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Abstract

The evolution of six European languages over the last two centuries is studied by calculating
Zipfian power-law coefficients of word occurrences per year in the Google 1-grams. Two coefficients
are analyzed, corresponding to the kernel and unlimited lexicons. The former, related to Zipf’s
coefficient, is shown to have an increasing trend, whereas the latter does not exhibit any discernible
pattern. The kernel lexicon is found to have a fairly constant size in terms of number of distinct
words, but its proportion with respect to the whole lexicon regarding the number of tokens is found
to be linearly decreasing. It is hypothesized that an increase in the topicality of language can explain
the observed phenomena.

1. Introduction

Language is one of the features that have let humans develop the varied and complex societies wit-
nessed by history. It has set us apart from other species by making possible the transmission of all kind
of ideas in an effective and clear manner. Being at the heart of our ever changing cultures, it evolves
constantly, subject to all the influences experienced by humans, in such a degree that we can notice
differences in language characteristics between neighboring towns and even within cities. With over 6000
different languages distributed across 200 families it could be surprising to find general commonalities,
although they all arise from the same organic structure, namely our brain, and thus share inherent con-
straints and properties.

The study of language as a complex system can allow us to find common features and delve into the
possible explanations of language behavior. From complex networks theory to data analysis, language
can be probed using different tools to obtain information on different levels, such as the storage of words
in memory, the network of words and meanings in the brain, or the statistical features of texts and
dialogues. Interrelations among all the different phenomena are also of interests, since specific features
of one level could be explained as a consequence of a trivial fact of another, e.g. the number of words an
author can memorize will have a direct effect on the texts she will produce.

The main objective of the present work is to study the evolution of languages. A fundamental re-
quirement for linguistic studies which is not always available is data; taking into account that language
is produced everyday in overwhelming amounts, this is difficult to believe. However, if we think about
the times before computers, i.e. almost the entire human history, all the relevant data was collected in
books, which is not the most convenient format to perform data analysis. Hence, Google n-gram dataset,
consistent of word occurrence counts per year in what was claimed to be approximately 4% of books ever
published (Michel et al. 2011), is an invaluable resource for any attempt on investigating the behavior of
language in the last few centuries. This will be our main asset in the current study and thus, it will focus
on the evolution over the last 200 years of six of the eight languages provided in the dataset, namely
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English, German, Russian, Spanish, French and Italian. Chinese and Hebrew were discarded because
of time and computer limitations, so that we restrict our study to a group of related languages whose
evolution should be directly comparable.

This enormous dataset has been used to study different aspects of culture and language evolution,
in a field now called "Culturomics". Michel et al. (2011) not only made the data available, they also
studied cultural trends, the evolution of grammar, epidemiology, among others, based on the changes
in occurrences of certain words over the years. Petersen et al. (2012) analyzed the rates of birth and
death of words, which were shown to follow decreasing and increasing trends respectively, as well as long
term word correlations, which were used to give a measure of cultural memory. Aspects of the evolution
of psychology as world population moved from rural to urban lifestyles were scrutinized in a paper by
Greenfield (2013). As a final example of the broad range of topics investigated using Google n-grams,
we introduce the main reference for the present study, i.e. (Tenenbaum et al. 2012), where the authors
analyse statistical characteristics of language over the last two centuries, and conclude that there is a
slowdown in linguistic evolution in terms of the annual growth fluctuations of word use.

In the present work we will focus on one of the most studied properties in quantitative linguistics,
i.e. Zipf’s law for words (Zipf 1949). Not really a law, but an empirical observation, it states that the
frequency of a word f is inversely proportional to its rank z, following a relation of the form

fz) ~ 275, (1)

with ¢ ~ 1. This is not an exclusive feature of language, since similar empirical results have been found
regarding the size of cities (Gabaix 1999), distribution of words in programming languages (Chen 1991),
the distribution of incomes in a nation (Di Guilmi et al. 2003), among many others. Furthermore, it is just
a rough approximation, with better fits having been obtained for more complex models, such as the Zipf-
Mandelbrot law (Mandelbrot 1953), log-normal models or a generalized Z-distribution (Baayen 1992).
However, Baayen (1992) also showed that the best fitting distribution depends on the specific text anal-
ysed, and there is no single model that can account for all subtleties of language. More information on
Zipf’s law variation across languages can be found in (Ferrer i Cancho 2005) and a very complete review
on the topic is given in (Piantadosi 2014), which includes analysis of different plausible models of its
emergence.

2. Methodology

Taking into account that we are interested in studying the evolution of language behavior over two
centuries, it is useful to consider a model with the least number of parameters possible that can nev-
ertheless explain an important part of the observations. In this way we can focus on fitting only a few
parameters and observe how their value changes over time. With this consideration in mind, it was
decided to follow the approach of Tenenbaum et al. (2012), based on a model proposed in a paper by
Ferrer i Cancho & Solé (2001). The authors of the latter found that for sufficiently large texts (588030
different words in their case) the data can be fitted by two different power-laws for different frequency
regimes, i.e. the original Zipf’s law for the most frequent words, called "kernel lexicon", and a steeper
slope for the rarer words, named "unlimited lexicon". The kink which demarcates the transition between
the two regimes was found to be in the range of words ranked between 5000 and 6000.

Tenenbaum et al. (2012) didn’t calculate Zipf’s coefficient itself, but the related coefficients of the
probability density function

f7o=, if f < fx (unlimited lexicon)
Py~ { [, if f > f« (kernel lexicon). (2)
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This avoids possible correlations between rank and frequency that can affect the statistical fitting of a
power law to the data; moreover Zipf’s coefficient can still be estimated due to the asymptotical relation
(Ferrer i Cancho & Solé 2001)

1
In their study, Tenenbaum et al. (2012) established the limits for the regimes a priori, and they calcu-
lated the best fit for a power-law for the selected regions. In this way they obtained ay ~ 2 and a_ ~ 1.7
over all languages (Figure 1 illustrates the two regimes for English in the year 2000). They also found
averages and standard deviations for this values over the period 1800-2008 for each language separately.
Nonetheless, they did not consider the evolution of this coefficients nor the possibility of a variability in
the kink.
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FIGURE 1: Frequency vs Number of tokens for English in the Google 1-grams for the year 2000. Two different
power law regimes can be observed, with a kink present in the transition between them. Zipf’s original
law only holds for the most frequent words, that is, where the distribution is steeper.

In order to investigate one component of language evolution we decide to fill this gap, dilucidating
whether Zipf’s coefficient, or more specifically the related a, has followed any evolutionary trend. Be-
sides, we also delve into the possibility of a variability in the kernel lexicon, instead of fixing its limits
according to previous results. A maximum likelihood method proposed by Clauset et al. (2009) is used to
obtain the coefficient of the best power-law fit for the data; this algorithm has the particularly attractive
feature that it identifies a lower bound for the power law, that is, the frequency for which the fitting
starts being statistically significant. Thus, we automatically obtain a limit for the kernel lexicon, and the
data outside the corresponding region, the unlimited lexicon, is fitted again to obtain the information of
the second regime.

The data to which the algorithm is applied is a filtered version of the original Google 1-grams; the
original data has one row per word per year indicating its number of occurrences, which we transform in
a table in which each row contains a word, one column per year giving its number of occurrences and one
last column for the total number of occurrences. Words containing numeric values and symbols different
from letters and accents are removed, as well as those words for which the counts are less than 50 for
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all years; this is done with the intention of removing typos and entities with no meaning. Furthermore,
each time a word has less than 50 counts, it is removed from the dataset for that year. This ensures that
extremely rare words and typos are filtered out of the data. Although some information might be lost, it
is almost certain that the fitting of the power laws won’t consider the rarest words, thus our procedure
does not affect the results yet makes the dataset more manageable.

3. Results

One of the most evident ways in which languages evolve is by growing; in terms of the semantics
it is important to consider the number of distinct words, i.e. types, since they are a direct measure of
the size of a language. When documents are considered, it is also relevant to study the total number of
words in them, not necessarily distinct, which are referred as tokens (For example in the expression home
sweet home there are two types, home and sweet, but three tokens). In Figures 2 and 3 we observe the
exponential increase in the number of types and tokens in the Google 1-grams over the last two centuries.
This does not necessarily imply that language has grown exponentially, since the number of documents
produced and available for scanning is a determinant factor. Thus, we want to study variations in lan-
guage that cannot be completely explained by this growth of texts and number of words.

3.1. The kernel lexicon

Figure 4 shows the evolution of the coefficient ay for all the analyzed languages; it is observed that
there is a general ascending trend, with the coefficient increasing by about 0.1 for each language over
the timespan considered. French is the only language for which this behaviour is reversed in the last
years, with the coeflicient descending and getting closer to its original value. In the case of German a
dip appears in the year 1925, but the coefficient recovers its growing tendency. Some pathological data
were removed, mainly in German and Russian, in order to have a plot scale in which the changes are
noticeable. In Russian and mainly in English we observe that the coefficient remains constant up to a
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tipping point, around the beginning of the 20th century, after which it starts increasing. This behavior is
equivalent to a decrease in Zipf’s original coefficient, which represents a flattening of the relation between
rank and frequency of words. This means that the frequencies of adjacently ranked words are getting
slightly closer to each other in the kernel lexicon. One can interpret this result as language becoming less
predictable, because a leveling of the frequencies directly implies more similar chances of selecting the
next word for a text (probabilities being taken according to the frequencies of words).

We also obtain information about the lower bound of the data that fits the distribution, which we
call the kink, since it corresponds to the point of change between the two power-law regimes. As seen in
Figure 5 the frequency at which this happens tends to be on the order of 10~°, which gives a bigger kernel
lexicon than the one considered by (Tenenbaum et al. 2012), were the limit was set at the frequency 10~%.
Furthermore, it can be noticed that, apart from the Spanish case, the kink behaviour is not constant and
its evolution exhibits structures similar to the evolution of the coefficient 4, more evidently in English
and German. In the latter case we observe that the years for which the kink is detected at a much lower
frequency correspond to the removed pathological values for the coefficient. However, even though the
structures are similar, the general trend is not ascendant, thus the results obtained cannot be explained
only in terms of the change in lower bound.

Delving more into the features of the kernel lexicon, Figure 6 shows the evolution of its size in terms
of the number of types. Although it is a highly noisy signal, it can be seen that in general the number of
distinct words in the kernel lexicon remains constant, being around 2500 types, as can be seen in more de-
tail in Table 1. This result agrees with the hypothesis proposed by Ferrer i Cancho & Solé (2001) stating
that the kernel lexicon corresponds to the fundamental vocabulary we use to construct meaning and that
its size is related with brain constraints, which would explain the similarity in sizes between languages.
Nevertheless, when we analyse the size in terms of the number of tokens, an interesting result arises: the
proportion of tokens in the kernel lexicon has declined in an approximately linear fashion as we can see
in Figure 7. In more detail, even though the number of types remains constant and there is no general
trend in the location of the lower bound for kernel lexicon, its size with respect to the unlimited lexicon
has decreased considerably. This brings up the question whether eventually the distinction between this
two lexicons could become blurred. If the kernel lexicon effectively owes its existence to certain brain
features, we would expect this lexicon to keep being important and representing a considerable fraction
of our language production. In spite of this, it is very interesting to see the increasing relevance of the
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unlimited lexicon over the last couple of centuries.

3.2. Size effects

We want to study the importance of the growth of the collected data in explaining the trends seen in
the power law coefficient and in the kernel lexicon, since the size of texts have been shown to influence
Zipf’s law (Bernhardsson et al. 2009). Our first approach consists in analyzing the obtained data as
time series, calculating the cross-correlation coefficient between a and three important and plausibly
explanatory variables. These are the total number of types, the total number of tokens and the lower
bound for the power law expressed in terms of number of tokens. The cross-correlation coefficient without
time lags is simply the correlation between the variables, i.e.

Pay = =2, (4)
0'10"1/

The results, summarized in Table 1, show a high correlation between « and all the variables for
English, German, Russian and Italian. For Spanish the correlations are around 0.5 and for French they
are low, which indicates that there are other factors in play besides the increasing numbers of types and
tokens. Since all languages come from the same family and are mainly spoken in countries that share
historical and cultural circumstances, it can be argued that the mechanisms that have a big effect in
French and Spanish should also be at work for the other four cases, although with less impact.

In order to corroborate that size effects are not entirely responsible for the behavior of the coefficients,
we use 100 bootstrap samples of one million words extracted with replacement and with probabilities
proportional to the original frequencies of the words. Moreover, we use the maximum likelihood method
for fitting the power law only for the 2000 most popular words, that is approximately the size of the
kernel lexicon, to discard effects that the tail of the distribution might produce. In this way we eliminate
two size influences, by fixing the total number of types and tokens.

In Figure 8 we show one box plot per year, such that each vertical red line gives the range of the
obtained bootstrapped data, except for the outliers which are shown as black dots. The trends observed



The evolution of Zipf’s coefficient and the kernel lexicon in siz European languages. 7

Language | Size | Types | Tokens | Kink
English 1958 | 0.850 0.745 | 0.767
German 2230 | 0.612 0.605 | 0.753
Russian 2528 | 0.762 0.706 | 0.711
Spanish 1695 | 0.490 0.377 | 0.537
French 2218 | 0.225 0.112 | 0.260
Italian 2685 | 0.708 0.648 | 0.724
TABLE 1: Average number of types in the kernel lexicon and cross-correlation coefficients of the total number

of types, total number of tokens and the lower bound of the power law with respect to a4 for all
languages.

previously are preserved, confirming that size effects have limited influence and cannot explain all the
variation in the coefficients. Moreover, the ill-behaved data, such as the 1960-1980 range in German
disappear, probably because the range for the lower bound was fixed.
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3.3. The unlimited lexicon

Different methods were used to tackle the analysis of the unlimited lexicon. First of all Clauset et al.
(2009)’s algorithm was used over a new dataset corresponding to all the words outside the kernel lexicon.
This approach yielded statistically significant results for only the most recent years and the obtained
coefficients varied mainly between 1 and 3, which is to broad a range to be of any interest, see Figure
9. The cause of this is probably that the obtained fitted power law is based on data on the transition
region between the two lexicons. Hence, they do not reflect the real behaviour of the unlimited lexicon,
but that of a region in which the data has become large enough in recent years to be detectable by the
algorithm.
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Then, following Tenenbaum et al. (2012) we selected a fixed range for the unlimited lexicons, namely
those words with relative frequencies below 107°. The number of statistically significant fits was even
lower than in the previous case, and similarly with a broad range for the coefficients, as is illustrated in
Figure 10. The explanation for this seems to be the lack of valuable data in the range selected. In the
low frequency region there is considerable noise and only for recent years the dataset is large enough to
provide enough data in that zone to obtain a decent fit. As postulated by Ferrer i Cancho & Solé (2001),
the two regimes behaviour is observed only after some size threshold is crossed.

However, when the data is plotted as in Figure 1 the kink appears clearly, and the data in the low
frequency regime seems to be linear. Thus we opt for a final technique, we use a segmented linear re-
gression method, proposed in a paper by Muggeo (2003) to fit a histogram of the data. The algorithm
automatically detects the kink and estimates the slopes of the two regimes. For a fixed number of breaks
in the histogram this approach worked fine, giving sensible values for the coefficients and predicting a
position of the kink consistent with that found in the previous section. However, we find that the number
of breaks used to build the histogram changes the resulting coefficients in a noticeable way, rendering
this method unreliable. If the whole dataset is used to produce the frequency density function instead
of a histogram, the algorithm does not detect the kink correctly because of the noise generated by low
frequency words.

The fact that any new addition to the lexicon enter as part of the unlimited lexicon makes it more
variable and its analysis more challenging. However, this also implies that size effects can be stronger,
with which extracting the desired information becomes harder. Thus our main focus of study remains
to be the kernel lexicon, but we feel that other attempts at the study of the evolution of this lexicon are
worth the effort. Two possible paths to follow are the construction of ad hoc statistical tools for fitting
this particular distribution or using a slightly different yet equally simple model to describe the data,
such as the one presented by Font-Clos et al. (2013).

4. Discussion

We found three interesting results: The power law coefficients are increasing, which means that the
rank distribution is getting flatter; the size of the kernel lexicon remains constant, which supports the
hypothesis of a relation of brain capacities with the structure of this lexicon; and the proportion of tokens
in the kernel lexicon is decreasing, hence the unlimited lexicon is gaining relevance. Is there a plausible
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phenomenon that can account for all of this results and that is compatible with the general growth of
types and tokens?

We argue that an increase in the topicality of language, in this case of the scanned books, can be
deemed a likely cause of the observed results. By this we do not necessarily mean an increase in the
number of covered topics, but a more even distribution of language across existent topics. First of all,
this would give more opportunities for topic specific words to be used and for more general words to be
applied in different contexts, which would bring the frequencies of similarly ranked words closer. An ex-
ample that this would be the case is given by analysing texts produced by people suffering schizophrenia
(Zipf 1949), (Piotrowska & Piotrowska 2004), (Ferrer i Cancho 2005); it was found that people in early
stages of schizophrenia, who tend to cover lots of different topics and change between them at a higher
rate than normal, produced documents with a; > 2. On the other hand, patients in advanced stages,
who become obsessed with one topic, generated language with o < 2. This instance does not prove that
our hypothesis is correct, but it gives hints that it can at least explain part of the registered phenomena.

Moreover, an increase in topicality would boost the use and size of the unlimited lexicon, since more
specific vocabulary would be needed, thus incrementing the overall number of types and the proportion
of tokens belonging to the unlimited lexicon. Although the presence of more topics or a more frequent
treatment of them would also yield more instances of words in the kernel lexicon, it is likely that these
increments would occur in a fixed and slower rate than in the unlimited lexicon, since the general words
could not deal with the intricacies of specific topics and any new word needed would automatically in-
crease the numbers of the latter lexicon. On the other hand, the necessary use of the basic words in the
kernel lexicon across all topics would permit the division between lexicons to be preserved, in a way that
would stop words from switching from the unlimited lexicon to the kernel lexicon. Besides, if a physical
constraint is in play, the structure of languages would depend on it, thus making the existence of the
kernel lexicon an inherent emergent property that cannot be challenged by changes within the language.

This hypothesis can be tested by constructing a model that reproduces the known statistical features
of language and makes falsifiable predictions. We propose a simple idea for further study, a minimal model
that could capture the changing behaviour of the power law coefficient while giving information on the
possible behavior of another measurable feature of language. Text can be generated using a Markov chain
with a transition matrix selected a priori to produce frequencies distributed according to a power law and
in such a way that changes in topicality can be introduced, for example by having classes representing
topics. In this way Zipf’s law would be obtained by construction, which is not optimal if the objective
is to generate realistic text. However, the idea behind this basic model is to study whether topicality
can explain part of the variation seen in the data, not to make a plausible model for language. It can
be argued that such a model is not related to language whatsoever, since the text could be considered
just a sequence of colored balls. Nevertheless, the objective is precisely to know if changes in topicality
itself, which in the context of balls could be considered clustering (understanding topics and its words as
clusters of balls), could yield results similar to the ones found in empirical studies of real texts. That is,
this model would permit us study whether and important factor in topicality, the way it clusters words,
can affect the features of interest without the need of additional considerations of language structure.
Since Zipf’s law is being obtained by construction, the results to test would be statistics on pairs of
adjacent words, which can be contrasted with the Google 2-grams.

5. Conclusions and perspectives

The number of published texts has grown exponentially over the last centuries, giving the possibility
of large scale studies of language. The sheer increase in the number of used types and tokens in written
documents is an example of language evolution, although changes in structural levels are more interest-
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ing. Statistical properties of language are also evolving, specifically Zipt’s coefficient, whose decreasing
trend is highly correlated with the growth of the number of words in documents. Nonetheless, not all the
variation can be explained by this correlations, which suggests changes on deeper levels.

There exists a relatively small kernel lexicon of common words for each language, whose size remains
fairly constant. This fact can be explained if the origin of the kernel lexicon is found in mental constraints
and the way our brain renders language. However, the relative size of this kernel lexicon with respect to
the unlimited lexicon, i.e. the rest of the words, is decreasing linearly, yielding a continual increment in
the relevance of the unlimited lexicon.

An evolution of the structure of language or of how it is used is likely to be taking place and producing
changes in the power law behavior of word frequencies and in the relations between kernel and unlimited
lexicons. One possibility is the increment of topicality in modern times, with many new topics emerging
carrying their own vocabulary, and with the interrelation between topics becoming richer, which could
lead to a more even distribution of words across different topics. The constant need of new words to
cover the emerging topics would explain the terrain gained by the unlimited lexicon.

The heuristic to build a Markov chain model that can be used to investigate the effects of topicality
on language statistics will be put into practice in subsequent work. Furthermore, languages outside the
Indo-European family should be analysed to compare the changes that have been found for the six Euro-
pean languages studied. An improvement in the statistical methods for fitting power laws could open the
possibility of a thorough analysis of the coefficient a_, similar to what has been done for a.y. It is also of
interest to apply the approach of (Corral et al. 2014) regarding the study of lemmas instead of complete
words, since this could show different patterns of evolution. The limitations for all the ideas related with
analysis of language evolution are centered mainly on the availability of data, since it is a gargantuan
task to digitize documents in the amounts required to cover a decent timespan, with enough data per
period of interest. Hence any effort put towards that objective would open many more possibilities for
the study of human language, culture and knowledge in general.
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