Abstract

The ability to remotely monitor the estimated 103 bat species in French Guyana
would lead to greatly improved estimates of bat numbers and distribution. Re-
searchers in the South American department have spent several months in the forest
recording the sound of various species in an effort to build a comprehensive database
from which a sound map of the indiginous Chiroptera order can be built. We have
been provided with a large number of these recordings, with which we have developed
a statistical classifation algorithm which correctly identifies the species of a single
bat from 16 possible species with an 82% success rate. The classification algorithm
is a form of boosting with trees as weak classifiers, and the bat features used in
learning relate to the shape of individual chirps in the spectrograms. The report also
presents deformable templates, a potentially interesting tool for bat classification.
While we have not had success classifying bats with this method, our implementa-
tion and analysis have shed light on how this computationally intensive method may
be accelerated with the correct use of sparse matrices.

Résumé

La capacité de surveiller a distance les 103 especes estimées de chauves-souris en
Guyane frangaise conduirait a des estimations considérablement amélioré de comptes
de chauves-souris et de leur distribution. Chercheurs dans le département d’Amérique
du Sud ont passé plusieurs mois dans la forét enregistrant du son de différentes especes
dans un effort pour construire une base de données complete & partir de laquelle
une carte son de 'ordre des chiropteres indiginous peut tre construit. Nous avons
recu un grand nombre de ces enregistrements, avec lequel nous avons développé un
algorithme statistique qui identifie correctement les especes d’une seule chauve-souris
a partir de 16 especes possibles, avec un taux de réussite de 82%. L’algorithme de
classification est une forme de boosting avec des arbres pour classificateurs faibles.
Le rapport prsente galement des modles dformables (deformable templates), un outil
potentiellement intressant pour la classification des chauve-souris. Alors que nous
n’avons pas eu le succs classer les chauves-souris avec cette mthode, notre mise en
oeuvre et l'analyse ont mis en lumire la faon dont cette mthode de calcul intensif
peut tre acclr avec 'utilisation correcte des sparse matrices.



Introduction and Summary

Researchers in French Guyana have provided us with 573 recordings of bat sound. Each
recording is accompanied by information relating to the time and environment, and the
number of bats and species present. Of these recordings, about 100 contain between
two and six distinct bat species. These multi-species recordings will not be considered
in this report. Of the remaining single species recordings, a further approximate 100
have not had definitive species identification, and so will be excluded during our learning
process. Finally, all species which have less than 5 recordings will also be excluded from
our analysis, leaving a total of 16 species and 343 recordings.

A spectrogram is taken of each recording, and sharpened using a technique called
reallocation, described in Section [I| Bats leave signatures in spectrograms as temporal
series of short, high energy chirps. These chirps are lines which vary in frequency over
a limited time period, and they have variable shape. They can best be described by
their frequency, duration, gradient and convexity. Three methods of locating chirps in
spectrograms are discussed in Section [2] and implemented with varying success. Several
filters are applied to found chirps to increase the purify of the final set, as discussed in
Section An average of 35 chirps of the 100 objects found per recording survive the
filtering process, leaving a clean training set.

After the chirp training set has been established, two different approaches are consid-
ered in parallel. The first is a direct approach to the statistical classification of chirps (and
hence recordings). The second, while also providing a route to the eventual classification
of chirps, attempts to geometrically model species chirps using deformable templates.
The first approach involves the fitting of weighted splines to chirps, from which param-
eters such as curvature and gradient are calculated and used for statistical learning, as
described in Section [dl The learning algorithm chosen is a form of boosting with classifi-
cation trees. Cross-validation shows that this approach results in 82% of the recordings
being correctly classified.

Implementation of the deformable template approach did not reach the classification
stage, and so cannot be compared to the splining method. Nonetheless in this report
a detailed presentation of this method is given and an analysis of the algorithm is pre-
sented, illustrating how the correct treatment of sparse matrices can result in speed-ups
proportional to image size (pixels per chirp window). This is described in Section
and presented in detail in Appendix F. The algorithm is applied successfully to a model
example, and with mixed success to the chirps of Saccopteryx leptura.



1 Processing the signal

In this section, we will discuss the path from a sound recording to a reallocated spectro-
gram, providing motivation along the way. An introduction and definitions pertaining to
the Short-Time Fourier Transform (STFT) and the Heisenberg uncertainty principle can
be found in Appendix A. The window g used in the STFT eqrefstft plays an important
role in determining the overall smoothness of a spectrogram. In a preliminary report from
researchers in French Guyana [5], the authors use a Hanninﬂ (Hann) window, defined
as

2
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In our report, both Hanning and Gaussian windows illustrated in Figure [I] are tested.
As the Hanning window is what was apparently used in [5], we initially assumed that
using any other window would prove fruitless. The use of the Gaussian window was im-
plemented only because of its simplification of reallocation, as will be discussed. However
reallocation aside, there was a great gain in using the Gaussian window, as illustrated in
Figure

We model bat sound to be of the form,

K
2(t) = ag(t) cos gk (t). (1)
k=1

with frequency decomposition at time ¢ thus being {qﬁ}c(t)}lgkg k- The pertinence of
this model choice is discussed in Appendix B. We wish to estimate the amplitudes and
frequencies in (|1f) from the sound file and will do so via the STFT. Reallocation, a method
for making the energy distribution of time-frequency representations more concentrated,
is a useful tool in this estimation. Reallocation works by moving the energy at points
in the time-frequency distribution to more appropriate positions. As we assume that
the underlying signal is of form , the appropriate target point for a given point in the
time-frequency plane (t,w) is the nearest point (£, @) such that ¢} (f) = @ for some k. The
spectrogram energy S,(t,w) is then moved to (%,&), so that the reallocated spectrogram
value at (£,@) is
Ps(f,(:)) = Z Ps(t,w).

tw—t,o

The method of locating the nearest ridge points, and the details of our implementation
are discussed in Appendix C. Bat spectrogram reallocation is illustrated in Figure

2 Chirp finding and filtering

We wish to locate individual bat chirps in a reallocated spectrogram. We have considered
three ways of doing this, one of which proves to be noticeably more effective than the other
two. The three methods will be referred to as: the time-mazximum method, the blocking
method, and the filling method. Both the blocking method and the filling method have
the same basic structure, outlined in Algorithm

!deduced from figure titles
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Figure 1: The two STFT windows implemented, the Gaussian window providing
superior results
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Figure 2: Spectrogram segments of a bat sound clip, using Hanning (left) and
Gaussian (right) windows in the STFT
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Figure 3: (Left) Spectrogram before reallocation and (Right) after reallocation



Algorithm 1 Skeleton of blocking and filling methods
1: for i = 1 to (number of chirps) do
2:  Find spectrogram cell ¢; containing the highest energy E;
3:  Locate shape S; around ¢; (using a blocking or filling step )
4:  Ignore all cells in S; in subsequent steps
5: end for

2.1 The time-maximum method

In this method, one finds the cell of highest energy at each spectrogram time slice, and
locates contiguous segments where these cells are of equal or similar frequency. Various
definitions of ‘near/equal frequency’ were tried, but none proved satisfactory. The main
reasons for failure in comparison with the 2-dimesional methods are that chirps not
overlapping in frequency can overlap in time, and a sharp sensitivity to noise.

2.2 The blocking method

The aim of the blocking step is to find the smallest block centred at ¢ whose edge cells are
all of energy less than fFE, where E is the energy of cell ¢, and f € (0,1). One can define
‘smallest’ block by edge length or area, they are here equivalent. Algorithm [2| presents
the blocking step.

Algorithm 2 blocking step
1: grow < True
2: while grow = True do

3:  grow < False
4:  for side in [left, top, right, bottom| do
5 if max E(p) > fE then
pEside
6: grow <— True
7 move side one unit away from c.
8 end if

9: end for
10: end while

Different stages of the blocking step are illustrated in Figure and a case of it
failing is shown in Figure where the blocking step has encompassed two chirps. One
way to reduce the frequency of this common problem is to increase the factor f, but this
results in an increased number of single chirps being dissected.

2.3 The filling method

In light of the blocking method’s weakness, we introduce a method which follows chirp
contours more closely than does the blocking method, reducing the occurence of multiple
chirps being detected simultaneously. Again starting from point ¢ of energy E, the final
shape S consists of all cells which can be reached from ¢ without at any stage crossing a
cell of energy less than fE. Algorithm [3] presents the rough idea.
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(a) The blocking method at three stages (b) Tlustration of final blocking results

Algorithm 3 the filling step
1: while shape S is still growing do
2:  for cells on edge of shape S do
3: Add to shape S all direct neighbours of energy greater than fF
4: end for
5: end while

Not only is the filling method more effective at locating chirps, it also allows us to
filter out surrounding noise: for the analysis of a single chirps, all cells not in shape .S will
be considered to have zero energy. In Figure [7] of Appendix D, the effect of performing
filling on a region of spectrogram is illustrated.

2.4 Filters

While the filling method for finding chirps is better than the other methods considered,
there are still many spurious objects detected. With the opinion that a small accurate set
of chirps will prove most useful for our analysis, as prescribed in [5] where very few signals
are used, we implement filters preventing spurious chirps from entering our training set.
Initially each spectrogram is searched for the one hundred chirps of highest energy. Of
these an average of 35 chirps survive the filtering process. The five filters implemented
are presented in order of use in Appendix D, with the number of chirps filtered out by
each also stated.

3 Chirp parameters

In this section we fit splines through chirp centres of mass. From the splines, species
characterising gradient and curvature parameters are extracted. Several such parameters
were considered based on their utility in classification, with the final set of parameters
chosen based on the spline values at five equally spaced times along the chirp. Before
curve fitting was tried, the naive approach of using the raw center of mass values at the
five points was considered. This approach performed almost as well as when splines were
used to improve their location, suggesting that any additional spline modifications which
could be considered beneficial, such as using the spline to calculate derivatives as opposed
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Figure 4: Spline of constant weights (yellow) and spline with weights proportional
to time slice energies (red).

to the differencing approach we use, would be a waste of time. Below we describe the
spline method used.

3.1 Weighted spline

High energy sections of observed chirp spectrograms are more reliable and less noisy than
low energy sections, and it is in the lower energy tail that spurious energy cells commonly
appear. The idea of our spline is therefore to put more weight on times of high energy.
If we denote the center of mass of time slice ¢ by y;, the function we wish to minimize
with respect to ¢ is defined as

N N-1
Fn(y,9) = wilys — 9)° + A Y (20 — i1 — §i1)*. (2)
i=0 i=1

Equation 2| has a unique minimum 7 being the solution to the N + 1 equations,

(wo + A)Jo — 2A91 + A2 = woo
—2XJo + (w1 + 5N)g1 — 4G + A¥s = wih
AJi—2 — 4AGi—1 + (wi + 6N)T; — 4XGit1 + Aig2 = wiy; for 3<i <N —2
ANIN-3 — 4XIN—2 + (wn—1 + BN)IN-—1 — 2A\IN = w1l
AYN—2 = 2AgN-1 + (wn + NN = wolo
The weights (w;) are chosen to be higher for time slices of higher energy. We calculate
an estimate of the spline value at time ¢ where ¢; < t < t;41 as a linear interpolation

between g; and ¢;+1. The results of using this spline with different weights are illustrated
in Figure

Our final choice of spline weights lies between those illustrated in Figure 4] being w; =
1+ E;/ max(E;), with A = 1.
7

4 Chirp classification

Our data set consists of several hundred chirps belonging to 16 species, with the following
number of chirps per species: 3401, 2023, 1282, 710, 565, 529, 492, 358, 352, 347, 320,
270, 205, 172, 164, 159. We have chosen to perform classification using a version of
‘gradient boosting machine’ with trees. The exact algorithm goes by the name SAMME,
and is described in Appendix E.
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Figure 5: (20%, 80%) percentiles for normalised chirp parameters for the 16 species.
Frequency proved to be the most useful single parameter, but using frequency alone
only guaranteed the correct classification of 37 % of the files (125 of 343).

4.1 Classification Results

There are two sets of parameters which affect classification, those internal to SAMME
and those coming from the chirp data. For the SAMME parameters, we use a learning
rate of 0.1, trees of depth 3, and 100 steps of steepest descent. None of these parameters
greatly affects classification accuracy in the vicinity of the chosen values. For the data
parameters, the extraction of seven parameters from each chirp spline proved optimal.
The first parameter is the peak energy of the chirp, the second is the mean frequency of the
chirp, weighted by energy, and the third is chirp width (w). Parameters 4 to 7 are based
on five equally spaced points from the start of the chirp to its end, 1 - - - 5. They are the
gradient (z5 — x1)/w and the three curvatures, 4(2x4 — x5 — x3)/w, 4(2x3 — x4 — x2) /W
and 4(2z9 —x3 —x1)/w. In retrospect it proved unnecessary to perform this manipulation
of the pure spline values, as the learning algorithm performed equally well when fed the
pure spline values, however it eases the interpretation of parameters in Figure

We used 4-fold validation to test performance. In cross-validation group formation,
all chirps from a given recording fell into the same cross-validation group, preventing the
potentially easy classification of a chirp by other chirps on the same recording. Thus
grouped, single chirps from the 16 species are classified with 66 % accuracy (7504 of
11247). For file classification, the probabilities of all chirps on a file are combined to
form an ensemble vote,

V(file) = Jnax Z max (log P(sle), —5) (3)
c€chirps

where P(s|c) comes from SAMME. Using this scheme, 82% of the recordings (281 of
343) were correctly classified, with species specific rates shown in Table |1 of Appendix
E. The only moderate 16% increase from single chirp classification to recording classi-
fication suggests that misclassified chirps are not independently distributed. Figure [6]
illustrates detected chirps on 4 recordings, with correctly classified chirps shown in red
and misclassified chirps in yellow.

A bat call has 2 levels of information. At the first level are the individual chirps.
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Figure 6: The spectrograms of 4 recordings, with the overlying spline fits of de-
tected curves. Red signifies correctly classified chirps, yellow signifies incorrectly
classified chirps. The four species are Noctilio Leporinus, Cynomops abrasus, Molos-
sus rufus, Cynomops planirostris.

So far we have discussed how information at the first level can be used to classify a
bat. The second level of information arises from the relationships between chirps on
a recording. Chirps are not independently distributed and so combining probabilities
via is suboptimal. Level 2 information is defined as all dependencies between chirps
which (3)) fails to capture. One approach to level 2 modelling is the Hidden Markov Model,
shown to be successful for bat classification in [I3]. Therein bat chirps are modelled
as belonging to one of several species specific subgroups, with transition probabilities
between subgroups to be deduced. Our chirp data does not fall neatly into subgroups,
but does show temporal patterning. As a naive substitute to an HMM, we extended
each 7 variable chirp vector to one of 9 variables, the two additional variables being
the frequency of the previous chirp and the time since the previous chirp. The hope
was to indirectly include whether the chirp was of high or low frequency relative to its
neighboring chirps. There was no significant change in the classification rate at the chirp
or the recording level, suggesting that HMMs would have little success with our chirps.

5 Deformable templates

In this section based on [I], bat chirps are modelled as deformations of species specific
templates. The idea would then be to classify chirps according to how close they are
(in a sense to be specified) to species templates. In the appendix F we present an
implementation of the method, and provide an analysis of its performance, as well as
describing an extended model which allows for several templates to exist for the same
species.

Assume that the image (the window of spectrogram containing the chirp) is observed
on a set of points zs,5 € A, embedded in R%2. The template function is written as
I, : R? = R, where the subscript a represents the parameters defining the shape of the
template, as will be discussed shortly. For each observation y : y = {zs}sca, one assumes



a deformation field zg : R? — R such that

y(s) = lafws — 25(x5) } + oe(s), (4)

where €(s) are IID N(0,1). Equation [4]is written more compactly as y = z3l, + €.
The template I, is defined as a linear combination of kernel functions, centred at a
prescribed set of k;, landmark points (frp,k)lgkgkp- The subscript p here is used to denote
a photometric quantity, as opposed to a geometric (deformation) quantity for which the
subscript g will be used. The template image is represented as,

kp

In(z) = a(k)Kp(z, 2y k).
k

=1

In [I] the landmark points are chosen to extend over a grid of a larger size than the
observation region. This is done as deformations require values which lie outside the
observed domain. A discussion of this point, and our reason for not implementing it, can
be found in Appendix F. We choose the photometric kernel to be the C® kernel,

T — X 2 r—
Kp($,$p7k) = COS2 <‘p,k‘) 1[_171] (,,p7k’> . (5)

~2
2Up,k Op,k

Because of its compact support, kernel [f| will allow us to take computational shortcuts
with sparse matrices. In addition to a photometric template described by parameters «,
a deformation field is defined by parameters 5. For the geometric template, the landmark
points are denoted by {zgx}1<r<k,, and each (k) associated to landmark point k has
an x— and a y— component (8*(k), 3%(k)) so that

kg
2(@) = 3 Kyl agp) (B (R), 82())
k=1
For a given species a and o in are constant, while 3 is an observation dependant
variable. The deformation parameter g is modelled as coming from a multivariate Gaus-
sian of mean 0 and covariance matrix I'. Thus the species specific parameters of interest
are o, o and I', which are denoted by 6 = (a, 0,T"). The likelihood of the observed data
has the form of an integral over the unobserved deformation parameters,

4(]0) = / 4(v]B, o, 0)g(BIT) dB (6)

where ¢(y|8, a, o) and ¢(B|I") are multivariate normal distributions as previously de-
scribed. In Appendix F we discuss the choice of a prior distribution over 6, and an
implementation of the soft and hard EM algorithms for maximising the posterior proba-
bility of #. We have implemented a simplified version of the two-step hard EM algorithm
(a.k.a. fast approximation with modes). In [I] the S-update step in the fast approxima-
tion with modes is presented as

« . (1 _ 1
pr = argmﬁm <2/3TF '8+ T‘QW - K£a|2> (7)

In our implementation we assume that the background noise is ¢ = 0, thus the g regu-
larisation term in falls aside. All importance is placed on matching the observation

10



to the deformation, irrespective of how unlikely the deformation is. In retrospect setting
the background noise to be zero may not be a good idea, even if there really is no noise.
In practice the noise term also takes account of the failure of the model to fit a noiseless
observation. Nonetheless, we will proceed with ¢ = 0. The hard EM is presented in
Algorithm

Algorithm 4 Approximation with modes in noiseless model
1: for j =1 to n-images do

2: 503' —0
3: end for
4: for ¢ = 0 to n-steps do
n-images

5. C ) . Ce L Bij 12

: ompute «; which minimizes Z ly; — Kp” ag| (a-update)

j=1

6: for j =1 to n-images do
7 Compute the 5(;41); which minimises ||y; — Kf(i“)j a;||?  (B-update)
8 end for
9: end for

In the Algorithm Kga are the values of the image 231, at {zs}sca, with Kpﬁ being the
matrix of size |A| x k, given by

Kg(sa.]) = Kp(xs - Z,B(ms)a:l:p,j)v s € A, 1 S .] S kp-

A detailed description of the nonlinear S-update step (line 7 of Algorithm [4) wth a
description of how it can be solved using steepest descent is given in Appendix F. In
general the calculation of the direction of steepest descent requires O(|A|®) operations,
but with the correct use of sparse matrices this can be reduced to O(JA|'). Certain
O(|A?]) calculations in the S-update step cannot be reduced to O(|A!]), and so the total
gain of correctly using sparse matrices is O(|A|!). Details are provided in the Appendix.
Also to be found in the Appendix F are two examples of our implementation, the first
with simulated images where the true template is well reconstructed in 9 iterations. The
second is with real bat chirps, with no convergence to anything particularly interesting.

Conclusion

In our report, we present the steps taken in building our classifier. These include STFT
window choice, reallocation, chirp finding, chirp filtering, spline fitting and finally boost-
ing with classification trees. The final classifier has an 82% classification rate when
presented with 16 species. This should be compared to the best ‘blind’ classifier, which
classifies all recordings as the most commonly occuring species, Molossus rufus. Such a
classifier would have a 22% classification rate.

We present the method of deformable templates, and apply it succesfully to simulated
data. With real bat chirps, the method has not provided satisfactory results. We address
computational questions concerning the order of operations required to perform certain
steps, and show how with the correct use of sparse matrices the number of steps required
can be reduced by a factor proportional to the size of the image.
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A. STFT and the Uncertainty Principle

Following the notation introduced in [I2], the short-time Fourier transform of a signal
z(t) at time u and frequency & is defined as

Su(u.) = [ alt)gi e s)

—00

where g, ¢ consists of an even window function g, multiplied by an exponential:

Gue = g(t —u) exp (i&t).

The window ¢ guarantees that S (u,&) depends only on times in the proximity of
time u. To obtain a similar constraint on frequency, one first notes that using Parseval’s
formula on provides

1 oo
Se(u.) = 5 [ it
and that using basic Fourier identities one can show that,

Gug(w) = exp (—iu(w - £))g(w — &)

Combining these leads to the conclusion that only frequencies w for which §(w —¢) is non-
negligible will contribute to Sf(u,&). We quantify the localisation of time and frequency
dependence on g, ¢ and g, ¢ respectively via the quantities o? and o2,

+o0 +oo
afz/ <t—u>2|gug<>|2dt—/ 2lg()? dt (9)

— 00

b= o [ - Pluctof i = /+°° () dt (10)
Gw_27r gu,g

In the time-frequency plane, a Heisenberg box of size o, x 0,, centred at (u,§) denotes
the region of contribution to g,¢. Ideally, to sharply localise the energy in the time-
frequency plane this box should be as small as possible, rendering contributions of nearby
time-frequency points negligible. But there is a theoretical minimal area of the Heisenberg
box, and a trade-off thus needs to be reached between the sharpening of resolution in
time (decreasing o) and in frequency (decreasing o,,). This trade-off is summarised by
the Heisenberg uncertainty principle,

L
ofol > - (11)

-

For most applications only the magnitude of the STFT is of interest, and the phase
is discarded. The square of the magnitude of the STFT is commonly referred to as
the spectrogram, denoted henceforth by P,(u,§). The decomposition of the STFT into
spectrogram and phase can be presented as follows,
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B. Chirp modelling

We have introduced the STFT as a means of decomposing a signal into time and fre-
quency components, but we have not addressed the important question as to how best an
instantaneous frequency should be defined, should a congruent definition even exists. To
this end, we consider a case where a natural definition of instantaneous frequency exists,
that is

x(t) = acos(¢(t)) = acos(wot + ¢p).

The frequency of this signal is wp, independent of time. We can extend this to the
generalised case where the signal is

(t) = a(t) cos(¢(1)), (12)

for which we define the instantaneous frequency as

w(t) = ¢/(t).

It is clear that there is not a unique decomposition of the form for a given signal
x(t). This problem can be solved by considering the analytical part of x(t), that is x¢(t),
where then x(t) = Re(xf(t)). However there are cases where decomposing a signal using
one amplitude varying cosine function is not ideal, as illustrated by the example

x(t) = acos(wit) + acos(wat),

whose analytic decomposition results in the representation of x as an amplitude varying
cosine function of frequency (w1 +w2)/2, with amplitude a(t) = af cos(**5*2t)|. To avoid
this unnatural representation, it is necessary to replace the idea of a single instantaneous
frequency by that of a discrete set of frequencies, such that our signal becomes a sum of
cosines,

K
2(t) =) a(t) cos gk (t). (13)
k=1

with frequency decomposition at time ¢ being {¢x(¢) h1<k<r. It is common to assume that
a signal is of the form , and attempt to reconstruct the amplitudes and frequencies
from the signal via the STFT. Reallocation is a useful tool in this process, and we will
describe it in the following subsection.

C. Reallocation and Ridge detection

To locate the nearest ridge point (,&), we make use of the following Theorem from [12],
).

Theorem 1. Let x(t) = a(t) cos ¢(t). If the variation of a(t) and ¢'(t) are negligible in
[u—s/2,u+ s/2|, the support of g(t —u), and 1/¢'(t) < s, then for all § > 0 we have

§2(u,€) ~ ga(u) exp(i(6(u) — €u)) (¢ — ¢ (w) (14

For a given time u, the approximation obtains its maximum at £ = ¢'(u), which
is as we would expect as this is precisely the frequency of the single cosine signal z(t).
We consider now the phase of the approximation ,

D (u, &) = p(u) — &u.
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Consider the partial derivatives of the phase with respect to time and frequency on the
ridge:

a(bS(u? 5)

o = ¢'(u) — & (=0 on ridge) (15)
aQS(“? 5) _
e (16)

Thus in the case of a single slowly varying cosine satisfying Theorem (I} to find the
ridges it suffices to locate the points satisfying and . In the case of several
chirps, where z(t) is expressed as a sum of cosines as in , the linearity of the STFT
guarantees the approximation,

K
o(t) ~ >~ ax(u)3 (€~ oh(w) xpli(s) — )
=1

For which ridges corresponding to the kth cosine will satisfy equations|L5|and [16|at time
u provided that for all j # k

19 (¢1(u) = @) | << [g(0)].

We will now introduce the notation used in [3],

RS (u,) * 25 ) an
z\th &)= 0P (u,§)
- au (U,f)

so that R%(u,&) = 0 for points on the ridges of the signal. There is no approach for
numerically finding points satisfying R%(u,£) = 0 which is immediately evident. Working
directly with the phase of the spectrogram is seldom a good approach, as algorithms for
calculating phases are delicate and generally the calculated phase is modulus 27, which is
useless in any calculation of phase derivative. A reformulation of reallocation as presented
in [4] does not require the direct use of the phase. Therein it is shown that R”(u,¢) can
be expressed as,

Re [ 5(:8)

Rh(u,€) = A , (18)
(5w
57w, €)

where the superscript of the STFT indicates the window used, S and Sgg/ U thus
indicating the use of windows tg(t) and %(t) respectively. With the use of a Gaussian
window

9(t) exp (—2/(2A%)),

1
ﬂ'iﬁ
for which tg(t) = —)\2%(15), to calculate R%(u,&) = 0 it suffices to calculate the
quotient S%/SY from whose real and imaginary parts R%(u,£) = 0 are found.
As described in [3], there are three main classes of methods which one can now use
to solve numerically R%(u,&) = 0:
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1. Fized point methods, where one expects the convergence of a sequence (u,&)n4+1 =

(u7 g)n - ARﬂgC(um fn)

2. Differential methods, where the differential equation d(zf) = AR%(up, &) is simu-
lated until a steady state is reached.

3. Newtonian methods, in which one wishes to observe the convergence of the sequence

~1
()1 = (U, )n — [Rlx(“nagn)] Rg(umgn)

For the reallocation of bat sound spectrograms we follow the approach of [10], that
is take a single iteration of the fixed point method with A = 1. Thus for each discrete
point (u, &) in the time-frequency plane, we move the spectrogram energy P, (u,§) to the

point (@, &) where

The effect of this single step can be observed in Figure

D. Figure and Filters

Filter 1: Touching neighbour filter

The edge of a loud chirp, that is the set of points around the chirp which are at energy
fE, may still be at a high enough energy such that at a subsequent step in the chirp
search, they have the highest energy. The resulting shape will wrap around the previously
detected chirp, and is not relevant to us. Occasionally good chirps will be trapped by
this filter, such as the ‘yellow’ chirp in Figure but the overall purity of the chirp
set increases sufficiently using this filter to validate its use. Of the 34500 chirps in the
starting set, 15416 are removed by this filter, leaving 19084 chirps.

Filter 2: overall energy distribution

Clean chirps have energy localised in a narrow frequency band. Our second filter discards
detections which have their energy dispersed too widely over the surrounding rectangle.
The surrounding rectangle in this case is taken to be the smallest rectangle containing
the chirp, which as an aside does not in general correspond to the rectangle found using
the blocking method, described in Section We find that discarding all chirps which
contain less than 90% of their energy in the 13% of pixels of highest energy is optimal.
This filter removes 4732 chirps, leaving 14352.

Filter 3: time-sliced energy distribution

The third filter is a localised version of filter 2. If, for any time slice of the chirp’s
spectrogram window, less than 95% of the chirps lie in the 20% of pixels of highest
energy, the chirp is removed. This filter removes a further 2700 chirps, leaving 11652
chirps.
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Figure 7: Result of filling on the reallocated spectrogram. The convex hulls sur-
rounding each chirp are shown only for illustration, and do not feature in the anal-
ysis. The reason that the final chirp found is yellow will be described in the section
on filtering, in particular the section ‘Touching neighbours’.
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Figure 8: Examples of spurious objects removed using (Above) filter 2 and (Middle)
filter 3 and (Below) filter 5.
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Filter 4: Shape filter

Detections of duration less than 5 ms are likely to be artefacts. The second filter removes
all detected objects of width less than 10 spectrogram frames (5 ms). 102 detections are
removede leaving 11550 chirps.

Filter 5: overall movement filter

A final filter for removing chirps with high noise content discards objects whose mean
frequency varies too greatly from time slice to time slice. In particular, if the inequality:

Y Im(t) —m(tia)| > fH

1<i<W

holds, where m(t) is the mean frequency of the spectrogram window at time ¢, W and
H are respectively the pixel width and height of the chirp spectrogram and f is some
factor (which we take as 1.8), then the chirp is discarded. This filter removes a further
201 detections, leaving a final chirp set of size 11247.

The two chirps illustrated in Figure [§|removed by this filter do carry information, but
would need to be cleaned if they were to contribute to the final classification algorithm.
They are of poor quality in comparison with the chirps that made it through this final
filter.

E. Boosting trees for classification

Boosting

Boosting [6] is a meta-technique used in statistical learning. It works by combining weak-
classifiers into a committee, whose combined decision is potentially better than that of
individual weak-classifiers. Boosting produces the committee by sequentially adding
together weak-classifiers calculated by steepest descent [7]. The original algorithm has
seen improvements with the inclusion of slow learning [8] and bagging [9], culminating in
what is today the most commonly used version, the Gradient Boosting Machine (GBM)
algorithm. The algorithm has recently been implemented in the python scikits.learn
packagd’} with a version for multiclass classification which is what use. A brief discussion
of trees and loss functions is presented, and then the SAMME algorithm, which is the
multiclass version of GBM, is explained.

Tree functions

The most commonly used weak-classifiers (a.k.a. basis functions) in boosting are trees.
Trees are discontinuous functions which take discrete values in different regions of a
domain. That is to say, a tree T has the form:

21 if 7 € Ry
2K if ¥ € Rg

where the K distinct regions R; - - - R together partition Z-space. The region bound-
aries can be described through the branchings of a tree, as illustrated in Figure [9] For

*http:/ /scikit-learn.org/stable/
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boosting, it is common to only use trees of a very simple form, that is only trees with
branchings of the form z(9 < v, where (" is one of the dimensions of Z-space and v is
a real number. In the case of our bat data, T are the parameters fitted to the chirps in
Section [3

D<o - K

x <55 T --Ry

\ __________ B R3

x2S 6 T Ry
: R3

@ Rl : R2 ________________________ 6
= | Rs
2.0 55

Figure 9: (Above) A tree of depth 2 for classifying an object into one of 22 regions.
(Below) The tree domain containing 22 distinct regions as defined by the tree.

The multinomial loss function

Suppose we have observed n training points, each consisting of data and type: (X;, Ti),
where the data )?z is a d-dimensional vector, and 7; is the label for one of K classes.
For multiclass classification, it is useful to replace the label 7; by a vector y;, whose kth
component is given by

1 k=1
(k) _
Y {_Kl—l’ k #£ T

Suppose we wish to find the function F : R* — R¥ which minimises the multi-class
exponential loss function:

1

L(F) =) _exp(—7u F(X)), (19)
=1

where F has the constraint that it sums to zero at all z € R?. The properties of such
a minimizer can be inferred on considering the minimizer of the expectation of a single
observation,
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1
in E ——TF 20
arg min Yz €XD ( K(y ) (20)

subject to F' summing to 0. The Lagrange of this constrained optimisation problem
can be written as,

exp <§1(_””)1>P(C —1lz)+ -+ oxp (FKE‘””)>P(C = K|z)

which has a global minimum at

K
Fi(x)=(K—-1) (logP(c =k|z) — % Z logP(c= k’|x)) E=1---K. (21)
k'=1

thus
argml?xF,j(x) = argmkaxP(c = k|z).

This is exactly the Bayes optimal classifier rule for minimizing classification error. This
validates our choice of loss function, as an F' which minimises the loss function and
chosen from a sensible dictionary should provide a good approximation to the underlying
probability distribution.

SAMME

Originally proposed for two class classification, the Gradient Boosting Machine [§] (GBM)
with trees works by sequentially adding new trees to a function F', each addition reducing
L(F) and so hopefully improving the approximation of F to ([21]). It has been extended
to the multiclass setting in the form of Stagewise Additive Modeling using a Multi-
class Exponential loss function (SAMME) in [I4]. The trees, which have depth D, are
appended to F' at each of the M iterations of the SAMME algorithm. Choosing larger
M and D values results in a final lower L(F'). However, our end objective is not to reach
the global minimum of but to construct a good approximation to , and trees
of lower depth are generally better suited to this end, being less prone to fitting noise.
Algorithm [5] outlines the basics of an implementation of the SAMME algorithm.

Algorithm 5 SAMME
1: Initialize the observation weights w; = 1/n, 1 <i < n.
2: for 1 <m < M do
3. Fit a classifier 70" (z) to the training data using weights w;
Compute err(™ =31 w; 1 (¢; # T (2)) / S04 ws
Compute o™ = log lerr(™ log(K — 1)

err(m)

4
5:
6:  Set w; + w; - exp (a(m)l(ci £ T(m) (xl)))
7
8:

Renormalise w;
end for

M
: is = (m) (M) () =
9: Output is C(z) = arg mkaxmzzzla 1T (z) = k).
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S.b.
S.L
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S|x|o| ||| F F oo 7| 2|2 2| 2| 2] Saccopteryx bilineata
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Table 1: Summary of recording classifications, with true species (row) vs classi-
fication (column). Cynomops paranus is the clear ‘problem’ species, with 0 of 13
recordings being correctly classified. We put this down to an inferior prior proba-
bility and a lack of distinct features. Figure [b[indicates a strong similarity between
Cynomops paranus and Cynomops abrasus, and the sheer number of Molossus rufus
makes gives any classification a prior ‘bias’ towards this species.

In passing, we mention that there are several methods for fitting the classifying tree
T(™)(z) at line 3 of Algorithm [5, which will not be discussed here. The leaves of the
trees are K-dimensional vectors of the form in eq. [5| The algorithm above can be easily
adapted to include a learning rate of less than 1 (partial steepest descent) by manipulating
the a-update step, and to include random sampling in training, commonly referred to in
the literature as ‘bagging’.

F. Deformable templates

Extending the domain

The factor by which the photometric landmark points extend beyond the observation
region depends on the expected magnitude of deformation: the template necessarily
goes to zero beyond the region of photometric landmark points, and so unless this de-
crease is an accurate model of the image, it is necessary that deformations do not reach
the photometric boundary. Therefore larger deformations require a larger extension of
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the photometric landmark region. If however the photometric landmark region extends
unnecessarily beyond any expected deformation, parameter update calculations are un-
necessarily enlarged. There is an undesirable effect caused by this extension. In the
process of updating estimates of «, only the discrepancy between the image and model
at deformation locations {zs — z3(xs)}sea is considered. This leads to the template ex-
ploding in regions beyond the deformed template region. This is not a problem unless an
observation has an unexpectedly large deformation. Constraining a to be positive does
not prevent the boundary effect. In our bat implementation no extension is performed
as chirp spectrograms are zero on and beyond the image boundary.

Prior distributions and Parameter Estimation with the EM algorithm

It is desirable to present the model in a Bayesian framework, and hence a prior distribu-

tion is introduced on the model parameters I', « and 0. Specifically I' ~ v, and «, g% ~ Up.

In [1], v4 is an inverse Wishart with covariance ¥4, and v, consists of a ~ N (pp, 3p), and
on o? an inverse Wishart. With these priors, the model for generating N observations

from a new species is given by Algorithm [6]

Algorithm 6 Model for generating a species template and observations

1: Draw a,0 ~vp and I' ~ 1

2: for i =1 to N do

3:  Draw ; from N(0,T)

4:  Construct observations y; as the sum of zg,I, and noise. Specifically, y; s =
28,1a(z5) + o€ where € ~ N(0, 1) are independent of observation location s € I'.

5: end for

Parameter values for prior distributions need to be chosen, in particular 3, and ,.
On page 8 of [1], it is suggested that these square matrices of dimensions k), and 2k, are
chosen with respect to the matrices induced by the kernels,

Mp(k‘, k/) = Kp(xp,ka wp,k’)
Mg(k, k/) = Kg(xgyk, xg,k/).
In particular, it is suggested that X, = Mj;l and X, be the matrix with blocks [M_;l 0; 0 M;l].

To illustrate the reasonableness of this choice, consider the covariance of x-deformations
at two deformation landmark points of z,; and x4,

E(Dk)D(K) =B [ Y Kylwggzgr)800) Y Kelagy,zgn)M ()

1<j<kyg 1<j'<kqg

Letting Mj,. denote the kth row of M, and 8 = (81 (1)--- M) (k,)) this becomes

E (M. My .J3)
E (Mj,88" M)
= M M M.
M(k: K.
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It is therefore natural to choose X, if deformations are expected to have covariance
My. In terms of correlations between deformations this seems reasonable, points nearer
to each other being similarly deformed. It is possible however that ¥, should be multi-
plied by a constant depending on the relation between expected deformation and kernel
magnitude.

Parameter estimation

For a set of observations y coming from a single species, the objective is to find parameters
maximizing the posterior likelihood, ¢(f]y). To find these it is necessary to marginalise
over the latent deformation variables 8 associated with observations y, as observed in
the following decomposition of ¢(f|y),

4(60ly) x a(y|9)a(0)
- / a(y, B10)a(0) dp. (22)

It is common to solve optimisation problems containing latent variables such as this
using an Expectation-Maximisation (EM) algorithm, as described in the following sub-
section.

The EM algorithm

In a general setting [11], the EM algorithm is used for finding the maximum (mode) of

F(0) = / £(8.0)d5. (23)

There are two main versions of the EM algorithm, referred to as the hard EM and
the soft EM. The hard EM algorithm, also called the ‘Fast approximation with modes’
in [I] proceeds as follows:

Algorithm 7 The hard EM, or Fuast approximation with modes

1: Initialize the parameters € to some starting estimate

2: for i =1 to N do

3:  Compute the 8 which maximises f with the current 6 estimate
4:  Compute the 6 which maximises f with the current 5 estimate
5: end for

The hard EM finds an approximation of the optimal solution. There are two potential
pitfalls with this method. The first is getting stuck at locally maximal solutions, more
likely in cases of high noise. The second risk is that the optimal solution may have a
relatively narrow support in 6 at the optimal 8 making the integral sub maximal.
The soft EM algorithm replaces the two steps on lines 3 and 4 of Algorithm [7] by what
are referred to as the E- and M- steps:

o E-step. Compute

Q816W) = E, [log £(8,0)]
- / log £(5,6)£(8,6©)/F(6)) dg. (24)
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e M-step. Find #(*1) to maximize Q(A]0™).

In the context of the original problem where f(5,0) = q(y, 5]0)q(0), the function
@ of the E-step is,

Q(610") = E¢ [log (¢(y. 510)a(6))]
- / (log [a(y. 818)] + log [4(8))) a(816®, y) dB. (25)

The parameters § = (a, I, o) are expanded out of resulting in terms separating,
Q0. 116) = [ log [4(418. 0.0)] + log [a(81)] + log [a(D)] +

log [¢(o, a)])q(8]6?, y) dB. (26)

where
N

(8109, y) = T ] a(Bi16", i)
i=1
and for the ith observation,

(5100, ) = 001800 (BIT)

T [ailgr e, a®)g(p T ®)dp

The separation of variables in equation [26] enables us to decompose the M-step into two
parallel parts. For the geometric parameter I' we have:

P+ — argmax / log [¢(81)] ¢(810, y) dB + log [¢(I")] (27)

and for the photometric parameters o and o we have

o+ o) — arg maX/log lq(y|B, 0, 0)] q(B1OW, y) dB + log [g(a,a)]  (28)

On page 12 of [I] it is noted with example that the soft EM provides better estimates
than the hard EM. However, the hard EM method can be used successfully, as shown
in an example of digit classification. As described in the text, we have implemented a
version of the hard EM algorithm.

Implemenation, and analysis of order of operations

We repeat here the scheme of our implemenation via approximation with modes as Al-
gorithm

Algorithm 8 Approximation with modes in noiseless model
1: for j =1 to n-images do
2: ﬁOj —0
3: end for
4: for ¢ = 0 to n-steps do

n-images

5. Compute a; which minimizes Z ly; — Kf"jaiH? (a-update)
j=1

6: for j =1 to n-images do

7: Compute the 5(;41); which minimises ||y; — Kf(i“)j a;||?  (B-update)

8 end for

9: end for
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In Algorithm K, g will be a sparse matrix with number of non-zero elements of order
O(kp6,%). The a-update has solution,

n-images 5 n-images
Bi; T ij Bii T
a=| Y KK, S OKy Ty (29)
j=1 j=1

This assumes that the inverted matrix in is indeed invertible. As we do not
extend the photometric landmark range as is done in [1] this is a fair assumption, but in
the case where a kernel around a photometric landmark point is zero for all deformations
of Zs(sen), Kpﬁij will have a column of zeros and the matrix in will not be invertible.
The a-update algorithm is given by,

Algorithm 9 a-update

[KTK] +0

[KTY] +0

: for j =1 to n-images do
Calculate shifted coordinates =1z — Zfil B K (s, 2g1). O(|Alkg)
Calculate K. O(|Akp)
KTY) e [KTY]+ K0Ty

end for

a=[KTK]'KTY]. O(k2*®)

The order of the number of operations is given where relevant. The factor of 2.8
on line 9 is required for matrix inversion using the Strassen algorithm. In total, the
requirement is O (k2® 4 n-images(|A|k, + [Alky)). The S-update algorithm which we
will now present is to be more time consuming for the image sizes we consider than the
a-update step. The S-update will be performed with repeated steps of steepest descent,
that is with repeated steps of ("e®) = B(ld) 4 XD where the ith component of D is
D; %Hyj — KgaH%:ﬁ(ow, where f3; the ith element of the 2k, element S-vector, the
first k, elements being those related to z-direction deformation, and the last k4, being
those related to the y-deformation. Dropping all unnecessary sub- and super- scripts, we
have

8
D= (y— Kjo)" [%I;f ]

where we calculate

B
aKg _ 8 (Kp ) st argt (30)
8& . N or? 85@ ’
Letting r%, = dx?, + dy?, the second term in the product above becomes,
or?, ,
5, = 2dxy - Ky (xs,24,) for 1 <i < kg, (31)
or?, .
5, = —2dys - Kg (vs,295) for kg +1 <i < 2kq.
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Combining and we have (without loss of generality we consider from now
on only 1 <i < kg, that is z-direction deformations),

B
oK’ g (Kp)
[ aﬁf] t - Tt - dxgt 'Kg (wsvwgﬂ)' (32)

Equation [32| naively indicates to us that the calculation of D will require O(|A| kp kg)
operations: A matrix of size |[A| x k), for each of the 2k, dimensions of D. However the
number of operations can be reduced by taking advantage of certain sparsities which
emerge. The bracketed term in eqn. is a matrix which is constant for all 7, and has
O(kp&g) non-zero elements, due to the compactness of the photometric kernel. For each
of the 2k, dimensions of D, each row of the bracketed matrix corresponding to a given
s € A gets multiplied by the constant K, (24,24:). Only O(67) of the |A| elements of
the vector K (xs,x4;) are non-zero, so the number of operations per dimension of D
which need to be performed is O(k,67257 /|A|), and hence a total number of operations of
order O(k:pkg&gég /|A|) are needed to calculate D. In practice one chooses k, o< |A| and
kp o |A|, and so the number of operations is O(&£63|A|). This is a marked improvement
over the case where sparsity is ignored, where the number of operations is O(|A[?). In
Algorithm [10] the method for finding the direction of steepest descent is presented, with
indications of where sparsity should be used. In Algorithm the full algorithm for
updating [ is given.

Algorithm 10 Find direction of steepest descent for S-update
1: Input «, § and image y
2: Calculate the |A| x ky matrix K4(Z,G) (actually as this calculation is S-independent,
it is a one-off calculation which is done outside)
3: Calculate the |A| deformation locations 257 = Z — K4(Z,G)pB;
4: Calculate the |A| x k, vector differences, R[s, 1] = P[s] — 2Z[l]
5: Define R, < (x-component of R) and R, + (y-component of R)
6
7

: Define R? « R3 + R
. Calculate the |A| x k, matrix of kernel values, K,(R?).

K 0K 0K
8: Calculate the |A|6>[<(k:p matrix TRg where a—Rg[s, ] = WQP‘T:R[S,Z]
9: Calculate Q, = a—Rg Ry and Qy = TRIQD - 'Ry and store as sparse matrices.

10: Calculate v = y — K,(R?)a, where y is the observed image.

11: for 1 <j <k, do

12:  Calculate the (extremely) sparse matrix S; of size |A| x k, whose sth row is Qg[s,
| Kyls, j

13: Dj = (SjOé)TU

14: end for

15: for k;+1 <5 <2k, do

16:  Calculate S; where now the sth row is Qy[s,:] - K4[s, j]

17: Dj = (Sja)Tv

18: end for

19: Return direction D.
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For our implementation, the kernel used in spherical coordinates is,

2
Ky(r) = cos” (20};2) 1[—7r/2,7r/2}(‘r|)'

The only kernel specific quantity which is needed in the calculation of the direction
is 252 \which in our case is given by,

or?
OK,(r%)  w . [ r?
ﬁ = —5 sin <> 1[_7T/277r/2](|’l”|).

2 <2
or o 20,

Algorithm 11 Steepest descent for S-update

1: Input o, 3©) and image y.

2: for 0 < w <n_descents - 1 do

3. Calculate direction of steepest descent D) at 5(*) using Algorithm
4

B+ ADW)
Kp

Find A\ ~ arg mgn ly — 04\2 using a golden section search of 10 steps.

Set fwtD)  gw) 4 \w)p
. end for
. Return gters),

N F

In Figure [10| the performance time of a single direction finding step treating matrices
as sparse and non-sparse (dense) is compared. The number of photometric and geometric
landmark points were chosen to scale with A, specifically k, ~ 0.5A and k; ~ 0.3A.
The bandwidth of the photometric and geometric kernels were chosen to be 2.1 and
1.5 times the distance between photometric and geometric gridpoints respectively. A
quick calculation shows that these bandwidths imply that each (internal) photometric
kernel covers 13 photometric landmark points and each (internal) geometric kernel covers
9 geometric landmark points. In the speed comparison |A| was taken over 25 values
between 102---852. Our preceding analysis suggested that the sparse method should
require only O(|A|') operations for lines 11 to 17. In effect, the number of loops on
these lines is O(|A|!), with an O(1) operation for each loop. However, there are several
O(|A]?) operations which are performed before entering the loops. These O(]A]?) lines
(3 to 9) are the same for the sparse and dense methods. Figure [10]illustrates the time
requirements, decomposed by a) lines 3 to 9 (common for dense and sparse methods)
and b) the loops (distinct for dense and sparse methods). Finding the gradients of the
log-log plots in the right panel of Figure [10]| provides the expected values:

e Pre-loop: O(2.016 £0.014)
e Loop (Sparse): O(1.019 % 0.009)
e Loop (Dense): 0(3.021 £+ 0.061)

The O(]A]?) loop operation has been reduced to a O(|A|) operation, is it not possible
to reduce the O(|A|?) pre-loop operation? It may be possible, but it is not clear to me
how it can be done. The problem is that the sparsity structure of Kp(RQ), the sparse
matrix on line 7, depends on : it is theoretically possible for any observation point x5 to
be deformed to a position close to any photometric landmark point x;,. The same matrix
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Figure 10: Time for calculating direction of steepest descent, decomposed by

O(JA]?) and O(JA[?)/O(|A]!) calculations.

appears on line 4 of Algorithm 11, and this time it needs to be calculated several times
to esetimate the optimal distance to along D. In summary, the sparse S-update step is
O(n_descents x n_images(|A|kg + |Alkp)).

Multiclass Paramater estimation

Certain species have several distinct intraspecies classes of chirps, and therefore a model
where all chirps of a single species are a deformation of a single deformable template is
not realistic. In this section the single template model is extended to allow for several
templates within one species. In particular, suppose that there are T' distinct classes of
chirps for a given species, and that the probability of chirps belonging to class 7 is p;.
The parameters defining the full diversity of species chirps is therefore,

0= (9)1§T§T and p= (P(T))1§T§T

where 6; = (., 07,1';) as in the single template case. The choice of prior distributions
for the parameters in 6 has been discussed. For the prior on p, the Dirichlet distribution
is chosen,

T ap
vp(p) o [H p(T)] ;
T=1

where larger values of a, indicate higher prior belief in equal class probabilities. The
model for generating species data now has one additional level:

Algorithm 12 Model for generating a species template and observations

: Draw (p)i<r<1 ~ V)

: Generate 01<,<7 as before

: fori=1to N do

To generate observation y;, draw 7; from class 7 with probability p; and then j;
using I';,, and finally y; as a deformed template with added noise.

5: end for

W N =
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The objective is to recover 6 and p for each class of bat chirp. The latent variables
are now the (§; and 7; associated with each observation. The E-step thus becomes the
estimation of the function,

Q(010") = By [log (q(y. B, 710, p)a(0, p))]
= Z/(log la(y, B, 710, )] +log [a(8, p))) a(B, 7|6V, )V, y) dB.  (33)

where ¢(8,7]|0®, p®,y) is now the product over all observations i of

(yz|ﬁzya‘rf)ao'n ) (5@7 |1_‘T»L )pz

Z/ w80, a)g(8 T D)p,

On expanding out  in as was done previously, expressions of the form and
can be found.

(/87,7 Tz|9 (34)

Results illustrated

Figure(l1|illustrates selected iterations of Algorithm We will refer to subfigures as (row,
column). In (1,1) is the unobserved true template, where |A| = 25% k, = 152, g, = 5%
Mlustrated in (1,2) are generated observations from this template, where I" is chosen as
0.004%,. The mean image is illustrated in (2,1). As the mean image corresponds to
the optimal a where all 8s are zero, it is the approximation of the template at the first
iteration. Then in (2,2) the optimal s for the mean image are presented. Thereafter
a and the fs are updated several times, and in (4,1) and (4,2) the 10th iterates are
illustrated.
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Figure 11: Successful S-matching. The problem is, given the observations (top
right) to reconstruct the template (top left) and find the 9 corresponding 3 vectors
which deform the template into the observations. Details explained in text.
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Figure 12: {-matching with 25 observed Saccopteryx leptura chirps. Figure (1,1)
is the mean of the observations, and Figure (2,1) are the observations. In Figure
(2,1) is the best fitting kernel function to the mean observation, and Figure (2,2)
after the first beta-iteration. The third row is after 6 iterations, a local minimum

has been found.
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