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Iris Yuping Ren

Abstract. This report includes a summary of the work I have done
during my M2 project, including but not limited to two papers in the
appendices. In the first paper, we extend techniques from topological
data analysis (TDA) to networks. These techniques include persistence
homology, Vietoris-Rips filtration, Betti-number barcode, persistent di-
agram, bottleneck distance, and our original method edge weight filtra-
tion and persistence time distribution. We apply them to small world
and scale free networks, and the networks derived from pieces of music
which I presented in my previous work, in which we represent a piece
of music as a network, with nodes corresponding to pitch and duration
pairs, and edges connecting occurrences adjacent in time. Using network
statistics and TDA methods, we can produce new music and recover
facts about music which humans also appreciate. We also propose future
applications of this methods for music creation, analysis and educational
purposes. In the second paper, we created an agent-based model of music
group playing under four different interaction mechanisms. Based on real
music data, added randomness and simplifying assumptions, we examine
how agents synchronize and deviate from the original score. We find that
while music can make synchronization complex, it also helps reducing the
total deviation. By studying the simulation process, several conclusions
on the relationship between different growing speeds of total deviations
and different interaction schemes are drawn. With interpretation from
a musical point of view, we find that, in a music ensemble, listening to
neighbors helps the players end up in sync. However, if people do not
listen carefully enough, the deviation becomes larger than when people
do not listen at all. On the issue of whom one should listen to, the re-
sults show no significant differences between listening to the immediate
neighbors and to the whole group. Finally, we also observe that large
deviations can be reduced by making the musicians move while playing.



Title Suppressed Due to Excessive Length 3
Summary

During my M2 internship, I have been working on the “topological data anal-
ysis on Music Networks” project, extended from my M1 project. In comparison
to the M1 project, I put my focus on the topological data analysis part which
I didn’t have the time go deep last year. I have also detailed and improved
the results from my M1 project, thanks to the opportunities to many visits to
different institutes, making presentations and having feedback during my intern-
ship. Besides this M2 poject, one of my mini-projects done in the first semester
at Ecole Polytechnique has been published by the conference CMMR2015 and
won a best master student paper award (in appendices). I wish to publish this
M2 project paper (in appendices) later on as well. Also since my main subject
of my M2 internship is still the “TDA on Music Networks”, I will be mainly
talking about this subject in the following sections in the summary. I will give
an introduction to the subject first, and then give results overview and make a
contribution discussion. [

Introduction

Why this is important? The relationship between music and shapes have
generated considerable interest since the Pythagoreans. Generally the marriage
of mathematics and arts has produced many more interesting results |1H3]. They
are not only aesthetically pleasing, but also useful for artists and mathemati-
cians, both theoretically and practically: people have succeeded at automating
art and music production; resolving cases of uncertain authorship; and improving
arts, music and mathematics education; and there are too many more examples
to be listed exhaustively. The applications of more tools from mathematics are
needed and destined to thrive this interdisciplinary study of arts and science.
One day, we may be able to make machines automatically write and improvise
music and tell the musical finger-print of a music piece or composer.

We provide some answers to the questions by investigating the prominent
connections between notes in music by finding the shape of music pieces using
complex network and topological data analysis (TDA). Algebraic topology is a
branch of mathematics that uses tools from abstract algebra to study topological
spaces. Statisticians started to combine some theories of it with data analysis
and gave birth to the field called topological data analysis.

The traditional approach of studying networks is to draws on theories and
methods including graph theory from mathematics, statistical mechanics from
physics, data mining and information visualisation from computer science, in-
ferential modeling from statistics, and social structure from sociology. And they
mostly focus on locally defined quantities of nodes and edges, such as node
degrees, edge weights and correlations between neighboring nodes, and so on.

3 For the sake of succinctness, only some figures are shown here. Some more vi-
sualisations can be accessed at https://sites.google.com/site/irisyupingren/
documents.
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However, these methods become cumbersome when dealing with many-body
properties and do not capture the precise mesoscopic structure of complex net-
works [5]. As we can see from the following sections, one solution to this problem
is using the TDA methods, because it takes the dynamic and evolution of a net-
work into considerations. Moreover, this new method creates the bridge between
pure and applied math, which allows many more import of toolset from pure
mathematics.

A melody is a time sequence of notes. Therefore, the connections between
notes are interesting and essential to investigate, and we can pose questions more
specifically: what are the notes with most connections? Can we recover music
structures out of these connections? How are the connections in different music
pieces differ from each other? Furthermore, can we summarise music in a more
visual way using the connections between notes?

What tools should be used To answer the questions, the first step is to
construct the music networks.Music emerges from the non-trivial connections
and interactions of the sounds. In almost all musical works, especially classical
western music, each musical instrument or singer voice should emit a limited
number of such sounds as written in sheet music. In other words, we work with
musical pieces which consist of the repetition of a discrete set of sounds, which
differ in pitch and duration. Although this is in its simplest form, music is dis-
cretisable in terms of pitch and duration, which in turns are the backbone of
music, and therefore allows us to use a network based approach to analyse. This
discretised music consideration also motivated many relevant works from other
topological and geometrical perspectives [6HLO|, generating many useful results
for both musicians and mathematicians.

The second step, after obtaining the networks, is to analyse the network de-
gree distribution and apply TDA tools. Network statistics reveals general infor-
mation of the structures of our networks. TDA provides topological information
on all scales, which is also the philosophy of persistence, the core of TDA. The
details of the methods and the results of analysis will be given in section [2| and
respectively. Detailed introduction can be found in [11}]12].

Data and miscellaneous The musical pieces we used for the analysis are
Beethoven’s String Quartets No.01 - No.09, Mozart’s String Quartets No.01 -
No. 04, Haydn’s String Quartets No.1 - No.2. The data format we start with is
musicxml. Similar to .xml files, musicxml consists of different layers of text cells:
from parts, measures to notes and attributes, which form a tree-like structure
of musical information. One thing to notice is that musicxml is not a sequential
encoding format. For example, backup and forward commands are used to encode
single parts with multiple staves or multiple voice. This necessitates care in
creating a parsing algorithm to convert musicxml to numerical data structure.
The way we did it is first to create a list of elements including pitches, time in
the music, duration, and dynamics, for each note in the musicxml sequentially.
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Second, sort them according to their time element. Only after obtaining a time
series of notes, can we construct our sequential network thereafter.

As for the literature in this area of study, there has been some research
on this type of musical networks, [13] for example. In our paper, we contest
to their results on the power-law degree distribution. Although there is much
other research on music and networks, it mostly concerns social networks but
not music itself [14H16]. Some other network constructions take a few notes or
a chord as a node, for example in [17,[18]. However, our approach is different in
that we incorporate duration information and all the melody, rather than just
the harmonic progression. Moreover, none of the above works implemented the
TDA techniques. Thus, using the TDA and network, two novel methods thriving
in mathematical and complexity researches, not only can we exploit a vast body
of existing theoretical results, but also can introduce a new contribution, since
the classic network models of friendship, social relations, power grids and emails
and phone communication are of a very different nature compared to the music
networks we build.

Why it has not been done yet The network method itself, which is part of
the complexity system science, is a relatively new field with a lot of new tools and
applications. The area of study of TDA has only been examined by statisticians
and pure mathematician for around ten years. There are some works on this
network and TDA topic. Nevertheless, there has not been anyone who applied
them into the research of arts and science.

Why I am in the position to do it After finishing my study at Warwick
and my first semester here at Ecole Polytechnique, I had already gained insights
and hands-on experience in this field. Furthermore, in this area of study, I have
established contacts with Institute for IRCAM (Music Acoustic Research Coor-
dination, Paris), Centre for Digital Music (QMUL), SONY CSL (Japan), INRTA
(Ecole Polytechnique Paris), and Institut fur Mathematik (Technische Univer-
sitat Berlin), and many PhD students from different institutes. The discussions
we had really helped me broaden my view in this area of study, and helped me
realized that there is still a lot of research potential in this field.

Personally speaking, the benefit of doing a research with music is that it
combines my passion for maths and my joy of music giving me constant motiva-
tion to learn and try new methods. I have been playing the violin for more than
ten years. Also having some experience in vocal training and piano playing, I
constantly give performances with student orchestras and choirs. From a more
academic perspective, I studied mathematics and physics in addition to statis-
tics during my undergraduate study and I have seen how powerful mathematics
can be in physics and I am fascinated by it. Furthermore, the training from the
Erasmus Mundus Masters in Complex Systems Science prepared me better to
tackle the problems in this field. In sum, I am very passionate about statistical
musicology and have given it a lot of thought, and my training in science also
puts me in a position to investigate this field.
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Results Overview

My results can be divided into two categories: one on small world and scale
free network, and the other on the music networks. Also, I employed two different
tools (filtrations, introduced in section from TDA to look at the problem
with different point of view.

Using the first filtration, I made an analysis of the speed of topological change
in a network when gradually adding strongly connected edges to weakly con-
nected edges. In the typical network section I explored the parameter spaces
of scale free and small world networks and found different properties of their
topological changes and the speed of the topological changes when adding edges.
In the music network section, we apply the same method to music networks and
found some potential application in music education.

Using the other filtration, we also explored a range of parameters in small
world and scale free networks, and found we could reconstruct their different
topologies: the hub topology and the ring topology. This gives us confidence in
the application of this filtration to networks. From music networks, we gained
the point cloud shapes of each music piece, and also tried clustering methods to
classify according to different instruments and composers.

As an improvement on my first project, it is possible now to create music
out of the music networks, further consider the implications of a linear in- and
out-degree relation, and a set of statistical methods has been used to fit the
network degree distribution.

Detailed construction and results can be found in section [3.21 and section [6.11

Contribution Discussion

On the music side, I have given contribution in the creation, the analysis
and the education aspects. Samples of music creation using networks are given.
Analysis are performed on three different levels: the note level, (Section and
Section [6.2)); the tonal level (Section ; and instrument and composer level
(Section and Section . Music education considerations have been given
from the perspective of the speed of topological changes. On the network side,l
have questioned the results of another paper [13], which contents power-law
degree distributions in music networks.

What follows is a paper detailing the above mentioned results and contribu-
tions.
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Abstract. We extend techniques from topological data analysis (TDA)
to networks. These techniques include persistence homology, Vietoris-
Rips filtration, Betti-number barcode, persistent diagram, bottleneck dis-
tance, and our original method edge weight filtration and persistence time
distribution. We apply them to small world and scale free networks, and
the networks derived from pieces of music which I presented in my previ-
ous work, in which we represent a piece of music as a network, with nodes
corresponding to pitch and duration pairs, and edges connecting occur-
rences adjacent in time. Using network statistics and TDA methods, we
can produce new music and recover facts about music which humans
also appreciate. We also propose future applications of this methods for
music creation, analysis and educational purposes.

Keywords: topological data analysis, music, complex network, small
world network, scale free network, algorithmic composition

1 Introduction

The relationships between music and shapes have generated considerable
interest since the Pythagoreans. Here, we study the connections between notes
in music by constructing shapes of music pieces using complex networks and
examining those shapes with topological data analysis (TDA).

A melody is a time sequence of notes. In elementary improvisation, the player
think of one note after another. Therefore, the connections between notes are
interesting to investigate: what are the notes with most connections? Can we
recover music structures out of these connections? How do the connections in
different music pieces differ from each other?

To answer the questions, the first step is to construct the music networks. As
one of the methods in complex systems science widely used in studying social,
biological, technological and economic systems, complex networks are abstract
entities which can efficiently describes the relationships between individuals. On
the other hand, music emerges from the non-trivial connections and interactions
of the sounds. Thus, the interdisciplinary approach of complex systems science,
using methods from mathematics, physics, statistics, computer science is a nat-
ural choice to produce this type of quantitative analysis of musical pieces.

Moreover, in most musical works, especially classical western music, each
musical instrument or singer voice is usually asked to emit a limited number of
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such sounds as written in sheet music. In other words, we work with musical
pieces which consist of the repetition of a discrete set of sounds, which differ
in pitch and duration. Although this is in its simplest form, music is discreti-
sable in terms of pitch and duration, which features backbone of music, and
therefore allows us to use a network based approach to analyse. This discretised
music consideration also motivated many relevant works from other topologi-
cal and geometrical perspectives [6H10], generating many useful results for both
musicians and mathematicians.

The second step, after obtaining the networks, is to examine network de-
gree distribution and apply TDA tools for analysis. Network statistics reveals
general information of the structures of our networks. TDA provides topological
information on all scales, which is also the philosophy of persistence, the core
of TDA. The details of the methods and the results of analysis will be given in
section [2| and |3 respectively. A detailed introduction to the field can be found
in [11}[12].

The musical pieces we used for the analysis are Beethoven’s String Quartets
No.01 - No.09, Mozart’s String Quartets No.01 - No. 04, Haydn’s String Quartets
No.1 - No.2. The data format we start with is musicxml. Similar to .xml files,
musicxml consists of different layers of text cells: from parts, measures to notes
and attributes, which form a tree-like structure of musical information. One thing
to notice is that musicxml is not a sequential encoding format. For example,
backup and forward commands are used to encode single parts with multiple
staves or multiple voice. This necessitates care in creating a parsing algorithm
to convert musicxml to numerical data structure. The way we did it was to first
create a list of elements including pitches, time in the music, and duration, for
each note in the musicxml sequentially. Second, sort them according to their
time element. Only after obtaining a time series of notes, can we construct our
sequential network thereafter.

There has been some research on this type of musical networks, |13] for ex-
ample has the same construction of music networks. In our paper, we contest
to their results which based on the assumption that the music networks de-
gree distribution can be modeled by power-law degree distributions. There are
other network constructions take a few notes or a chord as a node, for example
in [17,{18]. However, our approach is different in that we incorporate duration in-
formation and all the melody, rather than just the harmonic progression, which
gives considerations to all music elements in a music piece. Moreover, none of the
above works implemented the TDA techniques. Thus, using the TDA and net-
work, two novel methods thriving in mathematical and complexity researches,
we can exploit a vast body of existing theoretical results and give new insights
to music researches.

For sake of succinctness, only some figures are shown here. The rest of the
visualization products can be accessed at https://sites.google.com/site/ irisyup-
ingren/documents
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2 Complex Networks

In this section, to establish a base line and compare with music networks
later on, we give an overview of the types of networks upon which we used TDA
techniques upon.

2.1 Small World Networks and Simulation

The small world networks, also known as the Newman-Watts-Strogatz graph,
are characterised by its small average path length, in spite of the presence of a
large number of nodes. In addition to social networks, small-world networks
are common in biology, physics, computer science, and many other fields [19].
For example, road networks, brain networks and gene networks all have some
small-world properties.

To generate/simulate this type of network, we use the package provided in
[20]. Two key parameters are k, the number of connected nearest neighbors,
and p, the rewiring probability. The process of generation is two step: first, put
nodes in a ring topology and then connect their k nearest neighbors; second,
switch edges according to the rewiring probability p. As for the weights of edges,
we use a range of different distributions to assign the weights: uniform, normal,
powerlaw, etc. We use this type of network as a base line before applying our
TDA techniques to the music networks. Relevant results are shown in Section 5.

2.2 Scale-free Networks and Simulation

Scale-free networks, as suggested by the name, have the property of self-
similarity so that they look similar at different scales, and therefore do not have
a fixed scale. This property is realised by having a power-law degree distribution
P(k) ~ k~7. As a consequence of this distribution, unlike the topology of small
world networks, there can be nodes with very large degrees, which are also called
hubs.

We also use the package provided in [20] to generate/simulate this type of
network. The mechanism is to progressively add nodes to the existing network,
and then introduce edges with preferential attachment, which is, roughly, the
nodes with a larger degree get more links. This method has three main param-
eters:

— «a: Probability for adding a new node connected to an existing node chosen
randomly according to the in-degree distribution.

— (: Probability for adding an edge between two existing nodes. One existing
node is chosen randomly according the in-degree distribution and the other
chosen randomly according to the out-degree distribution.

— ~: Probability for adding a new node connected to an existing node chosen
randomly according to the out-degree distribution.
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Because we have to choose one of the three options at each step, a+8+~v = 1.
Like the small-world networks, we use this type of network as a base line before
applying our TDA techniques to the music networks. Relevant results are shown
in Section 5.

2.3 Construction of Music Network

To build our networks, we consider the adjacency matrices of the music pieces.
To map notes to nodes, we use the lexicographical order of pitch and duration.
For a larger piece, such as 4 movements of a string quartet, this normally yields
from a few hundreds nodes up to more than a thousand. For smaller pieces,
with a duration of 2-3 minutes, the nodes are usually less than a hundred.
To standardise our approach, we label the nodes with the commonly accepted
midi number for pitches(C4=60, D4=62, etc.), and assign them a duration in
seconds, converted from the logic value in musicxml using tempo information.
Rests are denoted by zeros, while grace notes and other musical decorations are
ignored. The octaves are not identified, because we are not looking for particular
harmonic topological structures, and from the point of the melody, the same note
in different octaves are two very different notes.

As for the entry in the adjacency matrices, that is, the edges in the network,
we will add one whenever one node is followed by the other in the music. For
example, if we have a scale C-D-E-F-G-A-B, each note lasting for 1 second, then
there will be 7 nodes, the first one is (C, 1s), (D, 1s) the second, (E, 1s) the
third, ect.. Also, there will be 6 edges, which are (C, 1s)-(D, 1s), (D, 1s)-(E, 1s),
etc. When there is a chord in the musical sequence, we connect all the nodes
in the chord to the next one, and all the previous nodes to all the nodes in the
chord.

In the end, we obtain a network with the number of nodes equal to the
number of all pitches multiplied by the number of all durations in the piece. We
take the giant connected components of this network for further studies, and
leave out the unused pitch and duration combination. As the music progress, it
defines a path in the network.

3 TDA

As we introduced in the first section, we can explore new network properties
using TDA. To formally introduce the subject, we provide the mathematical
definitions and intuitions for each new concept.

3.1 Simplex and Simplicial Complexes

Simplices are mostly known as points, lines, triangles, etc., up to arbitrary
dimensions. Mathematically, suppose we have a set of points pg, p1,...pn satis-
fying the condition that: py — pg, p2 — po, ..., Pn — Do are linearly independent.

n

The n-simplex set is C = {fopg + ... + Okppn | 0 > 0,0 < i <mn, > 6; =1}.
i=0



Topological Data Analysis on Music Networks 5

A simplicial complex is a set of simplices satisfying two conditions:

— Any convex hull of the non empty subsets of the n+1 points in a n-simplex
(called the face of a simplice) of the simplices from this set is also in this set
— The intersection of any two simplices from this set is a face of both simplices

For a more thorough introduction on the subject, we refer the book in [21].

3.2 Filtration

Simply put, a filtration is a nested sequence of increasing subsets. Mathemat-
ically, a filtration is an indexed set F; of subobjects, with the index i running
over an index set I that is a totally ordered set, the subobjects should satisfy
that: if ¢ < j,4,7 € I, then F; C F}. Intuitively, one can imagine a filtration acts
on simplicial complexes and gives a collection of new complexes, with the index
depending on a distance function. Therefore, the index i is going to control the
level of the growing, which is also known as filtration time. We use two different
filtration methods on the networks for different purposes:

Vietoris-Rips Filtration Vietoris-Rips filtration has been used widely in topo-
logical data analysis. It is a sequence of simplicial complexes built on a metric
space to add topological structure to a disconnected set of points.

Formally, we first introduce the Vietoris-Rips complexes: Let X be a subset
of a metric space and let d be its metric. Pick an € > 0. Construct a simplicial
complex as follows:

— Add a 0-simplex for each point in X

— For z1,29 € X, add a 1-simplex between 1, zo if d(z1,22) <€

Similarly, for x1,z2,2z3 € X, add a 2-simplex with vertices x1,xs,z3 if
d(l’l, 1’2), d((El, .’Eg), d(l’g, 1’3) <e

Generally, for x1, zs, ...,z, € X, add an n-simplex with vertices x1, x2, ..., T,
if d(z;,z;) <efor0<i,j<n

After these steps, we obtain the Vietoris-Rips complex, and the Vietoris-Rips
filtration is the collection of Vietoris-Rips complexes at all scales.

Construct Vietoris-Rips Filtration with Network: a Metric To apply
the Vietoris-Rips filtration to networks, we need to define a metric. We define
the distance between nodes in the network to form a distance matrix D;;:

Dij = Z ’lU_1

WEGij

where w represents the weights on edges, and g;; is the shortest path (geodesic)
in network between the nodes i and j. The metric is taken this way because we
want to construct a space where the more closely connected nodes in networks
are closer in the space. Therefore, we took the inverse of the weight since we look
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at networks where larger weights indicate more closely connected relationships
between nodes. In our music networks, this is exactly the case. For instance, if in
a music, there are ten transitions between a C4 quiver(also known as a quarter-
note) and a G4 quiver, and four between a C4 quiver and a F#4 quiver, the edge
weights will be 10 and 4 respectively between the nodes; so the distances will be
0.1 between the C4 quiver and the G4 quiver, 0.25 between the C4 quiver and
the F¥4 quiver, and it is natural to do this musically, too. However, when the
edge weights are equivalent to the distance between nodes already, for example
in many road networks, it should not be taken reciprocal when constructing the
filtration.

Edge Weight Based Filtration Besides the widely used Vietoris-Rips filtra-
tion, we propose a novel filtration for the network based on its edge weights. In
a network setting, since we want to investigate first the strong links and then
the weak links, it is natural to use the edge weights to determine whether an
edge will be added early or late, as shown in Fig. [I} the edges are added at
different time with t(edge) = max(weights) — weight(edge). In this way, the
network at different time steps can be seen as the superlevel subsets from the
network in which we will see the stronger connections appear first. Due to this
thresholding of edge-adding, our networks are evolving with the filtration time.
With inspection in dimension zero and dimension one, it allows us to see more
mesoscopic structures and many-body properties of complex networks’ compo-
nents and loops formation. There has been similar investigation in social and
biological networks such as [5].
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Fig. 1. From weighted adjacency matrix to the construction of persistence homology

3.3 Homology and Betti;, Number

Homology is a certain procedure to associate algebraic objects with topolog-
ical objects. It can be described by Betti; numbers. Roughly speaking, Bettiy,
numbers are the number of k dimensional holes. In this project, we only look at
Bettig and Bettiy, corresponding to the component and loop structures in the
networks. Mathematically speaking, it is the rank of homology group , which is
defined as:

Hy, := kerdy/imOy41
where 0y : Cj, — Cx_1 is the boundary operator

in which C} is group consists of the set of all k-chains and the operation
of addition, and k-chain is a sequence of simplices 0,071,092, -+ ,p s.t. any 2
consecutive ones share a k-face. provides more systematic materials on this
subject.
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3.4 Persistent Homology

Persistent homology is at the core of topological data analysis. The philoso-
phy of persistence is to avoid selecting a fixed value of the threshold, instead to
obtain a useful summary for all the different values of at once.

Mathematically, given a space of simplicial complex, a distance function cor-
responds to a filtration of the simplicial complex ) = F, C F; C ... C F, =F,
when 0 < ¢ < j < n, the inclusion F; < Fj; induces a homomorphism f;”7 :
Hy(F;) — Hy(F};) on the simplicial homology groups for each dimension k. The
k persistent homology groups are the images of these homomorphisms. Then the
interesting values are the Betti;” numbers we discussed before, which are the
ranks of the persistent homology groups.

3.5 Barcode

Plotting the barcode is a standard way to encode the persistence homology
in topological data analysis, which represents the topological information of a
growing set strata. We plot the Bettiy” numbers in the following way to generate
the barcode: with the x axis being the filtration time, the y-axis is the arbitrarily
ordered homology generators Hy, we plot Bettiy;”’ line segments from i to j.

A fast way to read a piece of information from the barcode is to look at the
cross-section of a certain time: the number of bars is equal to the number of our
interested components in the certain dimension, that is, the Betti number. For
example, when k& = 0, the barcode cross-section number tells how many compo-
nents there are; k = 1, the barcode cross-section number tells how many loops
there are, etc. A Betti interval with long filtration interval can be interesting
because it is exhibiting some long-existing topological structure.

3.6 Persistence Time Distribution

After obtaining the barcode for edge weight filtration, if we want to inves-
tigate the speed of topological features’ change, we can plot a distribution of
the persistence time. The x axis has values of filtration times z;. The heights
indicates the first-order difference of the Betti numbers with specific z; values.
For dimension zero, the heights are | Betti;”""*"" — Betti,""* |. For dimension
one, the heights are the heights are | Betti, "> — Betti, ™" |.

Intuitively, they are the distributions of the filtration times of dying topolog-
ical dimensional zero features, and distributions of the filtration times of birth in
dimension one features. In a network setup, it visualises how fast the components
are connected and how fast the loops are forming. This is interesting because
it shows the topological changes of networks with gradually connecting edges
according to weights. For example, given a weighted social network, weights be-
ing the friendship strength, if one wants to investigate how the components of
community changes under different friendship strength, the persistence time dis-
tribution can give a summary. One such result is shown in Fig. [3|and Fig. [5} We
can easily see the speed of topological change at each filtration time using this
distribution.
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3.7 Persistence Diagram

Persistence diagrams are multi-sets representing of barcodes, or the Bettii’j
number intervals we introduced before. It is also commonly used to summarise
the barcode. Simply put, it takes the birth and death times of a barcode, and
plots them in pairs on R2, with each point associated with multiplicity equal to
the number of such features.

Formally, having the Betti;” numbers, the diagram D(f) C R? is the set of
points (4, j), counted with multiplicity Bettiz’j , with all points on the diagonal,
counted with infinite multiplicity.

In this construct, a point closer to the diagonal would be more likely to be
noise, because its birth and death time would be very close to each other. More
salient features are the ones more off-diagonal. It is a summary of the persistence
construction, and we use it for clustering across different networks.

One of advantage of the persistence diagrams is their stability [22]. Stable
here means that small changes in the input imply only small changes in the dia-
gram. More will be introduced in the next subsection using bottleneck distance.

3.8 Bottleneck Distance

Bottleneck distance is used to measure how different two persistence diagrams
are. Mathematically,

dp(Dgmy(f), Dgmy(g)) =inf ~ sup ||z —n(z)e

n xe€Dgmy,(f)
where 7 is the set of bijections between the multi-sets Dgm,,(f), Dgmy(g), and
lp — qllooc = maz(| zp — x4 |,| Yp — Yq |)- Intuitively, it matches the off-diagonal
points in two persistence diagrams in a way that makes the match the most
plausible, and then take the distance of the largest value in x- or y-coordinate.
The near-diagonal points will be canceled by the points on the diagonal, and
this is why the definition of persistence diagrams gives infinite multiplicity to
diagonal points.

As mentioned in the last subsection, it has been proven that the persistence
diagrams are stable using the bottleneck distance, and therefore appropriate to
be used in detecting topological features in data sets with noises. Formally, with
mild assumptions, we have: dg(Dgm,(f), Dgmy(g)) <|| f — g ||co. More results
can be found in [22].

4 Clustering

We use the following clustering concept to get a better understanding of our
topological data analysis results: to compare between networks using bottleneck
distances introduced in section also to clustering within networks using
generated distance matrices introduced in section [3.2] and its multi-dimensional
scaling, and finally to evaluate the clustering results. This section is an overview
of the clustering tools we use.
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4.1 Hierarchical Clustering

Hierarchical clustering is a standard clustering method to be used on distance
matrices for n objects. The main goal is to build a hierarchy of clusters, and there
are many algorithm variations to achieve this goal. The procedures we use are
as follows:

— First, assign each object to its own cluster
— Second, join the two most similar clusters. Similarity here is described by
the distance between clusters: D(X,Y) = min d(z,y)
reX,yeYy

— Iteratively continuing the second step until there is just a single cluster

This method is also known as the single linkage method.

The results of the clustering will be visualised as dendrograms in section [6}
which give the sequence of cluster fusion and the distance at which each fusion
took place [23].

4.2 K-Medoids

K-means and k-medoids are widely used in real world data clustering. Unlike
hierarchical clustering, they provide a k-partition of the data set. Both these
partition methods try to minimize the distance between points in the same clus-
ter and a point selected as the cluster center. K-means is one of the very basic
in machine learning, and its successor, K-medoids, is known as a more stable
version of K-means. The main difference between the two is that K-medoids
chooses datapoints as centers and works with distance matrices. We only intro-
duce and use the Partitioning Around Medoids (PAM) algorithm here to realise
K-medoids later on:

Initialisation: randomly select k of the n data points as the centers
Associate each data point to the closest medoid using the distance matrices
— For each center m, we iterate through each non-center data point p to cal-
culate the total cost of swapping m and p

Select the lowest cost configuration

— Repeat step 2 to 4 until there is no change in the partition

4.3 Clustering Similarity

We use a value called the Jaccard clustering similarity to evaluate our clus-
tering results:
J— My,
Moy + Myo + M1y

where M7 represents the number of observation pairs where both observations
are in the same cluster in both clusterings; M;( represents the number of obser-
vations where the observations are in the same cluster in the first clustering but
not the second; similarly, My, is the other way around; finally, Mg represents
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the number of observation pairs where neither pair are in the same cluster in
either clustering.

This quantity gives a measurement as to how similar the clustering is from
the view of the comemberships, hence very suitable to unsupervised learning
such as k-medoids and hierarchical clustering.

5 Considerations for Realisation

Realisation
Steps uistrigli?;:eﬁmng

Music Network
Construction

Network Data

Simulate Small World and
Scale-free Networks with
different weight distributions

In-degree vs.
Out-degree

Network analysis

\/
Algorithmic
composition
v
/_ Import Data to
TDA Packages
Create Stream Distance matrices Clust h
ustering,
- Evaluation of
Edge multi-dimensional clustering
weight scaling
filtration l
Calculate Calculate
3 " Shapes formed Vietoris-Rips
Persistence Interval Data Persistence by music > filtration
Homology Homology
\ Persistence
Plot Barcode time distribution: Plot Barcode, Bottleneck
Persistence speed of Persistence Diagram distance matrices
Diagram topological 9 /
changes

Fig. 2. A flow chart of our realisation

This section is dedicated to our realisation procedures. The process starting
from the music data to the results is show in the flow chart: Fig. [2] After ex-
tracting music information using the minidom package, we create and analyse
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the network using [20]. Degree distributions are fitted to power-law and expo-
nential distributions using the package provided in [24]. We also plot in-degree
vs. out-degree figures using [20]. Designed random-walks are created using the
networks to generate music by employing the package [25].

Then, we output the network adjacency matrices and node names, and im-
port them into Matlab and R for TDA analysis. In addition, random, complete,
scale-free and small world networks of different parameters with different weight
distributions are created and processed in the same way for later use.

Next, we use Javaplex [26] to compute the results of edge weight filtration. In
Javaplex, the filtered simplicial complexes are also called streams. We first add
all nodes (vertex) to the stream (filtration). The edges are added as seen once
before in Fig. Subsequently, we compute the intervals of persistence, then
store them in Matlab matrices form. We also output the annotated intervals,
which tell us what are the nodes in the intervals of persistence. For example, in
the dimension one case, the annotated intervals are consist of the components
in the loops generated in the process of filtration. Finally, we plot barcodes,
persistence diagrams and persistence time distributions based on the intervals
of each network.

The distance matrices are calculated using Python, and then imported into
R to create Vietoris Rips filtration and for another analysis purposes. As done
in Javaplex, we also calculate the persistent homology, plot the barcode and
persistence diagram. The package we use is a new TDA package in R [27] linking
many other existing TDA package. The Vietoris Rips filtration process can be
computationally costly when go up to dimension two, and that is why we have
some second dimensional results on the 100 nodes simulated networks, but not
on the 400-1000 nodes music networks. In comparison to the Javaplex, we found
many advantages of the TDA package in R, including costing less memory and
does not have a pre-defined resolution.

We also accompany the plot with multi-dimensional scaling results from the
distance matrices to give a 2-d visualisation. After, we measure the distance
between the persistence diagrams using bottleneck distance. So far, we have
obtained two layers of distance matrices: the first from the nodes in network
(notes in music), the second from between-network (between-music). The multi-
dimensional scaling and clustering methods can be used in both layers. Within
the network, the multi-scaling gives us a map showing how close the nodes are
and clustering gives us a suggestion of a division of community in the networks;
between the network, the multi-scaling visualise how close the networks are to
each other and clustering suggests which networks are of the same type.

Finally, we use package [28] to calculate the Jaccard clustering similarity and
evaluate our clustering results against random guesses, and give visualisations
by the corresponding multi-dimensional scaling results.
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6 Results

6.1 Typical Network Results

Barcodes and the speed of topological change We start with establishing
a series of baseline results of the small world networks. The obtained barcode
results for the edge weight filtration are shown in Fig.

barsm043 (dimension 0)

barsm043 (dimension 1)

Fig. 3. Barcodes of small world network with 100 nodes. Each node is connected to
4 nearest neighbors in a ring topology. For each edge u-v in the underlying “100-ring
with 4 nearest neighbors” with probability 0.3 add a new edge u-w with randomly-
chosen existing node w. The edge weight distribution is the uniform distribution with
the maximum value chose to be 20. As introduced in section [3] the barcode indicates
the number of components (top) and the number of loops (bottom) changing with
filtration time.

The trends of the barcode growth are straightforward from our filtration
introduced in section the connected components of the network decrease
as the links are added, and the loops in the network increase as more edges are
added. The big discrepancy that appears in the one dimensional barcode between
t =19 and ¢t = 20 can be explained as the sudden increase in the connections
between nodes, which is caused by the constraints introduced by the edges which
have been already added.

As we can observe in Fig. because our calculations are based on large
networks, the barcodes are densely packed. This gives a problem that, having
tested different parameter configurations of the small world networks, they all
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looked the same at the first glance. Mostly because, as expected, in dimension
zero and one, they should have similar topological structures but just with minor
differences. Therefore, as we need better representation to compare between
the networks of different parameters, the persistence time distribution construct
introduced in section B.6] become natural to use.

In Fig. and the persistent time distribution of the length of inter-
vals are plotted. Each color corresponds to a varying number of the connected
nearest neighbors and re-wiring probability. Again: the height of each bar can
be interpreted as the thickness of each barcode layer, since they are the count of
how many intervals are there (the number of the blue lines in the barcode). The
connections with the barcode results are: in the dim = 0 case, the persistence
times on the x axis is essentially the times of death of the features. Similarly,
the x axis represents the times of birth in the dim = 1 case.

Histogram of persistence distribution Y Histogram of porsistence distribution

(a) Distribution histogram of the
number of occurrences of a cer-
tain persistence time of Betti num-
ber 0 in small world networks,
with varying number of connected

(b) Distribution histogram of the
number of occurrences of a certain
persistence time of Betti number 1
in small world networks, with the

same parameters as Fig.

nearest neighbors k and probabil-
ity 0.9 of adding the new edges.
The edge weight distribution is the
uniform distribution with the maxi-
mum value chose to be 20

Fig. 4. Distribution histogram of small world networks

Having a closer look at the distribution histograms, we can see they indeed
share the same trend and that the behaviors before the last step are quite noisy.
Nevertheless, it is clear that, first, we have a “swing” of the thickness of the
barcode in dimension zero, which means as we lower the threshold of linking,
the disappearances of individual components slows down. The fact the last step
is steep suggests that consideration of the smallest weighted edge is important,
since in this case, it can have significant effects on the change of topology. Second,
with a larger number of connected nearest neighbors in the ring topology, we have
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a bigger discrepancy in the last step in dimension one, and smaller discrepancy
in dimension zero. This implies that, when adding the smallest weighted edges,
the speed of holes generation is faster when there are more connections within
the ring topology, and on the other hand, the speed of making connections is
slower.

To have a more comprehensive understanding of the parameters, we also
plotted the parallel results for varying probability of adding new random edges
with seven connected nearest neighbors in a ring topology, as shown in Fig.

and Fig.

Histogram of persistence distribution Histogram of persistence distribution

) 120
H 8
§ H

o “ ‘ J ] ) u ‘1 Ll‘ blocpak ] ” S S e e e e

stence time

(a) Distribution histogram of the
number of occurrences of a certain
persistence time of Betti number 0
in small world networks, with fixed
number of the connected nearest

(b) Distribution histogram of the
number of occurrences of a certain
persistence time of Betti number 1
in small world networks, with the

same parameters as Fig.

neighbors = 7, and varying num-
ber of probability of adding the new
edges. The edge weight distribution
is the uniform distribution with the
maximum value chose to be 20

Fig. 5. Distribution histograms of small world networks

Similar to the diagrams with varying number of the nearest neighbors, we
observe the same trend and discrepancies at the last step, which leads us to the
conclusion that a larger probability of rewiring gives a better connection of the
network. It is still hard to tell if there is a generalisation of the results of the
changing parameters of dimension zero. Nonetheless, we can see some interest-
ing behavior in dimension one, where it is clear that the bigger the rewiring
probability, the larger the speed of the generation of loops at the same level.

Multi-dimensional scaling and persistence diagrams In this section, we
present the results from Vietoris-Rips filtration. As shown in Fig. [6] we observe
the ring topology from the small world network and the hubs in scale free net-
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work, which verifies our distance construction. Moreover, the corresponding per-
sistence diagrams are showing their advantages in summarising these topologies
concisely.

Further comparing between Fig. and Fig. we observe that the edge
weight distribution has a significant effect on the distance space of networks:
although preserving the ring topology to a certain degree, it creates outliers.
Comparison between Fig. and Fig. tells us the rewiring process elimi-
nates the outliers and homogenised the network.

In addition to bring light on the interdisciplinary subject of topological data
analysis and complexity science, we will be using the results of this section to
establish some properties of music networks and their uniqueness.

6.2 Music Networks

In this subsection, we will show all the results we obtained from performing
our network and TDA analysis. Mainly can be divided into creation and analysis,
the analysis part includes three layers, which are

— Low Layer: Pitch, duration, etc. (Section and Section [6.2)
— Mid Layer: Tonality, phrase, melody, etc. (Section [6.2])
— High Layer: Composer, genre, emotion, etc. (Section and Section [6.2))
The creation part is in section We also mention a potential education
application in section [6.2]

Network degree analysis One typical degree distribution is shown in Fig. [7}
Number one in the legend denotes violin I, two denotes violin II, three denotes
viola and four denotes cello. These will stay the same whenever there are only
four numbers in the legend throughout the paper. When there are more than
four groups of data, they will be indicating different piece numbers instead of
instruments. It is hard to tell if they are long-tail or exponential distributions. We
also observe similar in-degree and out-degree distributions, as shown in Fig.
To scientifically decide which distribution is a better fit to our music network,
we employ the statistical framework for discerning and quantifying power-law be-
havior in empirical data mentioned in [24]. This method combines the maximum-
likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov-
Smirnov statistic and likelihood ratios. One typical result of fitting is shown in
Fig.[0] Combined with likelihood ratio values, it is obviously that the exponential
distribution is a better fit in comparison to the power law distribution.
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(a) Multi-dimensional scaling and
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(¢) Multi-dimensional scaling and
the corresponding persistence dia-
gram of small world network with
fixed number of the connected near-
est neighbors = 8, and rewiring
probability = 0.1. The edge weight
distribution is the uniform distribu-
tion with the maximum value chose
to be 20. With a small rewiring
probability and uniform edge weight
distribution, we see outliers in the
multi-dimensional scaling.
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(b) Multi-dimensional scaling and
the corresponding persistence dia-
gram of small world network with
fixed number of the connected near-
est neighbors = 8, and rewiring
probability = 0.9. The edge weight
distribution is the uniform distribu-
tion with the maximum value chose
to be 20. With a large rewiring
probability and uniform edge weight
distribution, we see homogeneous
structures of the network.
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(d) Multi-dimensional scaling and
the corresponding persistence dia-
gram of small world network with
fixed number of the connected near-
est neighbors = 8, and rewiring
probability = 0.1. Edge weights are
all equal. With a small rewiring
probability, we see the ring topology
which was put in when constructing
the network.

Fig. 6. Multi-dimensional scaling (a visualisation of distance spaces) and persistence
diagrams of small world and scale-free networks’ distance spaces
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Number of nodes
5,
Number of nodes

10°
10° 10" 10%
Degree

50 60 70 80
Degree

(a) Degree distribution of Beethoven (b) Degree distribution of Beethoven
String Quartet No. 09 in C major Opus String Quartet No. 09 in C major Opus
59, indicating power-law-like structure 59, indicating exponential-like structure

Fig. 7. Degree distributions plotted in y-log and log-log coordinates. It is hard to
determine by eye if it should be power-law or exponential degree distribution.

Music network

Number of nodes.
Number of nodes.

10° At 10°
10° 10 102 10° 10 102
Degree Degree

(a) In/out degree distribution of (b) In/out degree distribution of
Beethoven String Quartet No. 05 in the viola part of eight pieces of
A major Opus 18 Beethoven String Quartets

Fig. 8. In/Out degree distribution of different pieces and instruments
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These exponential-like distributions suggests that there are very important
notes in the music which are indispensable. Without these notes, the structure
of the music would be destroyed. Moreover, in accordance with music theory,
the high degree nodes are mostly the rest notes and tonal notes in the piece, as
shown in Table [I} The results also entail that a network can recognise tonality
of a music quite easily.

First violin Second violin
Degree| Note |Degree| Note
88 |[Rest, 0.3| 77 |Rest, 0.3
77 |Rest, 0.6 61 |Rest, 0.6
51 F6, 0.3 46 F5,0.3
44 E6,0.3 | 43 Ce6, 0.3
42 | D6,0.3| 39 | A5,0.3
38 C6, 0.3 38 C5, 0.3
37 | G6,0.3| 37 | E5 0.3
37 | B6,0.3 37 | D5,0.3
36 F6, 0.6 35 | G5,0.3

Table 1. Table of important nodes in the network of Beethoven String Quartet No.01
in F Major

Also, since we do not see the exponential distribution in mere pitch statistics
nor duration alone [29], we can conclude that the pitch and duration recover the
most essential parts to music.

Notably, the exponential degree distribution has been rated as the “more
normal than normal” network degree distribution, some examples include the
network of power-grid, email users relationships [30] and so on.

We have also plotted in-degree against out-degree in Fig. which is largely
linear in normal scale. This is suggesting the homogeneity of the music network.
Because a melody such as “C-E-F-C-E-G-C-E-D” with recursions can produce a
small network with one node has 3 out-degree and 1 in-degree, which is a counter-
example to our case. That is, this kind of small melody is not explicit shown
in the network, and the network is encoding a more homogeneous structure of
music.
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Creating music using network Since the original music is a predetermined
walk within the music network, it is natural to consider a design path in the
networks to generate music. Also applied in [13], we generated music by taking
a weighted walk in the network using edge weights, and artificially avoiding gap
between pitches larger than an octave. One exercept is shown in Fig. Al-
though having the same network structure as a Haydn string quartet piece, the
generated music is more contemporary-like music, which remind us the impor-
tance of other music structures other than mere connections: chords progression,
phrases of music, global rhythm, etc.

The speed of topological change and difficulty of pieces In Fig. [12(a)
and Fig. the distribution histograms are of similar constructs as the small
world networks, with the parameters changed to the different No. of music pieces
and different instruments. Compared with results from random (small world
networks with large rewiring probability), complete (small world networks with
large connected neighbors), scale-free and small world networks, the differences
between the persistence are clear. First, we do not have the continuous persis-
tence spread over time. In contrast, we sometimes have outliers, and most of the
time, the bars show concentration around a certain value. Second, the counts
of a certain persistence times are significantly less than the ones in the small
world networks, although we have almost the same, and sometimes even more
nodes than the small world networks. This shows us there are certain topological
patterns in music networks that are not shared by random, complete, scale-free
and small world networks.
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Fig.11. Music generated by using the music networks. With seed music being the
second violin of the second movement of String Quartet No. 57 in C Major, Op. 74,
No. 1, FHE No. 28, Hoboken No. 72
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In addition, these figures can also provide a complexity measure of the music:
when we have higher bars in large x-value, it indicates more presence of weak
connections, which means more variety in music and can be harder to practice
in terms of repetition.

Histogram of persistence distribution
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in music networks, featuring the sec- ber 0 in music networks, featuring
ond violin with different music Beethoven String Quartet No.1 with

different instruments

Fig. 12. Distribution histograms of music networks

Annotated intervals In addition to the statistics we have done with the persis-
tence intervals, one more result from the edge weight filtration is the annotated
intervals. Simply put, as introduced firstly in section |5 the annotated intervals
tell us what the nodes in the intervals of persistence are. For example, in the
dimension one case, the annotated intervals are consist of the components in the
loops generated in the process of filtration.

An excerpt is shown as follows (The musical notation is replaced from nu-
merical notation we originally have):

— [78.0,00) : [F4,G4] + [0,G4] + [C4,F4] + [0,C4]
— [78.0,00) : [0,C3] + [B2,C3] + [B2,C4] + [0,C4]
— [78.0,00) : [0,B3] + [G3,B3] + [G3,D4] + [C #4,D4] + [0,C #4]

The intervals before the column are the time intervals of our persistent homology,
followed by the actual nodes which constructed the intervals. This tells us the
combination C-F-G (C sus4), G-B-C #-D and B-C-C are of importance in the
music. For each instrument in each piece of music, we obtain hundreds of such
data, which might be useful for future research in algorithmic composition.



24 Iris Yuping Ren, Frederic Chazal, and Charo I. Del Genio

Multi-dimensional scaling, note maps, and persistence diagrams Here,
we present the multi-dimensional scaling and persistence diagram results on the
note level. As shown in Fig. we can give note maps of music. It is essentially
a point cloud of music notes with a metric defined in section Although they
are overlapping in the figure here, we have made it zoomable with R. This shape
formed by an entire piece of music can be interesting for further musicology
study.

In Fig. we show the original point cloud without the labeling as in
Fig. Although we have concluded that the degree distribution is not power-
law, which defines a scale-free network, we can observe from this figure that,
in the distance space we constructed, there are properties shared by scale-free
networks and music networks, as shown in Fig. [13(b)[and Fig. [6(a)|
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(a) The multi-dimension scaling on
the note level: it forms a note map
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(b) An exemplary persistence dia-
gram and a raw multi-dimensional
scaling figure, which will be used

to calculate the bottleneck distance
and gives clustering results in the
next section

Fig. 13. Multi-dimensional scaling and the note map of Haydn String Quartet, No.2,
viola

Clustering and its evaluation After obtaining the persistence diagram on the
note level as discussed in the last section, we now use the bottleneck distance
of persistence diagrams to try to classify the music. We used the hierarchical
clustering and k-medoid clustering introduced in section [d Fig. [14] is showing
the results from the hierarchical clustering calculated in the dimensional zero
case. We observe that it shows distinct classification of the shape of the music.

To evaluate the classification in terms of instruments and composers, we
calculate the clustering similarity of each clustering method and dimension.
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Fig. 14. The result of hierarchical clustering

The results are shown in Fig. Some observations can be made, for example,
the topological data analysis gives a better results when clustering by different
composers than by different instruments, by dimension zero than by dimension
one, mostly by k-medriod than by hierarchical methods. In Fig. we are
making a comparison between our topological data analysis results with a matrix
norm taken from the distance matrix on the note level. Although it is doing
better when applying hierarchical clustering to the composer clustering, the TDA
results still prevail in other configurations.

In general, our results are better than the random guesses but not satisfactory
comparing to the music “truth”. However, we should take into consideration that
we are comparing between Haydn, Mozart and Beethoven, whose relationships
have been known as “Beethoven imitating Mozart, and behind Mozart, Haydn”.
Without knowledge for each piece, it can be hard for musicians to distinguish
between them, too. Also, in a string quartet, although it is easy for the human
ear to distinguish between different instruments, without the timbre of each
instrument as is the case in our construction, it can be hard to identify between
instruments, too, solely based on pitch and duration. Therefore, our results,
which are based on a very limited data set, although are not as accurate as big-
data cross-genre music classification, produce distinctive insights based on the
shape of music formed by its notes.
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(a) topological data analysis clus-
tering similarity results. Composers-
wise (clustering into three groups)
is on the left, instrument-wise (clus-
tering into four groups) is on the
right). The box graph is the results
of 1000 random guesses. As shown
in the legend, the red points are the
results of the k-medoid clustering,
and the blue points are the results of
the hierarchical clustering; the circle
points are the results of dimension
zero, and the rhombus points are the
results of dimension one.

Random vs. Clustering

(b) Matrix norm clustering similar-
ity results. The box graph is the
results of 1000 random guesses. As
shown in the legend, the red point
is the k-medoid clustering, and the
blue point is the hierarchical cluster-
ing.

Fig. 15. Clustering evaluation

7 Discussion: Future Work and Applications

In this project, we gained our results by implementing network and TDA
methods on a very limited dataset. Obviously, more research can be done using
more and different genres of music data. Also, if we keep track of the informa-
tion from more dimensions, such as dynamics and timber, it might show the
real power of persistent homology in high dimensional spaces. From a network
and statistical point of view, we can also continue examining more implications
of the statistics, and verify them by testing on more pieces of music using en-
semble averaging. The extensions of the TDA methods are numerous, too. For
instance, we can apply different edge metrics rather than the weights, different
thresholding methods, and different dimensions of filtering quantities [5].
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As for applications, the results of this project have the potential to assist al-
gorithmic composition and music analysis, and be used for educational purposes
and to evaluate the complexity of pieces. By combining the annotated intervals
obtained with certain inorganic algorithms, such as genetic algorithms, cellular
automata, chaos self-similarity theory, and artificial neural networks mentioned
in [31H33], we might be able to improve and bring life to the current research.
Furthermore, among many other possible applications of network and topolog-
ical data analysis, we can exploit the analogy often draw between music and
language [34]. Due to presence of the famous power-law: Zipfs law, it is very
likely that the network of language can show similar behaviours as the musical
ones, and therefore such an investigation might bring more interesting insights
into the interdisciplinary study of art and science.
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Abstract. In this project, we created an agent-based model of music
group playing under four different interaction mechanisms. Based on real
music data, added randomness and simplifying assumptions, we examine
how agents synchronize and deviate from the original score. We find that
while music can make synchronization complex, it also helps reducing the
total deviation. By studying the simulation process, several conclusions
on the relationship between different growing speeds of total deviations
and different interaction schemes are drawn. With interpretation from
a musical point of view, we find that, in a music ensemble, listening to
neighbors helps the players end up in sync. However, if people do not
listen carefully enough, the deviation becomes larger than when people
do not listen at all. On the issue of whom one should listen to, the
results show no significant differences between listening to the immediate
neighbors and to the whole group. Finally, we also observe that large
deviations can be reduced by making the musicians move while playing.

Keywords: synchronization, collective behavior, agent-based modeling,
deviation, music playing

1 Introduction

Many questions have been asked about the rhythmic complexity of music. Is it
more difficult to synchronize over a melodic rhythm or a drum beat? Is it better
to listen to people around you or just play as written in a music ensemble? How
can we obtain better synchronization? Several research papers and books have
addressed synchronization problems in biological and social/human interaction
systems [1-5], but few have answered this line of questions. In this project, we
simulate music ensembles using agent-based models, a method known for its abil-
ity to produce complex behaviors from simple rules. Although it is not possible
for simple models to accurately represent every interaction among musicians, it
is still possible to gain valuable insights from abstractly simulated music ensem-
bles.

Two important concepts embedded in this project are derived from the well-
known “firefly” model of synchronization [5]. Like this model, we define phase
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Fig. 1. Initial configuration of the music group program, with a conductor symbolized

” W

in red and four different groups of musicians in “white”, “green”, “yellow”, and “blue”.

and frequency variables to characterize the system. Herre, the frequency of each
agent will be called “tempo” and the phase lag, the “the waiting time”. Im-
portant differences with the firefly model are the incorporation of actual music
data and conditional interactions between musicians. Another important con-
cept is the unavoidable deviation of the played stream from the written music,
which has been investigated in [6-8] and experimentally proven. Although we do
not have such a small time resolution, the implementation can be justified with
amateur music players.

2 Model

In this model, we use real music data in the form of duration datasets (without
pitch), extracted from Beethoven’s quartets. The players follow these durations
and different interaction schemes among themselves. We simulate music ensem-
bles consisting of four sections, “white”, “green”, “yellow”, and “blue” (Fig. 1),
so that we can observe the differences between schemes applied inside each sec-
tion. Musical interactions between two sections are ignored for simplicity. Some
amount of spatial interaction between players will be introduced at a later stage.

2.1 Parameters
The parameters of the model are the following (Table 1):

— Number of agents: how many agents there are in one musical section.

— Music sheet: 10 different music datasets (rhythmic parts only, no pitch); 1-
8 are the Beethoven string quartets Nr. 1-8; 0 and 9 are drum beats with
intervals of 1 and 3 seconds.

— Avg freedom: mean of the freedom of agents (with default standard devia-

tion, modifiable from the program itself).

Tempi std: standard deviation of the tempi of agents (with default mean

value, modifiable from the program itself).
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Parameter Range ||Notation
Number of agents 1-28 x
Music sheet 0-9 N/A
Avg freedom 1-100 F
Tempi std 0-20 o
Max reaction 0-100 R
Confidence 0-8 C
Waiting resolution 1-1000 N
With/Without Conductor||true/false -
Move/No move true/false -

Table 1. Table of model parameters with the range of acceptable values and mathe-
matical notations

— Max reaction: maximum value of the reaction skills of agents (where actual
skill is a random integer number under this cap, modifiable from the program
itself).

— Confidence: how many actively playing neighbors one musician must have,
in order to be confident that s/he is playing at the right time.

— Waiting resolution: a normalizing factor controlling in part how much time
resolution a musician has.

— With/without conductor: this is just for the yellow group; the tempo will be
set uniformly to 100 if this is on and the players became aware that they are
playing “wrongly”.

— Move/no move: agents will move randomly if this is on, as shown in Fig. 2.
Their neighbors will therefore also change.

To have a concrete view of the effect of these parameters, we explain the dy-
namics of the model in the next section.

2.2 Dynamics

The mechanism used to synchronize the musicians is based on the music. For
every note duration in the dataset, we approach it using a timer, which is reset
at the beginning of every step. The value of the timer is denoted by #(i), where
1 is the step number in the process, which is equal to the number of duration
values in the dataset. Then, once the timer’s value and the note’s duration m(7)
are sufficiently close, we ask the agents, which are by default in color gray, to
change to the color belonging to their group (white, green, yellow, blue), hence
achieve an effect of “playing” the event. We will also use the word “recoloring” to
denote music playing. We denote each agent by x, as mentioned in the parameter
table. For describing the relation between a parameter and the turtles-owned
value controlled by it, we use a functional notation. For example, each turtle’s
reaction skill will be denoted by R(z). Considering all the parameters we used
above, this part of the dynamics can be expressed as:

o(z) x t(i) > R wait for R(z)/N, and set color := gray, t(i) := 0
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Fig. 2. Typical motion dynamics.

otherwise, recolor. The next time the agent becomes gray can happen at the
next step, when the timer discovers that there is still a certain amount of time
until the end of the next duration.

Finally, we add interactions among players to the process, asking agents to
“look” whether there are enough players around them who are playing. If that
number is larger than the confidence level of a player, C, then s/he must change
the tempo according to the mean of the active neighbors, denoted by {4 }re(0,28)
(explained in detail in the next paragraph). We denote the number of the gray
linked-neighbors by n,, and write this part of the dynamics:

if ny > C, tempo(zx) := tempo(xy,)

After all this decision making, we record the actual difference between the
waiting time and the duration, and plot this deviation. Differences between the
four group reside in how they react to other players’ tempi, i.e. the differences
between the {zy}:

— Players in the white group listen to other neighboring white players and take
the mean tempo from them.

— Players in the green group listen to other neighboring green players, but
follow a normal distribution whose mean is equal to the average tempo of
the neighbors.

— Players in the yellow group have two choices: when the conductor option is
on, they sync to the conductor, i.e. adopt a uniform tempo; otherwise, they
listen to all other players in all groups.

— Players in the blue group listen to all other blue players and take the mean
tempo from them.

We also introduce a motion dynamics, while the “Move” option is on, we ask
the players to move randomly, including changes in their links; that is, their
neighbor will change according to where they are.
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(a) Time series of the total deviations
of the white (shown in black), green,
yellow and blue groups, featuring the
large deviation of the green group. Other
groups have similar lower total devia-
tions. The “conductor switch” for the
yellow group is on. Other different grow-
ing patterns between the white, yellow
and blue groups are caused by the speci-
ficties of the music at hand.
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(b) Time series of the total deviations of
the four groups when musicians are mov-
ing. Here, the blue group is strongly in-
fluenced by the bad tempi of the green
players. In other runs, the group that
gets most influenced might change. In
general, however, there is no outlier
curve of total deviation like the green one
in (a).

Fig. 3. Time series of total deviations: (a) static players; (b) moving players.

2.3 Statistics

The following statistics are used to measure the outcome of our model:

— Each group’s total deviation from the music, called “total deviation 1”7, etc.

— Each player’s deviation from the music (because the total deviation loses the
information about whether individual players are lagging or leading).

— The tempo distribution of the players over each group; synchronization
among players can be observed when these distributions converge.

— The deviation distribution of the players; most are centered around zero, oth-
ers account for the cumulative deviation that we show in the total deviation
window.

3 Results

In the beginning of the simulation, tempi are scattered in all four groups, and
total deviations grow with time in a similar manner. We can also see the conver-
gence of tempi in certain groups. After observing the process for a while, we find
different growing speeds of the total deviation between different groups. The
green group exhibits a particularly big deviation as shown in Fig. 3(a). After
running for a period of time, the program slows down. This should not matter
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(a) Time series of the total deviations
of the white group for different music
pieces. Real music is adding complex-
ity to the drum-beat music. Listening to
neighbors results in larger deviation than
the group with the conductor for drum-
beat music, but smaller deviation for real
music.
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(c) Time series of the total deviations
of the yellow group for different music
pieces. Real music is adding complex-
ity to the drum-beat music. With the
conductor, the drum-beat music has the
least deviation. The linear growth rates
are close, also resulting from having a
conductor in lead.
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(b) Time series of the total deviations
of the green group for different music
pieces. Compared to the Beethoven mu-
sic, the drum-beat music leads to fast
growth in deviation. The complexity of
music prevents the generation of devi-
ation upon deviation. The curve with
larger curvature is the drum beat of 3-
second intervals.
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(d) Time series of the total deviations of
the blue group for different music pieces.
The linear growth of the drum-beat mu-
sic is at around the same level of the
Beethoven music. The linear growth with
larger slope is the drum beat of 3-second
intervals.

Fig. 4. Total deviation time series of all four groups with different music pieces

much for the project because when deviations become large, the ensemble usu-
ally stops playing. However, there are cases when musicians sight-reading new
music are not able to know for a while whether they are playing out of step or
not. So it is also useful to look at the dynamics for a longer period of time, and

record observations of large deviations.

One way to improve on large deviations is by actually making the players
move (Fig. 3(b)). By “improve”, we mean that the slopes of total deviations in
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the four groups are more or less similar, so there is no more single large deviation
(as the green curve in Fig. 3(a)), which is the most disruptive to music group
playing. This can happen because, as the completely off-beat players encounter
the right players, they can exchange information, not through tempo, but just
by looking at whether their linked neighbors are playing or not. However, this
method has an obvious flip side, which is that bad influence can be proliferating,
too, as can be seen in Fig. 3(b).

Given the above results and diagrams, we can already draw musical conclu-
sions such as: listening to your neighbors helps the ensemble end up in sync;
furthermore, if people do not listen carefully (as in the green group) the results
can be a disaster. In the case of the yellow group, it is safe to say that they
should not listen to people who do not listen; instead, they should look at the
conductor. Finally, for the blue group, the lesson we can learn is that listening
to the whole group or only to your neighbor does not make much difference,
therefore it is sufficient to listen to a small number of people around you.

Besides running the simulation and observing statistics under a given set
of parameter values, we also explored the “music” parameter axis. The total
deviation time series of all four groups with different music pieces are shown in
Fig. 4(a)-4(d). There are two regular-looking curves in each graph, because music
Nr. 0 and music Nr. 9 are drum-beat intervals of 1 second (the line corresponding
to the group color) and 3 seconds (the red line), not music. In the green group
case, the growth is fast in comparison with the other linear growth of deviation.
We can also see one common feature out of the drum-beat cases: the smaller the
intervals are, the easier they are to sync.

Excluding Fig. 4(b), in most of the cases, we can see that music definitely
makes it harder for people to minimize their deviation, especially as shown in
Fig. 4(c). However, in Fig. 4(b), it is actually helping with a reduction of the
total deviation. If we recall the phenomenon of many people trying to clap in a
certain tempo but unavoidably just getting faster and faster, this fast-growing
curve may bear some resemblance to that phenomenon. A plausible explanation
of the seemingly helpful function of music would be that the varying interval
lengths are suppressing further growth of the deviation during the process.

4 Conclusion and Future Work

We have presented a model consisting of different mechanisms of synchronization,
which was able to tell us some non-trivial facts about music group playing.
In future work, we can implement minor modifications such as changing the
distribution of different parameters in addition to their values; different neighbor
selection strategies can be used, since musicians are not necessarily just listening
to their immediate neighbors in the ensemble.

However, the most important factors omitted here are the many musicological
nuances which are no doubt used by individual musicians; for instance, the fact
that a certain amount of rest in the music will help synchronization, or that off-
beat notes are harder to sync, etc., are not considered. Moreover, the model did
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not account for musical interactions across the four groups, although they clearly
influence musical interpretation and synchronization, too. Therefore, we will take
introducing musical rules in the agent behavior as a priority in future work.
While such projects are mostly based on subjective observation and rather non-
exhaustive, they also open the door for more critical inquiry and opportunities
for interesting discoveries at the same time.
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