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Author Summary

Is estimation of speciation and extinction rates improved when informations on both
branching times and clade size/age are used? Is the use of either the branching times or
clade size/age sufficient to infer the true rates of birth-and-death process? These are
questions about the true rates of the underlying birth-and-death process. Understanding
these dynamics is central to our knowledge of how species diversify across groups
and regions. We have build on the approaches adopted by previous authors to infer
diversification rates.

In particular, we develop and implement a probabilistic model using these two
informations together. With simulations, we demonstrate that our approach is robust in
estimating speciation and extinction rates. Applying our approach to the well-studied
phylogeny of the cetaceans, we found that estimation of speciation and extinction rates
is improved when informations on both branching times and the age/size of clades are
used simultaneously.



Abstract

Abstract

Diversification rate, i.e. the speed at which lineages speciate or go extinct, is one of
the most important metric in ecology and evolutionary biology. Approaches have
been developed to estimate rates of speciation and extinction using the molecular
phylogenies of extant species (tree describing the evolutionary relationships among
species). The general approach consists in deriving the likelihood of birth-death
models of cladogenesis given a phylogenetic tree, and to estimate the corresponding
birth (speciation) and death (extinction) rates by maximum likelihood. So far,
these likelihood approaches have focused on using either the branching times in
phylogenies, or the age and size of clades, but not both simultaneously. Here, we
develop an approach that uses information on both branching times and clade
age/size to improve our estimation of speciation and extinction rates from phyloge-
nies. We derive the joint likelihood of branching times and clade age/size, test the
performance of the approach on simulated trees, and apply the approach to the
empirical phylogeny of the cetaceans.
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1 Introduction

Diversification rate, i.e. the speed at which lineages speciate or go extinct, is one of the
most important metric in ecology and evolutionary biology. In particular, estimating
these rates opens the possibility to study the dynamics of biodiversity over geological
time scales. Historically, paleobiologists have estimated speciation and extinction rates
using fossils. However, many groups of species (e.g. terrestrial insects, birds, plants,
etc.) have no or very few fossils. Thus, methods have been developed to estimate
diverisifation rates using contemporary data.

In particular, the phylogenies of extant species (trees describing the evolutionary
relationships among species) have been used to estimate speciation and extinction rates.
Two approaches have been developed: one uses information on the branching times
separating nodes in a phylogeny, while the other one uses information on the age and size
of clades. Approaches based on branching times were introduced by Nee et al., (1994)
and further developed by Rabosky (2007), T. Stadler (2009) and Morlon et al., (2011).
They consist in deriving the probability of observing the branching times observed in a
phylogeny under various birth-death models of cladogenesis. Approaches based on the
age and size of clades were introduced by Magallén and Sanderson (2001). They consist
in deriving the probability of observing a given number of species today in a clade of a
given age, assuming a birth-death models of cladogenesis underlies the diversification
of this clade. Here we build on these stochastic birth-death models and likelihood
approaches in order to infer rates of speciation and extinction using information on both
branching times and the age/size of clades. We consider the simple situation in which
the birth and death rates are constant over time, but this can easily be generalized to
the case where the rates are time-dependent.

This report is organised as follows. In Section 2, we explain the two approaches
adopted by previous authors to estimate the rates of diversification, and derive the joint
likelihood of branching times and clade size as a basis for estimating diversification
rates. In section 3, we test this approach using simulations and apply the approach to
the well-studied phylogeny of the cetaceans.



2 Derivation of the joint likelihood

2.1 Estimation of speciation and extinction rates

Using molecular data, we can estimate the evolutionary tree joining species that are
alive today. This tree, which does not contain any information on the extinct species is
called a reconstructed phylogeny. A seminal paper by Nee et al., (1994) showed how
such a reconstructed phylogeny-in particular the branching times separating nodes in
the phylogeny—can be used to estimate rates of speciation and extinction. An other
seminal paper by Magallén and Sanderson (2001) showed how to use the clade size and
clade age estimated from molecular data to estimate net diversification rates.

In both approaches, the underlying idea is to model cladogenesis using the generalized
birth-and-death process originally introduced by Kendall (1948). Each lineage gives rise
to a new lineage (i.e. branches into 2 lineages) at a fixed rate A\ (speciation) and go
extinct at a fixed rate p (extinction).

Here, I detail the two approaches by Nee et al., (1994) and Magallén and Sanderson
(2001).

2.2 The branching times approach

Given a molecular phylogeny, Neet et al., (1994) constructed a likelihood function for the
reconstructed phylogeny. The data set has the form {¢9,¢3,...,tx}, reporting the times
when the second, third, ... N-th lineages first appear, where N is the total number
of lineages in the phylogeny (see Figure 1). We define be x,, = T — t,,, where T is the
time of origin of the process: thus, x, is the amount of time between the present and
the birth of the nth lineage (Figure 1 has the schematic illustration of the branching
times). What contributes to the likelihood are the birth events at t3 and t4 and the
total amount of time during which the lineages do not give birth.
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Figure 1: Schematic figure illustrating the branch times, {t2,t3,%4}. The t;’s
are the actual dates of the nodes and the x;’s are the length of time elapsed
between the nodes and the present day.



Using this information, Nee et al., (1994) computed the likelihood function as

N N
Lp(ta,... . tx) = (N —1)IA\N~2 {H P(ti,T)} (1= ) ] (1 = )

=3 i=3

where P(t;,T) is the probability that a single lineage at time ¢; has some descendant at
later time 7" and (1 — ug,) is the probability of single progeny (i.e. no further speciation)
after an amount of time x;. The birth events at time ¢; has probability proportional to
(i — 1)AP(t;,T), where AP(t,T') is the birth rate in the generalised birth-death process.
This likelihood can be used to estimate A (speciation rate) and p (extinction rate) by
maximization of the likelihood function.

2.3 Using clade size and clade age

Magallén and Sanderson (2001) proposed and estimation of the net diversification rate
r = A — p that uses the present day species diverisity (clade size) and its age. To this
end, they make a distinction between the age of the clade’s stem lineage and the age of
its crown group (Figure 2 explains the difference between these two ages of a clade).
The maximum likelihood estimators of diversification rates at time ¢ they obtain are

log(n)
t

Ps = As =

for stem group age and

log(n) — log 2

Fe=Ae= p

for a crown group age, assuming that the extinction rate is negligible. But stochastic
extinction in a birth and death process causes these estimators to be biased due to
presence of extinction. They used the mean clade size over time, conditioned on the
survival of the clade, computed by Raup (1985) as

_ 66”

N(t) =

C1-—af

where € is the number of lineages present at the start of the birth and death process
and « is the probability of observing zero descendant at any time ¢ for a process that
started before t.

Magallén and Sanderson (2001) proposed method-of-moments estimator as an
alternative method to maximum-likelihood estimators given above to address the issue
of presence of extinction in the birth-and-death process. Using the work done by Rohatgi
(1976), they equated the mean clade size over time with an observaton on diverisity, n,.
Their improved estimation of r is then given by

1
Tas = n log{n(1—a)+a}

for stem group age, and
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Figure 2: Schematic figure illustrating the distinction between the clade
stem group age and crown group age. The age of the stem is the time of
divergence of the clade from its sister taxon. The age of the crown group is
the time of the deepest branching within the crown group. Bold lines denotes
extant species; dotted lines represent extinct species.

1 1 1
Fae = n {log {Qn(l —a%) +2a + 5(1 —a)y/n(na? — 8a + 2na + n)} — log 2}
for crown group age. a is the relative extinction rate (a = §). They applied their
approach to the estimation of the rates of diversification for the angiosperms as whole,
and for selected clades within the angiosperms.

2.4 Joint likelihood of the branch times and clade size

We begin by deriving the joint likelihood of the clade size n and the branching times,
{ta,ts,...,tx} of a sample of k < n of these extant species. Let L(t1,...,tx,n) denote
the joint likelihood function we wish to derive. We measure time from the present to
the past so that ¢ = 0 denotes the present and t = T" denotes the origin time. #; denotes
the first time at which the ancestral lineage came into existence, and {to,t3,...,t;} the
respective times when the second, third, ... k-th lineage first appears. We assume that
this clade has evolved according to a birth-death process, with speciation rate A and
extinction rate u. We assume that each of the species in the clade is observed with
probability p €]0, 1], independently of others. Hence, the number k of observed species
is a binomial random variable with parameters n and p: P(k|n, p) = (})p"(1 — p)"~*.
Here we know k, and want to reconstruct n. See Figure 3.

The joint likelihood of observing such a phylogeny conditioned on at least k extant
species being sampled can be expressed as

L(t,n|\, 1, k) = g(t|n, A, p, k)P(n|A, i, k), (1)
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Figure 3: Schematic figure illustrating the phylogeny. The tree with branch-
ing times {t2, 13,14, 5} is embedded in a larger clade of size n.

where g denotes the probability of ¢t = (t1,%2,...,t;) given that there are n species
in the whole clade at present and P denotes the probability of the clade size being n
conditionally on sampling k extant species from this clade. A detailed derivation of the
joint likelihood in equation (1) is given in appendix A.

Because by definition

[’(tvnp‘a K, k) = ]P)(T =t,N= n|)\,,u, k)a
it is easy to show that
D L(tnlh p, k) =P(T =]\, p, k).
n=k

If we write L(tA, u, k) = P(T = t|\, p, k), the joint likelihood in (1) can thus, be
expressed as

> a(tln, A k)P(n|A, p k) = > PMYH(T =, N = n)
n=~k n=~k (2)
= L(tA\ k).

The right hand side of equation (2) is the same as Eq. (1) in Morlon et al., (2011).
Thus, equation (2) becomes



k k—2 1Tk
PP (Lo, t1)A ieo W(si1,t)¥(si2,t
Egtlnku, P(n|A, p, k) = (2, )X iy W A )
1—®(t1)

= L(t,.. .. t).

3)

where U(s,t) denotes the probability that a lineage alive at time t leaves exactly one
surviving descendant at time s < ¢ in the reconstructed phylogeny, and ®(¢) denotes
the probability that a lineage alive at time ¢ has no descendant in the sample. s;1 and
s;,2 denote the times at which the daughter lineages introduced at time ;.

In the situation where speciation rate A, and extinction rate u, are assumed to be
constant through time making the process homogeneous, the functions ®(¢) and ¥(s,t)
according to Morlon et al., (2011) are given by

e(A_N)t

and

()

In the birth-death process model, the probability that the clade size is equal to n
given that k extant species are sampled with sampling fraction p, P(n|\, s, k), can be
computed as

(R (L= p)" "t (1 — a)

Sk (D)pF(1 = p)iFad =1 (1 — o) ©)
Z) (1 p)n—k’an—k
>

where « is the probability of observing zero descendant species. Nee et al., (1994) and
Rabosky et al., (2007) provide the analytical expression of « (see appendix B for the
explicit formula for «). Let

bk, N, o i() p)! Fai k. (7)

J=k

Then equation (3) becomes
S n n—k _n-—
> gt o) () (0 9" Fa ™ = 60\ ) A ) )
n=k

If we let m =n—k and 8 = 1 — p, and then differentiate equation (8) M times with
respect to S we have

10
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It is easily seen from equation (9) that for 8 = 0, if m — M > 0 then the term in the sum
disappears. On the other hand if m = M then for all 8, 37~M = 1. Thus, equation (9)
becomes

aM
apM

with constant of proportionality, «, given by

(ks A, B, ) LN, p, K)) [p=0= rg(t|M + k, A, 1, k), (10)

oM (M + k)!
k! '
Thus, the joint likelihood we are looking for from equation (1) is

R =

k! oM

L(t, M+ K|\ p, k)= (M + F)! 95V

((ﬁ(k, )‘7 M, /Ba O‘)ﬁ(ﬂ/\v 12 k)) |f3=0 X

P(M + K|\, p, k).

(11)

From equation (7), with the sum indexed by N = j — k and with 8 := 1 — p we have

ok amam =Y (7). (12)

N=0

Let us write ¢(k, A\, p, 0, 8) = ¢(B) to simplify the notation. Similarly, let ©(8) =
Lt p, B, F) :

PR (tg, t1, B)NT2TTE, (s, ti, )W (si2, ti, B)

0(8) = 13
) o) )
Thus, the joint likelihood becomes
k! oM (¢0)
£0M + KA = i (T loeo ) BOL + KA k) (14

Using the general formular for the M-th derivative of the product of two functions, we
have

M(O) L M\ g, M-I
T =3 (M) 550550 (15)

11



Using the expression of the function ¢(8) given in equation (12), for any integer j, the
j-th derivative of ¢ with respect to 5 is equal to

¢ — (k+N : =
w(ﬁ):}%( L >aNN(N—1)...(N—j+1)5N : (16)

Taking 5 = 0 in the above formula, we get

%(0):( ;,L]>aﬂj(j—1)...1 (17)
_ ;;j)!aj. (18)
Coming back to (15), we arrive at
oM (40 T (M (k+j)! ;0Mi0
aéM)m:o:Z()( il o = (0): (19)

J=0

Substituting equation (19) into the joint likelihood function in equation (14) gives

M
k+3j BM o)
L(6M 4+ KA k) =~ M+k Z() k'> o =5 () | (M + KA . )
§=0 '

(20)
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3 Implementation and application

3.1 Computation of (M — j)-th derivative of function O(5)

The joint likelihood in Section 2 equation (20) can be implemented only when the
(M — j)-th derivative of the function ©(/) is computed. The function, O(3) (see
Appendix C for exact formula), is a function of product of 3k + 2 terms of 5. We use a
trick to compute this derivative by finding the derivative of each of the terms in the
product. We differentiate each of the terms in the product and substitute 3 = 0. These
computation can be generated into a matrix of the form

i (peTtQ _ a)2 2(pe”2 —a) 2 0O ---0 0 i
(peT82,1 _ a)2 2(p6T82,1 _ a) 2 0O ---0 0
(pe"sk1 — a)? 2(pe"k1 — a) 2 0---0 0
(pem22 — a)? 2(pe™*22 — a) 2 0---0 0
M = : . . . .o .
(pe™sk2 — a)? 2(pe"sk2 — a) 2 0---0 0
1 —1 2 . (EDMEI(M—j)!
perl —a (pefi-a)2  (pei—a)® (pe™l—q) T+ M —]
1 —4 20 .. (=DM=I(B3+M—j)!
(peTtZ—(l)Zl (pert2_a)5 (pert2 _a)6 3!(pert1 _a)4+lblfj
1 —4 20 (=1)M—J (34 M —j)!
(pe™'k —a)* (pe"'k—a)>  (pe"'k —a)® 3!(pem "k —a)tTM=T |

The rows in the matrix M, describe each function and then its derivatives with respect
to B at B = 0. The columns are the order of the derivatives of each function in the
product. The first column is the 3k + 2 terms of the function ©(5 = 0). The second,
third and up to (M — j)-th columns are the first, second,... (M — j)-th derivative of
each of the terms in the product of functions.

In the next section, we develop an algorithm to compute the (M — j)-th derivative
of © by using the appropriate entries of this matrix. To this end, we need an algorithm
able to find the set of all possible vectors of size 3k + 2 whose entries sum to M — j.

3.2 The possible vectors generator

We generate this vectors by sorting in terms of the first coordinate. For example, if we
let

D3j 90— = set of all possible vectors of size 3k + 2 whose entries sum to M — j,

then once the first coordinate is fixed to say (M — j) — 4, then we find how to distribute
k orders of derivative in a vector of size 3k + 1. Thus using the idea of integer partitions,
we partition the order of the derivative ((M — j) — i) into vector of length 3k + 2 such
that the sum of the entries is equal to M — j. Obtaining all these possible vectors and
using the matrix M we can write the (M — j)-th derivative of the function O(5) in the
form

13
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where n; gives the order of derivation to each of the term in the product of functions.
Thus, these possible vectors determine the combination of the entries of the matrix
M to be multiplied together in order to obtain all the expressions in the (M — j)-th
derivative of function ©(8) at 8 = 0.

By lack of time to develop a full algorithm, we consider an approximated version of
equation (21) in which the quotient terms in the function ©(3) are differentiated M — j
times with respect to S and the rest of the terms being constant. This approximated
version is given by

oM=i —1)M=I(M — j)!
pM=j (©(8=0)) ~ ((per)h _ C(L)HMJ—)J‘ (pe

k
[(pe™si1 — a)(pe"™2 — a)]?
(H (perti _ a)4 ) +

—a)’x

1=2
’r‘t2 )2 k 9 (22)
| (I
=2
L (—1)Mi(3 4 M — j)!
Z 3[ eTtk—a4+M i :
=2

Using this approximated version of the M — j-th derivative and the exact joint likelihood
formula in Appendix C equation (35), the joint likelihood can be written as

gM MM (k45
L(t, M + k| p, k) = M'ZNo(N+k)/BNaNZO(j) k! o x
J

ok
—Qa

1=2

(p (23)
b el — a)(pei? — a))?
e,
P (—1)Mi (34 M — j)!
(5 i)
ertg —a 2 k
(“;,_) [Titeer™ss — ay(persa a>12>
i=2

where the size of the clade, n = M + k. We coded this approximated version of the
joint likelihood in R.
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3.3 Robustness of the joint likelihood approach

Using simulations, we tested the ability of the joint likelihood approach to estimate
the true parameters of birth-and-death process (speciation and extintion rates). We
found that the approach performed well with either increasing or decreasing sampling
fraction (see Figure 4). Figure 5 illustrates the distribution of parameter estimates
across phylogenies.

3.4 Empirical phylogeny results: the cetaceans

We applied the joint likelihood to the cetacean pylogeny which is much studied in
cladogenesis models. This molecular phylogeny contains 87 out of 89 extant cetacean
species. Under the assumption of constant birth and death rates across the phylogeny,
we found no support for the presence of extinction (Table 1).

A I LogL AlC.
0.275 0.20 -291.208 4.071

Table 1: Approximated joint likelihood model fitted to the cetacean phy-
logeny. LogL stands for the maximum log likelihood; AIC,. stands for the
second order Akaike’s information criterion.

Comparing our results to the work done by Morlon et al., (2011), where only
branching times were used, our estimates showed much improvement in the estimation
of speciation and extinction rates even after using an approximated version of the joint
likelihood. On the basis of AIC. values, we obtain a much smaller value 4.071 against
130.770 in Morlon et al., (2011) paper which used only the informations on braching
times separating nodes in a phylogeny.
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Joint likelihood approach
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Figure 4: The joint likelihood method provides robust estimates of
speciation and extinction rates. The figure shows maximum likelihood
parameter estimates for phylogenies simulated under homogenous birth-and-
death process. Points and error bars indicate the median and 95% quantile
range of the maximum likelihood parameter estimates, across 100 simulated
phylogenies for each parameter. Before estimating the parameters, species
were randomly sampled from the simulated phylogenies. The sampling fraction
p ranges from 20% (poorly sampled) to 100% (fully sampled).
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Parameter estimates for simulated phylogenies
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Figure 5: The histograms represent the distribution of parameter estimates
for the 100 simulated phylogenies. The red line indicates the true simulated
parameters of diversification.
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4 Discussion

Estimating speciation and extinction rates opens the possibility to study the dynamics
of biodiversity over geological time scales. The phylogenies of extant species can be
used to estimate speciation and extinction rates. This evolutionary tree joining species
that are alive today contains no information on the extinct species. Previous authors
have showed that branching times seperating nodes in the phylogeny can be used to
estimate rates of speciation and extinction. Other authors showed how to use the clade
size and age obtained from molecular data to estimate net diversification rates. We
have combined these two informations (branching times and size/age of clade) to infer
rates of speciation and extinction.

The joint likelihood probabilistic model developed here is particularly well suited
to the study of incomplete phylogenies. This is very useful, because fully sampled
phylogenies are rarely available. Our analysis also suggests that estimation of rates of
diversification can be improved if both informations on branching times and size/age of
clade are used in the birth-death models of cladogenesis.

We have shown how to develop and implement the joint likelihood probabilistic model
to infer the rates of speciation and extinction using both informations on branching times
and age/size of clade. We have tested the performance of our approach on simulated
phylogenetic trees and demonstrate the robustness of our approach. We applied our
approach to the well-studied phylogeny of the cetaceans and confirmed the results
in Morlon et al., (2011) that considering the cetacean phylogeny as a whole give no
support for the presence of extinction. This may be due to the implicit assumption that
diverisfication rates are homogenous across lineages.

There are several potential extensions and applications of the joint likelihood ap-
proach in macro-evolution. First, the joint likelihood approach should allow us to
incorporate information from fossil data. Obviously, incorporation of fossil data to phy-
logenetic inference will improve our ability to understand long term diversity dynamics
of biodiversity. Second, the assumption that speciation rate is always greater than or
equal to the extinction rate could be relaxed. This is biologically relevant and might
influence our conclusions.

There are nevetheless limitations to our approach. We used an approximated version
of the joint likelihood and thus, do not rule out the possibility that the full version
of the joint likelihood would provide even much better estimate of speciation and
extinction rates. Another major limitation of our approach is that we did not account
for rate variation across lineages and in time. All these limitations remain topics for
future research. Empirical phylogenies are more imbalanced than predicted by models
with homogenous rates (Morlon et al., 2010), and inferences based on models with
homogenous rates might be biased.

18



A Derivation of the joint likelihood

Here we explain the decomposition of the likelihood expression in Section 2.4, equation
(1). By the definition of the likelihood we have

L(t,n|\, u k) =P(T =t,N=n,|\ uk)
=PMHR(T =, N =n)
= PYH(T = t|N = n)PMF(N = n)

where the symbol PM** denote conditional probability.
This implies

L(t,n|A, p, k) = PYE(T = [N = n)P(n|A, g, k) (24)

Then,

PMOR(T =, N =
PMR(T = ¢|N = n) = (T =1, =n)

PAk(N = n)
 P(T'=t,N =n, A, pu, k) 1
P(X, p1, k) TB(N=n.\ k)

POWik)
 P(T'=t,N =n,A, pu,k)
P(N =n,\ u, k)
=P(T =t|N =n,\, u, k).

Denoting the expression P(T' = t|N = n, A\, u, k) by g(t|n, A, u, k), we obtain the expres-
sion in equation (1)

L(t,n|A, p, k) = g(tIn, A, p, K)P(n| A, p, k). (25)

B Explicit expression for «

To compute « (the probability of observing zero descendant species), we first need
the probability P(¢,7'), that a single lineage alive at time ¢ has at least one surviving
descendant at time 7', assuming that it evolves according to a birth and death process
between the times ¢t and 7. This probability is given in Nee et al., (1994):

A—p

P(t’ T) - A — Me*()\*u)(Tft) '

(26)

Note that, P(0,7") is the probability that a birth-death process which starts at time 0
with a single lineage is not extinct at time 7". The constant « is then defined by
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_1 A—p
T A — ue_(A_.“)T
n— Iuef(/\fu)T
B A — /JJQ*O‘*#)T (27)
p(eP=mT — 1)
o A(e(A_N)T — %)
et — 1
a=a
el —a)’
where a = £ and r = X — p.
C The exact expression of the joint likelihood
From equation (20) in Section 2, the joint likelihood is given by
M . ;
k! M\ (k+4)! ,0M-ie
t, M+ kM k)= ———— J .
P(M + K|\, p, p, k),
where
Mo R TTE, W(sia tin )W (50, ts
@(/8): P (t27tlaﬁ)>\ Hz:2 (5 ,17t76) (S ,Qataﬁ) (29)
1—®(t1, )
and
M+ky oM, M

P(M + k|A, t, p, k) = — - .
> N=0 (Nlj )/BNO‘N

We can thus give an exact expression of the function ©(f) by simplifying the

functions ® and ¥ from equations (5) and (7) in Section 2.

a(t,8) =1 o
tB)=1—
E s )

_ P e
A=+ pA(eP—mt — 1) (31)
(1—p)+ per ik — &
(1= p) + pel=mt — &
_ B+a(pe = 1)
 B+pert—a’
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where

B=1-p, az%, and r=\—p.

Here we emphasize the dependence on 3 through the notation ®(¢, 3). Then 1 — ®(t, 5)
can be computed as

pe" (1~ a)

(32)

We also simplify the function ¥ as follows

W(s,1,) = O |14

w
+ 325 (eQ-ws — 1)

[ A (0wt e(/\—u)S)] -2

A= p+ pA(eP—ms — 1)

— O=mt=s) |1 4 pA(eP—1t — c(A=n)s) ]

[(1—p) + per =1t —

A —2
— o(A—m)(t—s) w (33)
(1= p) + pelr=ms — 2
rt __ -

_ i) [Mpea}

5 + pers —a
e [ o —a]?

B+ pert —a

Hence from equation (32) and (33), the likelihood function ©(f) in equation (29) is
equal to

pherti—t) [5+p6”2;a} ? A2

Arpei—a
@(5) = pe”l(lfa) X
Btpei—a

k _ 9 | )
et [ﬁﬂ)e—a] rlti=si2) [ﬁﬂ)e—a]
i—9 B+ peti —a B+ perti —a (34)

pk—le—rtz [5 + pert2 o a]2 2\F—2

X
(—a)B+pen —ad
k er[2h*(s¢,1+3i,2)] [(5 —l—peTSM o a)(ﬁ _i_persi,Q _ a)]Z
i=2 18 + perti — a]* '

Thus, after differentiating the function ©(5) (M — j)-th times with respect to 5 and
substituting § = 0, we obtain the exact joint likelihood function. It is very tideous
doing this differentiating analytically and thus we resort to numerical approximations.
We can thus write the analytical form of the joint likelihood as
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k!

M = M TR
L(t, M+ k|, p, k) aM<M+k)!X
M . k—1yk—2 K -
S (M) LD 52 AT et o 202
2 j ! (1*@) 41 aﬁM*J
. k rSs; TS
(549~ (B + g — B+ per —
B+pertt —a 14 18+ perti — a]*
(Mlj-k)ﬁMaM

Yo (iF)BNaN
(35)
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