since Ns
t is a martingale, so its expectation should be constant.

1 = E[
1

2
exp (−s

2

2
(t ∧ γb))[exp (sb) + exp (−sb)]]

And since s2

2 = λ.

E[−λγb] =
1

cosh b
√

2λ
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Abstract

In this article, a new strategy for super hedging European options with
a given success probability in stochastic volatility models, is introduced.
Stochastic volatility is a more realistic assumption because the fact that
volatility is not constant over time is a long observed feature in the market.
In this strategy, the option is super hedged by using the hedge ratios of
the Timer option. A comparison has been also established between the
performance of our strategy and that of the benchmark strategy, that
shows our strategy has a better performance.

1 Introduction

In this article, a new strategy for super hedging European options, with a given
success probability, in stochastic volatility models, is proposed, in which the
portfolio is readjusted at continuous time. Stochastic volatility is a more realistic
assumption because the fact that volatility is not constant over time is a long
observed feature in the market. In stochastic volatility models, the market is
incomplete when it just consists of a risk-free asset, and a risky asset, because
there are two sources of uncertainty, one from the stock price and the other from
the variance, which could not be completely hedged with just one risky asset.
In such an incomplete market, it is not possible to perfectly hedge all contingent
claims, but it would be still very useful to super hedge those contingent claims
that is to make a portfolio whose payoff is at least the same as that of the
contingent claim in all states of the world. Perfect super hedging could be very
expensive, and many investors who do not want to incur such a cost, may be
interested in an strategy which could super hedge not perfectly, but with a high
probability of success, to lessen the strategy initial capital requirement ([5]).
In this regard, we have presented a new such a super hedging strategy and its
performance from both success probability and expected shortfall size point of
views, indicate that it is superior to the benchmark strategy.

In this strategy, Timer options has been used to super hedge the initial
European option. Timer option is an Exotic option, being first marketed by
Société Générale Corporate and Investment Banking (SG CIB) at 2007, that
let the buyers fix the level of volatility in the pricing model. Based on the level
of volatility, a volatility target is determined, so, the expiration of the option
would be random and is the time that market accumulated volatility hits the
volatility target. In fact, the option expires according to how different market
volatility is from the initial constant volatility used in the pricing model. If the
market volatility be higher than the initial volatility, then the option expires
earlier than expected and vice versa. When the contingent claim is the Timer
option, it is possible to perfectly hedge the claim with just one risky asset if the
interest rate is zero by transferring the volatility uncertainty to the randomness
of the expiration, using Brownian motion time change technique. For more
information regarding Timer options, please refer to [1] and [8]. In our strategy,
based on the maximal level of shortfall possibility, the variance budget (volatility
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target) is determined, and then by using the hedging ratios of the Timer option,
the initial European option is super hedged, with a given success probability.

The pioneering works for super hedging with a given success probability are
[5], in which the aim has been to make a hedging strategy which works well
with highest probability given a capital constraint, and [6], in which the aim to
construct strategies which minimize the shortfall risk. [11] and [12] investigate
the same problem while using convex and coherent risk measures to quantify
shortfall risk. The same problem has been also addressed by [9] and [10].

The organization of this article is as follows. Section 2 presents the super
hedging strategy. Section 3 elaborates on the numerical analysis of the strategy
and how it is compared with a benchmark strategy. The general results of the
performance of the strategy could be found in Section 4.

2 The Super Hedging Strategy

Let (Ω,F ,P) be a probability space endowed with a filtration F = (Ft)t≥0. We
consider a financial market consisting of a risk-free asset and a risky asset with
price process (St)t≥0 such that it follows the Markov process:

dSt = µtStdt+
√
νtStdW

1
t , S0 = s, (1)

Here µt is the instantaneous drift of stock price returns and is Lipschitz contin-
uous, and the variance process (νt)t≥0 follows:

dνt = α(St, νt, t)dt+ ηβ(St, νt, t)
√
νtdW

2
t , ν0 = ν, (2)

Where W 1 and W 2 are standard F-Brownian motions which have correlation ρ
with each other (< dW 1dW 2 >= ρdt). Here η is called the volatility of volatility.
We are interested in finding continuous-time strategies which allow to super
hedge, with a given probability, a European option with pay-off GT = f(ST ) at
date T when f is the payoff function. Since the terminal date is fixed, we can
assume without loss of generality (by using the risk-free asset as a numeraire)
that the interest rate is zero.

We will use Timer options hedge ratios in order to hedge this European
option.

2.1 Finding the random expiration time of the Timer op-
tion

The integrated variance process Yt, which is the realized variance, is defined as:

Yt =

∫ t

0

νs ds, Y0 = 0, (3)

Then, the F-stopping time τ (random expiration time) is introduced by:

τ = inf{t > 0 : Yt ≥ Q} (4)
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When Q is the variance budget, defined such that:

P(τ ≥ T ) = 1− α (5)

or, in other words:
P(YT ≤ Q) = 1− α (6)

When α is the maximum possible shortfall probability. In the next part, pricing
and hedging of the Timer option with random expiration τ , variance budget Q,
and payoff function f are discussed.

2.2 Pricing and hedging the Timer option

If we assume that there exists a risk neutral probability Ṕ, then the price process
(Pt) of the Timer option expiring at time τ with payoff Gτ = f(Sτ ) is Ft-
measurable and follows:

Pt = EṔ[f(Sτ )|Ft], 0 ≤ t ≤ τ (7)

Where EṔ denotes the expectation with respect to the risk-neutral probability
Ṕ. It could be shown that in the case that interest rate is zero like here, Timer
option price process (7) would be equal to the price process of a non-Timer
European option in Black Scholes model.

To demonstrate this, Xt and At are defined as followings:

Xt =

∫ t

0

√
νsdW

1
s (8)

At =< X >t=

∫ t

0

νsds (9)

Since Xt is a continuous martingale, and At → ∞ as t → ∞, Xt could be
expressed as a time-changed Brownian motion (Xt = W 1

At
). Then, risky asset

price process (1) could be written as:

St = S0 exp (Xt −
1

2
At +

∫ t

0

µsds) under P

St = S0 exp (W 1
At −

1

2
At +

∫ t

0

µsds) under P
(10)

So, under risk neutral probability Ṕ, the term
∫ t

0
µsds would be replaced with∫ t

0
rsds term when rt is the possible interest rate process.

St = S0 exp (W 1
At −

1

2
At +

∫ t

0

rsds) under Ṕ (11)

If variance be constant (νt = ν) like in Black Scholes model, then the resulting
price process (S̃t) would be:
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S̃t = S0 exp (
√
νW 1

t −
1

2
νt+

∫ t

0

rsds) under Ṕ (12)

Based on Equations (11) and (12), Sτ equals to S̃T́ under Ṕ when ν = Aτ=Q
T ,

if and only if interest rate is zero (rt = 0) which is the case in here.

When Sτ equals to S̃T́ under Ṕ, then the Timer option price process (7)
would be the same as the price process of an European option with payoff
f(ST́ ) at expiration T́ in Black Scholes model with constant variance ν = Q

T́

([1]). The expiration T́ could be considered as any positive number since the
variance ν would adjust itself accordingly.

In [3], it has been shown that in order to hedge the Timer option, the same
hedging ratios could be used as those utilized in Black Scholes model to delta
hedge the European option with payoff f(ST́ ) at expiration T́ when T́ = Q, and

consequently ν = 1, and time t is conceived as
∫ t

0
νsds.

2.3 Building the self-financing strategy

Consider a self-financing strategy, which is readjusted in continuous time, and
it has initial cost R0, and for which the quantity of risky assets held at time t
is given by ∆t. The cost process of this strategy will be denoted by V u and is
given by:

V uT = R0 + (

∫ τ∧T

0

∆s dSs) + ∆τ∧T (ST − Sτ∧T ) (13)

Theorem 1. Let f be convex, Then, V uT ≥ f(ST ) on the event that τ ≥ T .

Proof. According to Ito lemma:

df(St) =
∂f

∂S
dSt +

∂2f

∂S2
d < S >t

Since f is convex (
∂2f

∂S2
≥ 0), and interest rate is zero, then it could be concluded

that the payoff process (Gt = f(St)) is a submartingale with respect to any risk

neutral probability (Ṕ). In other words:

Gt ≤ EṔ[GT |Ft], ∀Ṕ ∈ Θ

Where Θ is the set of all risk-neutral probabilities.
So, it would be never optimal to exercise the option earlier than its expiration

time. Also since the interest rate is zero, the timer option can be priced and
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perfectly hedged by using the Black Scholes strategy. Assume τ ≥ T , then
V uτ = f(Sτ ). Since it is never optimal for the option to be exercised earlier than
its expiration, then:

V ut ≥ f(St), ∀t ≤ τ

Since τ ≥ T , then as a result, V uT ≥ f(ST )

In view of Theorem 1, our aim is to find variance budget Q such that with
the probability greater than or equal to (1− α), the Timer option expiration τ
is greater than or equal to the initial call option expiration T .

3 Numerical Analysis

For the numerical analysis, Heston model has been selected among the stochastic
volatility models, so in the variance process (2), α(St, νt, t) and β(St, νt, t) are:

α(St, νt, t) = −λ(νt − ν̄)

β(St, νt, t) = 1
(14)

Here λ is the speed of reversion of variance process to its mean ν̄.
In order to simulate the Heston process, it is required to discretize the stock

price process and the variance process. Time is discretized as ti = (i−1)h, i ∈ N,
when h is the time step. The stock price process is discretized by simple Euler
scheme.

Sti+1
=
√
νtiSti

√
hZ (15)

Where Z ∼ N(0, 1) under the risk neutral measure. The variance process is
discretized according to Milstein scheme.

νti+1 = νti − λ(νti − ν̄)h+ η
√
νti
√
hW +

η2

2
h(W 2 − 1) (16)

Where W ∼ N(0, 1) such that E(ZW ) = ρ. In the variance process discretiza-
tion, if νti = 0 and 4λν̄

η2 > 1, then νti+1 > 0 ([7]), so the problem of the negative
variance would be solved if the parameters satisfy this condition, which is the
case in our simulations.

There is a closed form formula for the Laplace transform of YT in Heston
model ([2]), and it could be used in order to find variance budget Q such that
with the probability greater than or equal to (1−α), the Timer option expiration
τ is greater than or equal to the initial call option expiration T .

E{e−uYT } =
exp

(
λ2ν̄T
η2

)
(

cosh γT
2 + λ

γ sinh γT
2

) 2λν̄
η2

exp
(
− 2ν0u

λ+ γ coth γT
2

)
(17)
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Where γ =
√
λ2 + 2η2u. This Laplace transform function could be inverted

numerically in order to find out the probability distribution function of YT ,
from which it is possible to infer Q, given any value of α. For Laplace numerical
inversion, the Fourier transform technique, introduced in [4], is used.

The European option which has been selected for the numerical analysis, is
European call with convex payoff GT = (ST −M)+, when M is the strike of
the option. The performance of our strategy for super hedging this option is
evaluated by using Monte Carlo simulations, and it is also compared with the
Heston delta hedging strategy.

The Timer option with variance budget Q, expiration τ , and payoff (Sτ −
M)+ could be hedged with the same ratios as those of the Black Scholes strategy,
used to hedge the vanilla option with strike M , expiration equals to the variance
budget Q, and when time is the integrated variance, and volatility is one. So,
the price process Pt in Equation (7) for this option would be:

Pt = StN(d1)−MN(d2) (18)

When N(x), d1 and d2 are computed as follows:

N(x) =

∫ x

−∞

1√
2π

exp
−z2

2
dz (19)

d1,2 =
log St

M ± 0.5(Q−
∫ t

0
νs ds)√

Q−
∫ t

0
νs ds

(20)

Then ∆t, that is the amount of the risky asset which must be held in the
portfolio at time t to super hedge this option, can be calculated as:

∆t =
∂Pt
∂St

= N(d1) (21)

The initial value of the hedging portfolio is the time zero price of the option
calculated by Equation (18) when t = 0. At time t, the amount of the risky asset
held in the portfolio would be ∆t, that is calculated according to Equation (21).
In the benchmark strategy, ∆t is the Heston delta hedging ratio, that is the
derivative of the available closed form formula for the European call price in the
Heston model with respect to the stock price at time t (for more information,
please refer to Appendix 4 or [7]). The hedging portfolio is readjusted all the
time till τ ∧T , when τ is the expiration time of the Timer option, calculated by
Equation (4). However, in the benchmark strategy, it is done till the expiration
of the initial European option, that is T .

According to Theorem 1, on the event that τ ≥ T , it is expected that
portfolio payoff (V uT ) be greater than or at least equal to the option payoff
(GT ), or in other words, the hedging error, defined as V uT − GT , must be non-
negative. However, when this event does not hold, the hedging error could be
negative.
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4 Strategy Performance: General Results

In the model, there is one parameter, that is α, and it represents the maximum
possible shortfall probability, that is how likely it is that the strategy fails to
make a non-negative hedging error. So, the larger is the shortfall probability
of the super hedging strategy, the smaller would be the initial price (calculated
according to the equation (18) when t = 0) used to super hedge the option.

For any value of α, several trajectories of the stock price process (St) and the
variance process (νt) are generated, and for any trajectory, the hedging error for
both of the strategies is computed. Here 100000 trajectories are generated from
the stock price process, whose initial value (S0) is 20 Euros, and the variance
process, whose initial value (ν0) is 0.11. Besides, initial European option is a
call with strike M = 19.5 Euros and expiration T = 0.1 year. Also, in the
simulations, the Heston parameters, λ, ν̄, η and ρ, are taken as 2.0, 0.11, 0.9
and -0.25 respectively, and the time step (h) is fixed at 0.0001 year.

In Figure 1, shortfall probability is plotted against hedging error for both
of the strategies. It is important to note that although there exists a portion
related to discretization error in the values for shortfall probability, it could still
serve as a good criterium for making a comparison between the strategies. As it
is demonstrated, for any hedging price, our strategy has a much smaller shortfall
probability than that of the benchmark strategy, so, it could be concluded that
our strategy performs much better given this criterium.

Figure 1: Shortfall probability versus hedging price, for both the above strategy
and the Heston strategy

One drawback of shortfall probability is that it fails to take the shortfall size
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into account. So, Figure 2 plots expected negative hedging error, that is the
average of negative hedging error times its probability (shortfall probability),
against the hedging error.

Figure 2: Expected negative hedging error versus hedging price, for both the
above strategy and the Heston strategy

Based on Figure 2, it could be still concluded that our strategy has a better
performance in comparison with that of the Heston delta hedging strategy, be-
cause for any given hedging price, it has a bit larger expected negative hedging
error. It should be also noted that the difference between the two strategies given
this criterium is not as significant as the difference observed given the shortfall
probability criterium. Consequently, it can be mentioned that the shortfall size
in our strategy is bigger although its likelihood is smaller. In general, it could be
concluded that our strategy shows a bit better performance for super hedging
the European option.
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Appendix: Heston delta hedging

The hedging ratios for European call options, in a closed form, in the Heston
delta hedging strategy, follow:

∆t =
∂P1

∂φ
+ P1 −

M

St

∂P0

∂φ

When φ = log(StM ), τ = T − t, and P1,2 are computed as:

Pj(φ, u, τ) = 0.5 +
1

π

∫ ∞
0

Re {exp {Cj(u, τ)ν̄ +Dj(u, τ)ν + iuφ}
iu

} du, j = 0, 1.
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where:

D(u, τ) = r−
1− e−dτ

1− ge−dτ

C(u, τ) = λ{r−τ −
2

η2
log {1− e−dτ

1− g
}}

g =
r−
r+

r± =
β ± d
η2

d =
√
β2 − 4αχ

α = −u
2

2
− iu

2
+ iju

β = λ− ρηj − ρηiu

χ =
η2

2

The integrals are numerically calculated by using Adaptive Quadrature rules.

10


	Introduction
	The Super Hedging Strategy
	Discretizing the price process
	The auxiliary American option
	Embedding the continuous-time model into a binomial tree

	Numerical Analysis
	Strategy Performance: General Results
	Insert from: "Mousavi M2 pt 2.pdf"
	Introduction
	The Super Hedging Strategy
	Finding the random expiration time of the Timer option
	Pricing and hedging the Timer option
	Building the self-financing strategy

	Numerical Analysis
	Strategy Performance: General Results


