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Abstract

There are many examples of the complex interactions of climate and vegetation
through various feedback mechanisms. Climatic models have begun to take into ac-
count vegetation as an important player in the evolution of the climate. Climate
models range from complicated, large scale GCMs to simple conceptual models. It is
this last type of modeling that I looked at in my project. Conceptual models usually
use differential equations and techniques from dynamical systems theory to investi-
gate basic mechanisms in the climate system. They have in particular been applied
to investigate glacial-interglacial cycles. These models have not often included vege-
tation as one of their variables, and this is what I’ve looked at in the project. First I
investigate a simple, two equation model, and show that even in such a simple model,
interesting oscillatory behaviour can be observed. Then I go on to study models with
three equations, based on an existing model for temperature and ice sheet evolution.
I extend this model in two ways: by adding a vegetation variable, and by adding a
carbon dioxide variable. Again, oscillations are observed, but the existence depends
on parameters that are linked to the vegetation. Finally I put it all together in a model
with four equations. These models show that vegetation is an important factor, and
can account for some specific features of glacial-interglacial cycles. They open up a
lot of possibilities for further investigation and extensions.
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1 Introduction

1.1 Climate - vegetation interaction

Climate has an important effect on vegetation. Plant growth is affected by temperature,
carbon dioxide levels and availability of different nutrients. Also the available space is
important: ice covered parts of land are not suitable for vegetation growth. It also works
the other way around, though: vegetation plays an important role in the regulation of the
climate. Many different effects are observed. One of the most important is the albedo
effect: vegetation is darker than bare ground or ice and therefore absorbs more solar
radiation and warms the planet. This phenomenon appears to be important in desert
regions, where it interacts with the hydrological cycle. Charney [Charney, 1975] was the
first to include this in a model, but others have followed since [Claussen et al., 1999; Zeng
et al., 1999; Zeng and Neelin, 2000]. Another important region where albedo feedback is
important are the high latitudes, where boreal forests mask snow in winter, causing an
effective warming of the surface [Bonan, 2008; Brovkin et al., 2003].

Another effect is the uptake of carbon dioxide by plants, which in turn attenuates the green-
house effect and cools the surface. In addition to the more obvious effects of albedo change
and carbon dioxide uptake, there are many slightly more subtle mechanisms through which
vegetation influences climate. Examples are the effect of plankton on cloud formation (the
CLAW hypothesis [Ayers and Cainey, 2007]), evapotranspiration or more exotic feedbacks,
such as the so called lightning-biota feedback as studied in [Shepon and Gildor, 2008]. A
review of different mechanisms can be found in [Meir et al., 2006]. The article [Claussen,
2009] gives an introduction on the vegetation-climate interactions on long timescales.

Closely related to vegetation and climate is the global carbon cycle. The amount of carbon
dioxide influences the radiative balance of the Earth through the greenhouse effect. Plants
need carbon dioxide for photosynthesis, and carbon fluxes between atmosphere, ocean and
the land are very important in climate modeling. It has been suggested that modeling
of the carbon cycle is necessary for any model studying paleovegetation [Prentice and
Harrison, 2009]. The carbon cycle is a very complex thing [Falkowski et al., 2000], with
the ocean chemistry and dynamics playing an important role [Follows and Oguz, 2004].

Although many examples are known where vegetation plays an essential role in the climate
system, it has only been rather recently that vegetation is included as an active player in
climate models. Climatic models range from simple, conceptual ODE models up to full
scale GCMs (general circulation models or global climate models). Across the whole range,
vegetation can be included to better explain various climatic phenomena and trends. In
some cases, predictions for models that couple atmosphere, ocean and vegetation dynamics
(sometimes refered to as Farth system models) differ radically from models excluding
vegetation [Meir et al., 2006], showing the need to include vegetation in our models to
obtain better understanding of the climate.

Some studies that have included vegetation are the GCMs that were recently used for the
IPCC fifth assesment report [Stocker et al., 2013; Piao et al., 2013]. GCMs are the most
complex models used for climate modeling, and are meant to describe in great detail the
processes in atmosphere, ocean, and land. These models are very costly computationally
and are as such not often used to model climate over long time scales, which is needed
when studying for example ice age cycles or transitions in past climates. More suitable
for these kind of questions are models of intermediate complexity, EMICs (Earth models
of intermediate complexity) [Claussen et al., 2002]. They simplify some of the processes
and have lower resolution than the full-fledged GCMs, and are faster. They have been
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Figure 1: Data from Vostok ice core. Reproduced from [Petit et al., 1999].

succesfully used for studying paleoclimate, also coupled with vegetation models [Willeit
et al., 2013; Ganopolski et al., 1998; Claussen et al., 1999].

The simplest models for climate are conceptual models, which usually use differential
equations to model a simple climate system. These models are not realistic, but allow to
study basic underlying mechanisms. They are also useful for exploring bifurcations, which
correspond to tipping points [Lenton et al., 2008] in the climate system. Bifurcations or
tipping points correspond to situations in which a small parameter change can have a
large effect on the behaviour of the global system. Studying conceptual models can also
provide guidance in interpreting results from larger, more complicated models [Brovkin
et al., 1998; Brovkin et al., 2003]. A popular application of dynamical systems modeling
for climate is the explanation of ice age cycles. We’ll discuss this and review some models
in the next section.

1.2 Dynamical systems modeling for climate
1.2.1 Ice ages

The Quaternary period (about 2.6 million years ago uptil present) is characterized by ice
age cycles. During glacial periods, large ice sheets covered parts of the land, and average
temperatures were about 5 degrees lower than what we have today. The main driver for
these cycles are variations in the Earth’s orbit, called Milankovitch cycles [Hays et al.,
1976], reinforced by the internal variability and feedback mechanisms of the climate. Not
only temperature and ice sheets varied during these periods, also the level of carbon dioxide
changed a lot. Data from ice cores show that carbon dioxide and temperature rise and
fall at more or less the same pace (Figure 1). There have also been studies that show that
vegetation changes under influence of the orbital forcing [Dupont, 2011; Tzedakis, 2005],
and that it plays a role in reinforcing the orbital variations [Claussen et al., 2006; Meissner
et al., 2003]. Vegetation and carbon dioxide (for example through the greenhouse effect,
or the influence of carbon dioxide on the growth of plants) play an important role in the
glacial-interglacial cycles.

1.2.2 Climatic oscillators

Oscillations in the climatic system, and especially the ice age cycles, have been conceptu-
ally described using dynamical systems. In the book [Ghil and Childress, 1987, Part IV],
the basic features of this kind of modeling are explained. The aims of such ODE models
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are diverse: some try to explain the typical frequencies that appear in the time series such
as in Figure 1, and especially the 100ky peak that cannot be explained by orbital forcing
alone and thus needs some kind of internal mechanism to be obtained [Ghil, 1994]. Other
models try to explain the sawtooth shape of these curves, such as [Hogg, 2008]. The model
that is explored in the long paper [Fowler et al., 2013] includes a detailed carbon cycle
and a lot of physically based mechanisms, while some authors try to make their model as
simple as possible [Crucifix, 2012], but still capture the basic oscillations.

Another difference among models is the extent to which their equations are based on
physics. None of the ODE models are very realistic, but many are based on basic physical
mechanisms. The papers [Kéllén et al., 1979; Le Treut and Ghil, 1983; Fowler et al., 2013]
for example have an ice sheet evolution equation based on the physics of the ice. Other
models, as the series by Saltzman and collaborators ([Maasch and Saltzman, 1990] and
other articles) are highly parametrized, without a real physical basis for the equations.

Some models explore one specific mechanism and try to see whether it can account for
some features of glacial oscillations. In [Paillard and Parrenin, 2004] the salinity of deep
ocean waters plays a crucial role, while in [Gildor and Tziperman, 2001] the sea ice is a very
important factor. Most models include orbital forcing, but some are able to explain parts
of the spectrum with only the internal variability, such as [de la Cuesta et al., 2013], who
use a Lotka-Volterra type exchange mechanism for carbon stocks as the driving mechanism
behind the cycles.

Finally, these models are also studied in more theoretical context, mathematically rigourous,
such as in the recent work by Widiasih [Walsh and Widiasih, 2014].

1.2.3 ODE models for climate-vegetation

The models described above do not take into account vegetation on the planet. The
most recurring variables are temperature, ice mass and carbon dioxide. There are cer-
tainly models that study the interaction between climate and vegetation, but not in the
ice age/paleoclimate context. The most famous of these models is probably Daisyworld
[Watson and Lovelock, 1983]. The hypothetical planet with two types of daisies is used
as an example of how nature regulates the planetary climate, for a wide range of external
variables such as solar input. Daisyworld has had many successors and extensions. A
review can be found in [Wood et al., 2008].

Daisyworld doesn’t have an equation for the evolution of temperature. A series of models
that incorporate such an equation was studied by von Bloh and Svirezhev [Svirezhev
and von Bloh, 1996; Svirezhev and von Bloh, 1997]. In those models, multiple stable
equilibria of the system are observed, with no, low or large amounts of vegetation. The
appearance of multiple stable states is a recurrent feature in these models, also in slightly
more complicated ones such as [Aleina et al., 2013], which models the hydrological cycle
with ODEs. This feature is also sometimes observed in models of intermediate complexity
[Claussen, 1998].

Apart from multiple stable states, it is interesting, also in the spirit of the climatic oscil-
lators, to examine to possibility of internal oscillations in such models. Two extensions of
Daisyworld with oscillations are described in [Nevison et al., 1999], where the oscillations
arise through the addition of a temperature evolution equation to the original model, and
[Gregorio et al., 1992], where a delay is introduced in the system. The appearance of
oscillations will be one of the main points of interest in the models that I studied for my
project.
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More realistic climate-vegetation models that can be mentioned here are [Lenton and
Huntingford, 2003], which examines carbon fluxes in a between soil, vegetation and atmo-
sphere and [Lenton, 2000], which can be seen as a Earth system model using only ordinary
differential equations. It is a rather extended ODE model, including a carbon cycle and
vegetation, but no ice sheets. It can in principle be applied to paleoclimate but the author
uses it to study present-day climate.

1.2.4 Overview of what follows

The remainder of this report is structured as follows. First I briefly described how I
proceeded in studying climate-vegetation interactions, and the software I used. Then
I elaborate on the different models I studied (4 in total). The first model is a very
simple two equation model, which shows some interesting dynamics. In addition, it is a
useful mathematical exercise when studying dynamical systems. The next two models are
expansions of an existing model exhibiting oscillations, due to Kéllén, Crafoord and Ghil
[Kéllén et al., 1979]. The models are explained and the main results are shown, rather
qualitatively and exploratory. Then a final model is discussed which merges the two three-
equation models into one four-equation model. In the end I discuss some further work
that can be done, and give a conclusion. The appendices contain more figures, tables with
parameter values and a draft of a paper on the two equation model.

2 Methodology

In the project I studied climate and vegetation using dynamical systems. For this I
used a combination of analytical and numerical approaches. For the simple model with
two equations, some analytical work was feasible. I found the book [Strogatz, 1994] a
very useful companion for this. For the other models, I used the software XPPAUT
[Ermentrout, 2012] for solving the systems and making the bifurcation diagrams (the
program has an interface to AUTO). Python was used for small computations, and the
module PyDSTool [Clewley et al., 2007] was used to double check some of the results of
the numerical simulation, to make sure that some of the apparent peculiarities were not
due to numerical errors. Plotting was done using the IXTEX packages Tikz/PGFPlots.

3 Models and results

3.1 A simple two equation model

Note: a draft of a paper on this model is included in the appendix. The following is a
summarized version of the model and the results.

3.1.1 Description

The first model I studied is a two equation model. Inspiration for the model were Daisy-
world [Watson and Lovelock, 1983] and the models by Svirezhev and von Bloh [Svirezhev
and von Bloh, 1996; Svirezhev and von Bloh, 1997]. The main difference from these models
is the inclusion of ocean and sea ice. The model’s equations are given in (1).
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Cr = (1 - a(T, 4)Qo — Ro(T) N
% _ B(T)A(1 — A) — A

The temperature equation expresses that temperature changes as a result of the balance
between incoming and outgoing energy. The variable Qg is the incoming solar energy,
which is equal to 342.5 W/mQ. The function « denotes albedo and is given by (1 —
p)oo(T) + p(ayA + ay(1 — A)). Here p is the fraction of the planet that is land, taken
to be 0.3, as on Earth. The values a,, o, and o, denote the albedo of the ocean, albedo
of vegetation and albedo of bare ground respectively. The latter two are constant, and
the essential thing is that o, < g (forests are darker and absorb more energy than bare
ground). The albedo of the ocean will be taken as a function of temperature, to take into
account the presence of sea ice. We will use a ramp function, as in [Sellers, 1969] and
[Ghil and Childress, 1987]. The function is given by equation (2):

Oma if T < Ta,é
ao(T) = { Qma + %(T —Toy) if Toy<T<Thyu. (2)
Qg if Ta,u <T

Here o, is the albedo of an ice-covered ocean and «,,; that of an ice-free ocean. The
parameter values can be found in the appendix. The value of T, ,, is rather high (almost
27 degrees Celsius), which means a tiny bit of sea ice will be present even for very high
global temperature.

The function R,(7T") denotes the outgoing energy from the planet. Often the quartic Stefan-
Boltzmann law is used, or a linearization thereof, but we opt to take into account the fact
that increasing temperature entrains increasing carbon dioxide levels and thus greenhouse
effect, which tends to decrease the outgoing radiation. The form for R,(T") we choose is

RO(T) = Bo + Bl (T - Topt)a

where By, By are constants and T, is the optimal growth temperature for the vegetation.
There is a lot of uncertainty on the value of these parameters, especially in By, the linear
radiative forcing of temperature, since it all depends on which effects are taken into account
and which are not. We will not attempt to obtain this values as realistic representations
of reality, but for definiteness we will use By = 200 and By = 2.5. Despite the obvious
roundness of these numbers, this parametrization is quite close to a linearization of an
expression of the form goT?, corresponding to Stefan-Boltzmann with a grayness factor g
of about 0.55.

The second equation expresses that vegetation grows logistically, with a temperature-
dependent growth rate 5(7"). The shape of the function /3 is taken to be the same as in
Daisyworld and related models (3):

B(T) = max(0,1 — k(T — Topt))*. (3)

This means that growth rate is zero, except for in a certain interval, in which the depen-
dence is parabolic with a maximum at Tgp¢, which is 283K in our model. The parameter
~ is the death rate of plants. Later on v will serve as a control parameter. Table 1 in the
appendix contains an overview of the parameters and their values.
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Figure 2: Phaseplane with nullclines (dashed lines) and fixed points (dots). The stable
manifold of the saddle is shown in black and the unstable in gray. Coordinates and
classification of the fixed points: (242,0): stable node, (281,0.9): saddle point, (298,0.13):
stable focus.

3.1.2 Results

The system has three fixed points. Figure 2 shows the phaseplane (the caption includes
the coordinates and classification of the fixed points). The stable state where A = 0 is
very cold, such that no vegetation can exist (8(7') = 0), and the ocean is completely
covered with ice. More interesting behaviour is observed for the fixed point with non-zero
vegetation. For the standard parameter values, this point is a stable focus. Stable foci can
lose their stability when the eigenvalues of the Jacobian matrix cross the imaginary axis
when some parameter changes. We take v as a control parameter, and see what happens.
When ~ decreases, the focus indeed loses its stability in a Hopf bifurcation and gives rise
to a limit cycle.

This occurs for v = 0.02572, so when the overturning time of vegetation (1/v) is about
40 years. The results can be seen in the bifurcation diagram in Figure 3. Also note that
when + is higher than 0.41, no fixed point with non-zero vegetation exists. The stable
fixed point, together with the saddle, are created in a saddle node bifurcation. We note
that instead of changing v, we can also obtain the Hopf bifurcation by decreasing Cr, the
thermal heat capacity. It is not one of these parameters separately, but rather their product
which determines the behaviour of the system. We can regard Cr as a typical timescale
for temperature adjustments, and analogously 1/+ as the typical timescale for vegetation.
The oscillations therefore occur when the ratio between these timescales assume a certain
value. This is resemblant of other Hopf bifurcations where the time scales need to match,
as for example in [Ghil and Tavantzis, 1983].

Figure 4 shows plots of temperature and vegetation cover versus time.

The oscillations have an amplitude of a few degrees for the temperature, but are very large
for the vegetation. In addition, the vegetation plot show a sawtooth-like shape. It is also
noteworthy that the vegetation cover stays at almost zero for long times, after which it
shoots back up. The sea ice varies between 0 and about 6% cover. Even though this is
not that much, the sea ice provides an essential feedback mechanism, without which the
limit cycles wouldn’t be there. Sea-ice has been noted to be a possible determining factor
in the inception of glacial cycles [Gildor and Tziperman, 2001], which is resemblant of the
importance in our present model. We can remark here that our model essentially only
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Figure 3: Bifurcation diagram. The curves were computed with XPPAUT.
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Figure 4: Trajectories for v = 0.02, so v/Cr = 1/10

differs from [Svirezhev and von Bloh, 1996] in the inclusion of the ocean and the sea ice,
and that in that paper the authors actually prove the absence of limit cycles using Dulac’s
criterion.

Note that temperature jumps up quickly, but that cooling down and growth of sea ice is
slower. This is reminiscent of the typical behaviour of temperature over glacial-interglacial
cycles, where temperature rises quickly (so-called terminations) but the buildup of ice
sheets and cooling of the planet is slower. It already indicates that inclusion of vegetation
in the “ice age oscillators” might be an interesting direction to pursue, which I have done
in the remainder of the project.

As further explained in the article in the appendix, it is essential for the focus to become
unstable that the fixed point lies in the region where 5’'(T') is negative and dra is negative
as well. Translated to parameter values, this means that the optimal growth temperature
for plants needs to be relatively low and there must be ice present for relatively high
temperatures. This is one of the main questionable points of this model, since we used an
optimal temperature of only 10 degrees Celsius for plant growth, and sea ice present up to
27 degrees Celsius. The model shows however how even a very simple, 2 equation model
can exhibit interesting behaviour, with only few basic feedback mechanisms.

4 Three equation models

4.1 Introduction

The previous model showed how vegetation and the combination with sea ice feedback,
can play a role in oscillations of the climatic system. As explained in the introduction,
glacial-interglacial cycles constitute an important example of oscillatory behaviour of the
climate, and many models have been proposed to explain these cycles. In the second
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part of my project, I extended one of this models, by Kéllén, Crafoord and Ghil [Kallén
et al., 1979] (further on called the KCG-model). The model has two equations, one for
temperature evolution and one for the evolution of the ice sheet. The model can sustain
internal oscillations. These arise through a Hopf bifurcation, studied in detail in [Ghil and
Tavantzis, 1983]. The oscillations appear when the ratio between the typical timescales of
temperature and ice sheet evolution are in certain proportion to eachother.

I extended the models by adding a third variable to the two equation model. One the one
hand, I included atmospheric carbon dioxide, which is an important factor, as explained
before. On the other hand, I included a vegetation cover which interacts with the climate
through its albedo and the dependence of growth rate on temperature. At the very end,
as briefly described in the last section, I put these two models together in a four equation
model.

4.2 The KCG model

Let us very briefly describe the model we use to start with. The model, studied in [Ké&llén
et al., 1979], uses an energy balance equation for temperature and an ice sheet growth
equation for the ice extent. The equations are given in the following system:

Z—i = Qo(1 — paand(¥) — (1 = p)aocean(d)) — k(T — T})

a1 (4)

pri W((l +e(T)bp — E)
We will not describe the exact meaning of these equations, since this is well explained in
[Kéllén et al., 1979] and also in the book [Ghil and Childress, 1987]. For now it suffices
to know that 6 is a normalized temperature, ¢ is a normalized ice sheet extent. The
parameter p denotes the ratio between time scales for temperature evolution and ice sheet
evolution, and the value of this parameter determines whether the system has internal
oscillations. Temperature evolution is determined by the difference between incoming
radiation, partially reflected by ice, and outgoing radiation, parametrized as k(T — T}) in
this model. The ocean albedo is of Sellers-type, as the one we used before. Land albedo
is dependent on the ice sheet extent.

The equation for the ice sheet is obtained from physical principles, assuming a parabolic
ice sheet profile. The function € denotes the so-called temperature - precipitation feedback.
The underlying assumption is that, for high temperature, the ratio between accumulation
and ablation (melting) is higher. It is a crucial assumption of the model.

Note that we use the symbol p for the fraction of the planet that is land, whereas the
original article uses v. We do this not to confuse with 7, the vegetation death rate, used
further on.

This model has already been extended to a three-equation model in [Le Treut and Ghil,
1983]. The third variable is the deflection of the Earth’s mantle under the weight of the ice.
It is also detailed in [Ghil and Childress, 1987]. The model has rich dynamics, especially
when forced with orbital variations.

The orbital forcing in this model is done in two ways. One way is directly on the incoming
radiation ()g, which then becomes a function of time and changes due to changes in
eccentricity of the Earth’s orbit. The other type of forcing is through the function e,
which changes along with the variations in obliquity and precession of the orbit of our
planet. We again refer to the original publications for the details.
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4.3 Temperature, ice sheet, carbon

The first extension of the KCG model will be a model including a simplified carbon cycle.
Carbon plays an essential role in the climatic system. It is one of the main greenhouse
gases that warm the planet and the increase of atmospheric carbon due to burning of
fossil fuels is a major cause for global warming [Stocker et al., 2013]. As mentioned in the
introduction and shown in Figure 1, the amount of carbon in the atmosphere has varied
along temperature over the glacial-interglacial cycles. No definitive explanation of this
has been given [Gildor, 2004]. Many different mechanism play a role, the most important
being probably the ocean. The book [Follows and Oguz, 2004] provides a good background
on the oceanic carbon chemistry, and gives an explanation of such things as the solubility
pump, organic pump and mixing, among others. We will not attempt to give an exhaustive
explanation of all mechanisms involved, but let us summarize the effects that we include
in the model. It is rather difficult to summarize the carbon cycle into only one equation,
so only the most important factors will be taken into account. We mainly used the article
[Hogg, 2008] as inspiration. The following mechanisms will be included:

Solubility of carbon dioxide The Earth’s largest carbon reservoir is the ocean. The
amount of carbon stored in the ocean depends on the temperature, through the
solubility. Colder water is able to hold more carbon dioxide than warmer water.
Thus when temperature rises, the ocean will release carbon dioxide. We model the
ocean-atmosphere flux as

1
- (Coc,Oeb(T_288) _ C), (5)
T

C
where Cy. is the amount of carbon in the ocean at present day temperature, taken
to be a constant (a massive simplification, we must say). This is modified with a
factor e®T=288) which represents the solubility effect. The exponential form and the
value of the parameter b were taken from the model by Fowler [Fowler et al., 2013].
The parameter C,.o was adjusted to match data more closely.

Weathering The carbon dioxide in the atmosphere reacts with rocks and minerals, and is
as such removed from the atmosphere. Walker et al. [Walker et al., 1981] obtained an
experimental formula expressing the weathering rate as a function of carbon dioxide
partial pressure and temperature, but we will used a simplified version of this, as in
[Hogg, 2008]. The weathering rate is

Wy + W1 C,

and thus only depends on the amount of carbon dioxide. It can be seen as a negative
feedback that acts to counter increases in carbon dioxide in the atmosphere.

Uptake by plants Inspired by results from the four equation model (to be explained
later), and evidence from the literature on the importance of the biosphere in the
carbon cycle [Lenton and Huntingford, 2003; Falkowski et al., 2000], we include a
partial vegetation cover in the model, and carbon uptake by vegetation. This uptake
is given by W,C'A,, where A, is the fraction of land covered by vegetation and W,
is a parameter.

Sea ice The ocean-atmosphere flux we described above can of course only happen if the
surface of the ocean is free. We assume that ice-covered water has no carbon dioxide
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exchange. Therefore we multiply equation (5) with a factor 1 — f(T"), where f is the
fraction of ocean that is covered by ice. This depends on temperature, in the same
way (Sellers-type) as the albedo of the ocean depends on temperature.

Volcanism Following [Hogg, 2008], we take a constant input of carbon dioxide in the
atmosphere of value V.

Let’s summarize this into one equation:

d 1
ch =V = (Wo+ WiC) = WaAyC + —(Cocpe" ™2 = C) (1= £(T))  (6)

The level of carbon dioxide doesn’t influence ice sheet growth, but it does influence the
temperature evolution. Because of the greenhouse effect, there is less outgoing radiation
when more C'Os is in the atmosphere, and the dependence is logarithmic [Gregory et al.,
2009]. Therefore, we add a term BlnC/Cy to the temperature evolution equation. An-
other change to the original temperature equation lies in the land albedo. In KCG, it is
given by ajang = g+ a3 L. We change this to Ay, + (1 — Ay) (g + a1 L), with a different
value of ag. In this model, A, is a parameter, whereas in our other models it will be a
variable. See also Remark 1 in this respect.

4.3.1 Equations

We change the system (4) into the following system:

% = Qo(1 — patana(f) — (1 — p)ocean(#)) — k(T — Ty) + Blnc

dl 1

i uﬁ((l +e(T)lr — £) 0
% =v — (wo + Wic) — WaAuc+ Tl(coc,Oeb(Tse_%g) —c)(1 - f(T))

Here c is the normalized carbon dioxide level in the atmosphere, equal to C'/Cy where
C is the level in ppm and Cj is the standard preindustrial level of 280 ppm. Also, the
time used in the original model was kyears, such that the constants in the carbon dioxide
equation now have scaled values (this is denoted by their lowercase typeface). Values of
the different parameters can be found in the appendix.

4.3.2 Results

This model exhibits, as the original KCG, internal oscillations. The oscillations do not
exist for all parameter values, however. In the general spirit of the project, the parameter
that we studied is A,, the vegetation cover. Figure 5 shows plots of temperature and
carbon dioxide level versus time. We plotted temperature and carbon on the same axis to
see whether temperature leads carbon dioxide, as in the the data of the Vostok ice core
(Figure 1). Indeed, temperature is a bit earlier than carbon, although the difference is
rather small. Amplitudes of the oscillations correspond quite well to observed amplitudes.
We can note here that the inclusion of sea ice in the ocean-atmosphere flux has an influence
on the amplitude of the oscillations. When sea ice is included, the amplitude is higher
(Figure 6).
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Figure 5: Plots for the non-forced model with carbon dioxide. The value of A, is 0.4.
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Figure 6: Comparison of the carbon dioxide for the model with the sea ice and without
sea ice in the carbon evolution equation. The value of A, is 0.4.

When the parameter A, is lowered, the oscillations disappear and the system goes into a
very cold state, with a large ice sheet.

We also forced the model with orbital variations. We used only the precession and obliquity
forcing to change the function €. The exact values of the used parameters can be found
in the appendix, they were taken from [Ghil and Childress, 1987, p. 432]. The result is
shown in Figure 7. We only show the temperature variations here, ice sheet and carbon
vary in a similar fashion. The complete plots can be found in appendix.

4.4 Temperature, ice sheet, vegetation

4.4.1 Description

The other three equation model consists of temperature, ice sheet, and vegetation. The
vegetation modifies the albedo, and is itself influenced by temperature and ice sheet extent.

The evolution equation for vegetation cover is
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Figure 7: Plot for the forced model with carbon dioxide. The value of A, is 0.42.
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dA

5 = BT)A(g(L) - A) — 74 (®)

C’vd

This is the same as in our two equation model, except for that the available space for
plants is not 1, but ¢(L), dependent on the ice sheet extent. If 2L is ice sheet extent in
meters, we (rather heuristically) define ¢ as

q(L) =1— = (9)

where TLL is total land length, taken to be 8000km (the model describes one hemisphere).
The vegetation cover appears in the temperature evolution equation, because it modifies
the albedo. Where the land albedo was g + a1 L in the KCG model, this is now equal to
Aay + (1 — A)(ag + a1 L). Note that we changed the value of o from 0.25 to 0.4. Before,
when no vegetation was included as variable, o could be seen as some kind of average of
bare ground and vegetation albedo, but when we include the vegetation in the model, ag
only denotes the albedo of bare ground.

Remark 1. When writing the report and going over the models, I realised that the
parametrisation of the land albedo as used here, is not really realistic and coherent with
the other models. Better would be to define land albedo as

aland(Lv A) = Aay + (Q(L) - A)ag + (1 - Q(L))aice sheets

which is the weighted average over the areas covered by vegetation, land and ice respectively.
I tried this, but the results of this model were much less interesting: no oscillations, and
surprisingly the values of the variables in steady state solutions were less realistic. I decided
to go on with the original model, since the dynamics are more interesting. In fact, using the
form with (1 — A)(ag+ a1 L) introduces a nonlinear term AL. I have not found a physical
argument to account for this, and it is a part of the model that could be reexamined. The
same thing applies to the 4 equation model below, and to the carbon dioxide model above,
although in the latter case it is not fundamental, since A, (vegetation cover) is a parameter
there and not a variable.

The parameter values can as before be found in appendix. Note that the system exhibits
interesting behaviour for many different parameter values. It is impossible to describe all
possible combinations, so we fix most of the parameter values, to showcase some of the
things that happen in the model.

4.4.2 Results

In analogy with the two equation model, the systems behaviour is largely determined by
the death rate of the vegetation, v. We will use this parameter as a control parameter.
For all values of v, there is a stable state with no vegetation. This state is characterized
by an extremely low temperature and a large ice sheet. We are of course more interested
in a state where there is vegetation present. This state exists and is stable when v is low
enough, just as in the two equation model.

When ~ is not too low, nor too high, there exists a limit cycle. Plots can be seen in
Figure 8. The curve for vegetation is sawtooth-shaped, as in the two equation model.
Maxima of vegetation coverage coincide more or less with minima of ice sheet extent. The
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Figure 9: Plot for the forced model with vegetation. The value of v is 0.219. The
oscillations for temperature are similar. The complete plots are shown in appendix.

amplitude of the oscillations in vegetation cover is about 6%, which is much less than for
the two equation model.

Figure 9 shows the results of this model with forcing. The sawtooth-like shape is present,
but amplitudes are rather low. This is due to the fact that we decreased v a bit. The
amplitude of the oscillations decreases with «, and if we have large oscillations, the forcing
can kick the system out of the basin of attraction of the limit cycle and push it into a very
cold state (this also occurs in the model with carbon, by the way). This doesn’t happen if
we lower v, to have lower amplitude internal variations. We note that the range of values
for « for which this works is very narrow, which can be regarded as a limitation of the
model.

4.5 Four equation model

After seeing the results for the three equation models, we might want to look at what
happens when we combine all the variables together. We will briefly describe the resulting
model. The equations for temperature and ice sheet remain the same. In the carbon
equation we now have the term W, AC instead of W,A,C. The only difference is indeed
that A,, which was a parameter in the three equation carbon model, is now replaced by
the variable A. In the equation for vegetation, we change the growth rate. The growth
rate of the plants, which previously only depended on temperature, now also depends on
available carbon dioxide in the atmosphere. The more there is available, the better the
plants grow, with a saturation effect for high values of carbon.

The evolution equation for A is

13
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dA

o = N(CO)BMT)A((L) — 4) —7A. (10)
The only thing that has changed from the three equation model, is the addition of the
function fi, expressing the dependence of growth rate on carbon level. The function is

given by

C — k.
7o) = 2

We directly took this function, together with the parameters, from [Lenton and Hunting-
ford, 2003]. The results of this model are similar to the other two models: oscillations
exists if v is in the right range. For + too high, vegetation cannot be sustained and the
system drops to a very low temperature state. More or less the same remarks as for the
three equation model with vegetation apply: we observe sawtooth shapes, and the model
with forcing only works for a limited range of values for . The period of oscillations is
larger than for the three equation models. This model is not completely developed yet,
and many more can be done as described below. In the appendix plots can be found for
forced and not forced versions of the model.

(11)

5 Further work

The work I've done consisted mostly in setting up the models, and doing initial exploration
of their behaviour, particularly focused on limit cycles. The next step would to extend
results, and more thorougly investigate these models separately. Here are some things
that can be done.

For the two equation model, a spatial, one-dimensional version could be interesting, where
the incoming solar energy would depend on latitude. In such a model, there could be an
interplay between for example desert vegetation and sea ice, mediated by global temper-
ature. The problem of our not so realistic T, in the zero dimensional model could be
resolved in this way. Another possibility is, since the ocean is very important in the model,
to include ocean vegetation: plankton. It is known that plankton has an effect on climate,
so it would make sense to include this in a model. Finally, the mathematical treatment of
the model can be further extended, for example with a proof of the existence of the Hopf
bifurcation.

For the other models, there is a lot that can be done. I have only started with a first
analysis of the influence of some of the parameters (linked to vegetation), but many oth-
ers are uncertain and could be varied, such as B, the greenhouse effect, the optimal
growth temperature for plants, the carbon flux parameters, ... The inconsistency in the
parametrization of the land albedo (Remark 1) should be eliminated or justified. A careful
analysis of which mechanism has which effect can be done, such as what I have shown
for the role of the sea ice in the ocean atmosphere carbon exchange. Another possibility
is to obtain bounds on the parameter values, either from the literature or by numerically
exploring the behaviour and possibly fitting to data.

Following [Ghil and Childress, 1987], an analysis of the spectra of the forced models can
be interesting to see what they reproduce of the typical spectra of ice age cycles, and a
comparison with other models such as [Le Treut and Ghil, 1983] can be done.

Further, a more quantitative bifurcation analysis, such as done for the 2 equation model,
should be done as well, together with a quantitative description of the other stable states.

14
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6 Conclusion

In this project, I investigated the role of vegetation in dynamical systems models for
climate. There have been many examples where vegetation and climate interact, but
climatic modeling has not often included vegetation as a variable, especially in the case of
ODE models.

First I studied a two equation model, based on Daisyworld and derivations thereof. The
main feedback mechanism is through the albedo of plants and sea ice. The model exhibits
oscillations, which arise through a Hopf bifurcation when the death rate of vegetation is
small enough. It is one of the smallest models for climate-vegetation which shows such
oscillations. This model will be the subject of a paper. It opens the way for a lot of
interpretations and possible extensions.

The next part consisted of examining the role that vegetation can play in climatic oscil-
lators, usually applied to model ice age cycles. I took an existing model for temperature
and ice sheet evolution, and extended it to two three-equation models and a four-equation
model. In my project I only did the setting up of the models and initial explorations, with
focus on the parameters related to the vegetation. These parameters, «y, the death rate,
and in the model with carbon A,, the vegetation cover, determined the existence of oscil-
lations or not. For the models in which vegetation was included as a variable, the shape of
the oscillations showed to be sawtooth-like, which is promising for the role of vegetation
in modeling of paleoclimate. All models allow oscillations, but for some of them the range
of parameters for which oscillations exists is quite narrow.

There is many further work that can be done on these models, but they can already
take their place in the series of climatic oscillator models, and they show once more that
vegetation can be a determining factor in the behaviour of the climate system.
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Appendix
This appendix contains

e Plots for the different models, both with and without astronomical forcing, for all variables.
Some variables (such as temperature and carbon dioxide) are plotted on the same axis to
facilitate comparison with data from Vostok ice core (Figure 1).

e Tables with values for all parameters used in the models. Parameters that are used in
different models are mentioned once, unless their value is different in other models.

o The (early) draft of an article on the two equation model. This contains a bit more infor-
mation than the report.
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Figure 10: Plots for the three equation model with carbon dioxide. Above: not forced,
A, = 0.4. Below: forced, A, = 0.42.
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Figure 11: Plots for the three equation model with vegetation. Above: not forced, v =
0.265. Below: forced, v = 0.219
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Table 1: Parameter meaning and values for the two eq

uation model.

Symbol Meaning Value

Cr Heat capacity 500 W yr/K/m?
Qo Incoming solar energy 342.5 W/m?
P Fraction of land 0.3

Qy albedo of vegetation 0.1

ay albedo of ground 0.4

Oma albedo of ice-covered ocean 0.85

Qi albedo of ice-free ocean 0.25

Ty Temperature below which ocean is ice-covered 263 K

Tou Temperature above which ocean is ice-free 300 K

By constant in outgoing radiation 200 W/m?
B constant in outgoing radiation 2.5 W/K/m?

Topt Optimal growth temperature 283 K
k parameter for width of growth curve 0.004 1/yr/K?
¥ death rate of vegetation 0.1 1/yr
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Table 2: Parameter values and meaning for the KCG model. For the explanation of the
model, see [Ghil and Childress, 1987]. Note that their 7 is our p (fraction of planet that
is land), to avoid confusion with v being used for vegetation death rate. In our models,
a is changed to 0.4, because we introduce a partial vegetion cover, altering the albedo of
the land.

Symbol | Meaning Value
Qo Incoming solar radiation 342.5 W/m?
P Fraction of planet that is land 0.3
K linear coefficient of outgoing radiation 1.74 W/m?/K
Ty constant in outgoing radiation 154 K
s Slope of the 0 degree isotherm 0.3x10"3m~1/2
Too Temperature at which the 0 degree isotherm 283 K
would intersect the arctic coastline
Toy Temperature below which the ocean is ice- 217K
covered
Tou Temperature above which the ocean is ice- 283K
free
Ter Lower  temperature in  temperature- 273K
precipitation feedback
Ten Upper  temperature in  temperature- 283K
precipiation feedback
Qg Albedo of ground (different in three-equation 0.25
models)
o1 Linear coefficient in land albedo dependence | 4.1x10~7 1/m
on ice sheet extent
Qm, Minimal ocean albedo 0.25
Qs Maximal ocean albedo 0.85
€m Minimal ratio between accumulation and ab- 0.1
lation
EM Maximal ratio between accumulation and ab- 0.5
lation
7 Ratio of timescales for temperature and ice 1.5
sheet evolution (control parameter in original
model)
T Temperature for normalizing (6 = T'/T5) 276.93 K
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Table 3: Parameters used in forcing. The frequencies are taken from [Ghil and Childress,
1987, p. 419]. The amplitudes are taken from the same book, page 432. We only used the
forcings at these frequencies.

Symbol | Meaning Value
sl precession period 19 kyr
To precession period 23 kyr
T3 obliquity period 41 kyr
€1 precession amplitude 3x 1073
€9 precession amplitude 4 %1073
€3 obliquity amplitude 2x1073

Table 4: Parameter meaning and values for the carbon dioxide three equation model. Only
those that are different from KCG are shown.

Symbol | Meaning Value Source
o Albedo of bare ground (dif- 0.4
ferent from KCG)
Co Pre-industrial carbon diox- 280 ppm Almost all the literature
ide level, used for normal-
izing
B Radiative forcing of green- | 5.35 W/m? | [Hogg, 2008]
house effect
1% Volcanic input of carbon | 0.028 ppm/yr | [Hogg, 2008]
dioxide
Wo Constant in weathering 0.013 ppm/yr | [Hogg, 2008]
wh Constant in weathering 1/12000 1/yr | [Hogg, 2008]
Ay Vegetation cover (control
parameter)
Te Characteristic ~ timescale 500 yr
for ocean-atmosphere
exchange
Coc,0 | Ocean carbon dioxide con- 1000 ppm Adjusted to better match
tent for T' = 288K data
b Constant in temperature 0.029 [Fowler et al., 2013]
dependence of oceanic car-
bon content
Wa Uptake of carbon through 0.01 1/yr Adjusted to match data

vegetation
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Table 5: Parameter meaning and values for the vegetation three equation model. Only
those different from KCG are shown.

Symbol | Meaning Value
ap Albedo of bare ground (dif- 0.4
ferent from KCG)
Topt Optimal growth tempera- 283 K
ture
k parameter for width of | 0.004 1/yr/K?
growth curve
Qy Albedo of vegetation 0.1
TLL | Total land length 8000km
¥ Death rate of vegetation
(control parameter)

Table 6: Parameter meaning and values for the four equation model. Only those differ-
ent from the three equation models are shown. These were all taken from [Lenton and
Huntingford, 2003].

Symbol | Meaning Value

ke CO2 compensation point | 29 ppm
for photosynthesis

ku CO2 half-saturation point | 145 ppm
for photosynthesis

w1 Normalizing constant 1.478
for photosynthesis CO2
response
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Oscillations in a simple climate-vegetation model

Jan Rombouts
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Abstract

We analyze a simple dynamical systems model for climate-vegetation interaction. The
planet we consider consists of a large ocean and a land surface on which vegetation can grow.
The temperature affects vegetation growth on the surface and the amount of sea ice on the
ocean. On the other hand, vegetation and sea ice change the albedo of the planet, which in
turn changes the energy balance and temperature evolution. Two stable states are observed,
as well as oscillatory behaviour. The oscillations arise through a Hopf bifurcation when the
parameter v, death rate of vegetation, is low enough. The model can be compared on the one
hand to the climate-vegetation models in the style of Daisyworld, and on the other hand can
be put in line with simple models trying to explain oscillations in the climatic system. Some
mathematical results are obtained and the relevance of the model is discussed.

1 Introduction

Climate has an important effect on vegetation. Plant growth is affected by temperature, carbon
dioxide levels and availability of different nutrients. Also the available space is important: ice
covered parts of land are not suitable for vegetation growth. It also works the other way around,
though: vegetation plays an important role in the regulation of the climate. Many different effects
are observed. One of the most important is the albedo effect: vegetation is darker than bare
ground or ice and therefore absorbs more solar radiation and warms the planet. This phenomenon
appears to be important in desert regions, where it interacts with the hydrological cycle. Charney
[Charney, 1975] was the first to include this in a model, but others have followed since [Claussen
et al., 1999; Zeng et al., 1999; Zeng and Neelin, 2000]. An other important region where albedo
feedback is important are the high latitudes, where boreal forests mask snow in winter, causing an
effective warming of the surface [Bonan, 2008; Brovkin et al., 2003].

Another effect is the uptake of carbon dioxide by plants, which in turn attenuates the greenhouse
effect and cools the surface. In addition to the more obvious effects of albedo change and carbon
dioxide uptake, there are many mechanisms through which vegetation influences climate. Examples
are the effect of plankton on cloud formation (the CLAW hypothesis [Ayers and Cainey, 2007]),
evapotranspiration or more exotic feedbacks, such as the so called lightning-biota feedback as
studied in [Shepon and Gildor, 2008]. A review of different mechanisms can be found in [Meir et al.,
2006]. The article [Claussen, 2009] gives an introduction on the vegetation-climate interactions on
long timescales.

Although many examples are known where vegetation plays an essential role in the climate system,
it has only been rather recently that vegetation is included as an active player in climate models.
Climatic models range from simple, conceptual ODE models up to full scale GCMs (general cir-
culation models or global climate models). Across the whole range, vegetation can be included to
better explain various climatic phenomena and trends. In some cases, predictions for models that
couple atmosphere, ocean and vegetation dynamics (sometimes refered to as Farth system models)
differ radically from models excluding vegetation [Meir et al., 2006], showing the need to include
vegetation in our models to obtain better understanding of the climate.

The simplest models for climate are conceptual models, which usually use differential equations to
model a simple climate system. These models are not realistic, but allow to study basic underlying



mechanisms. They are also useful for exploring bifurcations, which are related to tipping points
[Lenton et al., 2008] in the climate system. Bifurcations or tipping points correspond to situations
in which a small parameter change can have a large effect on the behaviour of the whole system.
Studying conceptual models can also provide guidance in interpreting results from larger, more
complicated models [Brovkin et al., 1998; Brovkin et al., 2003]. A popular application of dynamical
systems modeling for climate is the explanation of the ice age cycles, which are often represented as
oscillations of a climatic oscillator [Crucifix, 2012; Ghil and Childress, 1987; Ghil, 1994]. In these
climatic oscillator models, vegetation is not usually included. There are however some simple
models exploring the interaction between climate and vegetation, and we will briefly review some
of them in the next nextion.

2 ODE models for vegetation - climate

One of the most famous models dealing with vegetation and climate is probably Daisyworld [Watson
and Lovelock, 1983]. This model was conceived as an example of how vegetation acts to regulate
planetary temperature through the albedo feedback, for a wide range of parameters (in this case,
the incoming solar radiation). The model has been thorougly studied and extended. A review can
be found in [Wood et al., 2008].

Another series of ODE models for vegetation-climate interactions is described by Svirezhev and von
Bloh [Svirezhev and von Bloh, 1996; Svirezhev and von Bloh, 1997]. They include an equation for
temperature evolution (absent from Daisyworld) and look at only one type of vegetation (whereas
Daisyworld has two). In their 0-dimensional model, they find multiple steady states, which is a
feature regularly recurring in climate-vegetation models, both in simple [Aleina et al., 2013] and
more complex [Claussen, 1998] models.

An interesting feature to examine in these simple models, is the possibility of internal oscillations.
As mentioned before, climate often acts as a huge oscillator, and ODE models are used as a tool
to describe this behaviour, but vegetation is not often included. Oscillatory behaviour has been
observed in Daisyworld-like models, for example when an explicit temperature equation is added
[Nevison et al., 1999], or when delays are introduced [Gregorio et al., 1992].

Something that is usually missing from these models is the inclusion of an ocean. Earth’s ocean
constitute about 70% of the area of the planet, and are a very important factor in determining the
climate. The ocean is usually included in ODE models for glacial cycles. Our model will include
an ocean and its corresponding sea ice, and will fit between the Daisyworld-like models and the
climatic oscillator models.

3 Description of the model

The climate system contains a numerous amount of subsystems, all working together to produce
highly nonlinear behaviour through its many feedback mechanisms. One of the simplest and
most important feedback effects is through the albedo of the planet. The most important factor
determining global climate is the energy we receive from the sun. Some of this energy is reflected,
and the amount depends on the albedo. Darker areas absorb more energy, warming the planet,
and lighter areas (such as snow and ice) tend to cool down the planet. The albedo effect has since
long been included in climate models, is the driver behind Daisyworld and will constitute the main
mechanism in our present model.

The model’s equations are given in system (1). The variable T denotes global average temperature,
while A denotes the fraction of land that is covered by vegetation.

Cr = (1— (T, A)Q0 — Ro(T) (1)
% = B(T)A(1 — A) —7A



ocean

vegetation

Figure 1: Schematic representation of the planet, including a fraction p land, 1 — p ocean. Ocean
can be covered by sea ice, and the land is covered by a fraction A vegetation.

The temperature equation expresses that temperature changes as a result of the balance between
incoming and outcoming energy. The variable g is the incoming solar energy, which is equal to
342.5 W/m?. The function « denotes albedo and is given by (1 — p)ao(T) 4 p(an A + ag(1 - A)).
Here p is the fraction of the planet that is land, taken to be 0.3, as on Earth. The values «,, o, and
oy denote the albedo of the ocean, albedo of vegetation and albedo of bare ground respectively.
The latter two are constant, and the essential thing is that a,, < «, (forests are darker and absorb
more energy than bare ground). The albedo of the ocean will be taken as a function of temperature,
to take into account the presence of sea ice. We will use a ramp function, as in [Sellers, 1969] and
[Ghil and Childress, 1987]. The function is given by equation (2):

Oma if T< Toe
0o(T) = { Qma + Eoi=ma (T T g) if Tog <T < T - 2)
Omi if T(x,u <T

Here oy, = 0.85 (ice-covered ocean), ay,; = 0.25 (ice-free ocean), Ty ¢ = 263 and T, ,, = 300. The
value of T, ,, is rather high (almost 27 degrees Celsius), which means a tiny bit of sea ice will be
present even for very high global temperature. Figure 1 shows a schematical representation of the
proportions on our planet.

The function R,(T") denotes the outgoing energy from the planet. Often the quartic Stefan-
Boltzmann law is used, or a linearization thereof, but we opt to take into account the fact that
increasing temperature entrains increasing carbon dioxide levels and thus greenhouse effect, which
tends to decrease the outgoing radiation. The form for R,(T") we choose is

Ry(T) = By + Bi(T — Topy),

where By, By are constants and Ty is the optimal growth temperature for the vegetation. There
is a huge uncertainty on the amount of these values, especially in By, the linear radiative forcing of
temperature, since it all depends on which effects are taken into account and which are not. We will
not attempt to obtain this values as realistic representations of reality, but for definiteness we will
use By = 200 and By = 2.5. The exact value of these parameters doesn’t play an important role
for the behaviour of the model, but we can note that they correspond rather well to a linearization
of an outgoing energy term of the form goT#, where g is a constant denoting the grayness, which
is usually taken between 0.5 and 0.6.

The second equation expresses that vegetation grows logistically, with a temperature-dependent
growth rate 5(T). The shape of the function g is taken to be the same as in Daisyworld and
related models (3):

B(T) = max(0,1 — k(T — Top))?. (3)

This means that growth rate is zero, except for in a certain interval, in which the dependence is
parabolic with a maximum at T, which is 283K in our model. The parameter vy is the death rate
of plants and its value is 0.1 in our model. Later on ~ will serve as a control parameter. Table 1
contains an overview of the parameters and their values.



Table 1: Parameter meaning and values.

Symbol Meaning Value

Cr Heat capacity 500 W yr/K,/m?
Qo Incoming solar energy 342.5 W/m?
P Fraction of land 0.3

Qy Albedo of vegetation 0.1

o Albedo of ground 0.4

Oma Albedo of ice-covered ocean 0.85

Qi Albedo of ice-free ocean 0.25

Toe Temperature below which ocean is ice-covered 263 K

Tou Temperature above which ocean is ice-free 300 K

By Constant in outgoing radiation 200 W /m?
B Constant in outgoing radiation 2.5 W/K/m?

Topt Optimal growth temperature 283 K
k Parameter for width of growth curve 0.004 1/yr/K?
¥ Death rate of vegetation 0.1 1/yr

4 Results

4.1 Fixed points and stability

Let us start by looking at the fixed points of the system (1). There is a fixed point for A = 0. The
temperature is the solution of Qo(1 — (T, 0)) = R,(T'). For our parameter values, there is only a
solution where T < T, ;: the solution is 7" ~ 243K. This means a planet without vegetation will
go into a very cold “snowball Earth” state. Note that this is different from other EBMs (energy
balance models) where another stable state is found [Ghil and Childress, 1987]. A quick check
shows that if we put p = 0, such that there is only ocean, three fixed points are found where
A =0, one with a high temperature. So the inclusion of the relatively high ground albedo pushes
the system to a low temperature, if no vegetation is present.

If A0, in a fixed point we must have

From the temperature equation, we see that also
1 1 R,(T) > ]
A= — |2 (1@ — (1=, (T) | —a,l.
. [p ( Qo ( p)ao(T) g

Figure 2 show pictures of those two curves. They intersect in two points, which means we have
two fixed points where A > 0.

The Jacobian matrix for the system (1) is

(Cia[gg(’g?‘ + 86};0} 57;%0&; > ] (4)
srAl—=A4)  B(T)(1—-24) -~

For the fixed point where A = 0, the eigenvalues are 5—; [Qog—% %};"] and B(T) — v. These are
both negative, since T is so low in this fixed point that da/9T = 0 and B(T) = 0. This state is

thus stable.

Let us look at the other two fixed points, where A > 0. Note that since A = 1 — ~/8(T), the
temperature must be in the range where S(T) > 0. With our choice of parameters, this range
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the saddle is shown in black and the unstable in gray. Coordinates of the fixed points: (242.04,0),
(280.8,0.898) and (297.9,0.129).

also lies in between T, ¢ and T, ,, which is the “interesting” range, since here we have the sea ice
feedback. This corresponds with the decreasing part of the nullcline, as shown in the phaseplane
in Figure 3.

The leftmost of these two fixed points where A > 0 is a saddle. This can be seen from numerical
computations, but we can also deduce this analytically. The determinant of the Jacobian matrix
is

o (@5 + Fe) (- 24) - ) - 55240 - 4)

Note that, in our “interesting” range of temperature, the nullcline for the temperature equation
decreases. The equation for this nullcline is

A — _ 1 [1 (1 — Ro(T) -(1 —p)aO(T)> — ozg] ,

Qy — Qg | P Qo

and the derivative of this expression is less than zero iff 0r R, (T) + Qo0ra(T, A) < 0. In addition,
the fixed point lies on the other nullcline, so we know that A =1 —~/8(T). This gives us

B(T)(1—24) —v=—p(T) +~ <0,

where the inequality follows from 0 < A =1 —~/3(T).
Furthermore, d4a(T, A) = p(a, — ay) < 0. Putting this together, we have the following:
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Proposition 1. A fized point (T, A) where A > 0 is a saddle if 5'(T) > 0.

Proof. From the estimations we made above, we see that under this condition the determinant is
negative. A negative determinant of the Jacobian implies that the fixed point is a saddle. O

The stable and unstable manifolds of the saddle are also shown in Figure 3. The stable manifold
acts as a separatrix, and is almost vertical. This means that initial conditions with low temperature
will lead to the low temperature, no vegetation state and initial conditions with a high temperature
will lead to the steady state with some vegetation present.

For the rightmost fixed point, we cannot use the criterium above since it says nothing when
B'(T) < 0. Computation of the eigenvalues shows that this point is a stable focus. The trace of
the Jacobian matrix is

} HBT(1-24) =y = — [Qog; n aaﬂ BT+

-1 Jda OR,
T=— |Qo=s +

Cr [QO aT " aT
The first term is larger than zero, but the term —5(T") compensates and for our standard parameter
values, the whole is negative such as to make the focus stable. We can however suspect that, for
changing parameter values, the point loses its stability. This is the next thing we will investigate.

4.2 Hopf Bifurcation and oscillations

We are going to vary the parameter 7, the death rate of the vegetation, and look what happens.
For decreasing v, or longer-living vegetation, the focus loses its stability in a Hopf bifurcation and
gives rise to a limit cycle. This occurs for v = 0.02572, so when the overturning time of vegetation
(1/7) is about 40 years. The results can be seen in the bifurcation diagram in Figure 4. Also note
that when « is higher than 0.41, no fixed point with non-zero vegetation exists. The stable fixed
point, together with the saddle, are created in a saddle node bifurcation. We mentioned above
that the parameter change needs to make the trace positive in order to change the stability. This
also works if we, instead of decreasing ~y, decrease Cr, the thermal heat capacity. It is not one
of these parameters separately, but rather their product which determines the behaviour of the
system. We can regard Cr as a typical timescale for temperature adjustments, and analogously
1/~ as the typical timescale for vegetation. The oscillations therefore occur when these timescales
have a certain ratio. This is resemblant of other Hopf bifurcations where the time scales need to
match, as for example in [Ghil and Tavantzis, 1983].
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Figure 5 shows plots of temperature and vegetation cover versus time.

The oscillations have an amplitude of a few degrees for the temperature, but are very large for
the vegetation going from almost no vegetation to 70% of the land which is covered by plants. In
addition, the vegetation plot show a sawtooth-like shape. It is also noteworthy that the vegetation
cover stays at almost zero for long times, after which it shoots back up. Since, as noted before,
the sea ice feedback is very important, we also look at a plot of the sea ice present on the planet.
This is shown in Figure 6. It is interesting to see that sea ice varies little, from no sea ice to about
6%. But, as mentioned before, without the sea ice albedo feedback, the model would not have this
behaviour. Sea-ice has been noted to be a possible determining factor in the inception of glacial
cycles [Gildor and Tziperman, 2001], which is resemblant of the importance in our present model.
We can remark here that our model essentially only differs from [Svirezhev and von Bloh, 1996] in
the inclusion of the ocean and the sea ice (and the parametrization of the outgoing radiation), and
that in that paper the authors actually prove the absence of limit cycles using Dulac’s criterion.
This reinforces the argument that sea ice plays an import role in climatic oscillations.

Note that temperature jumps up quickly, but that cooling down and growth of sea ice is slower.
This is reminiscent of the typical behaviour of temperature over glacial-interglacial cycles, where
temperature rises quickly (so-called terminations) but the buildup of ice sheets and cooling of
the planet is slower. It indicates that inclusion of vegetation in the “ice age oscillators” might
be an interesting direction to pursue, possibly combined with a simple carbon cycle. As far as
we know this hasn’t been done for ODE models. There are some results however from more
complicated models that show that vegetation plays an important role in glacial cycles [Meissner
et al., 2003; Horton et al., 2010].

Because of Proposition 1 and the shape of the growth curve, it is essential that the fixed point for
which the Hopf bifurcation occurs has a temperature higher than Top; (since drB3(T) needs to be
negative), and lower than T, , (to have the sea ice feedback). This means, the optimal growth
temperature for plants needs to be relatively low and there must be ice present for relatively high
temperatures. This is one of the main questionable points of our model, since we used an optimal
temperature of only 10 degrees Celsius for plant growth. The model shows however how even a very
simple, 2 equation model can exhibit interesting behaviour through a simple feedback mechanism.
The conditions d78 < 0 and dra < 0, necessary for the fixed point to become unstable, could be
perhaps be found in a different kind of model, using not sea ice but some other mechanism as the
feedback. Into mind comes for example the hydrological cycle, which has been studied already in
some conceptual models [Aleina et al., 2013; Brovkin et al., 1998], but for which no oscillations
were observed. We can note in this respect that limit cycles are also observed when changing for
example the parametrization of outgoing radiation into a modified Stefan-Boltzmann law, or if we
change the parameters Ty, and T,p. The important thing is that the conditions above on the
derivatives are satisfied.

A direction to pursue could be the extension of our zerodimensional model to a spatial model,
where latitude-dependence is included. This would allow for example to have desert vegetation
interacting with the sea ice in higher latitudes, through the global temperature. There have already
been some studies of larger models [Zeng and Neelin, 2000; Zeng et al., 1999] which conclude that
the variable vegetation in the Sahel region provides strong feedbacks, and interacts with global
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temperatures.

Another extension that comes into mind is the inclusion of vegetation in the ocean, plankton.
Plankton interacts with climate in different ways, through its possible effect on cloud formation
[Ayers and Cainey, 2007], but also through its albedo.

5 Conclusion

We described a simple dynamical systems model for climate-vegetation interaction. The planet
has a large ocean which can be covered by sea ice, and a ground area which can be covered by
vegetation. The coupling between temperature and vegetation is given by the growth rate and the
albedo. The system exhibits two stable states, one without and one with vegetation. The state
with vegetation can lose its stability through a Hopf bifurcation and give rise to a limit cycle. This
happens when the typical time scale for vegetation overturn becomes high enough. The influence
of the sea ice in reinforcing the albedo feedback is essential to have this behaviour. Although
some parameter values are not entirely realistic, the results add to the evidence that vegetation,
in combination with other feedback effects, can play an important role in the modeling of climate.
The model is also interesting because it is one of the simplest ODE models for climate-vegetation
interactions that exhibits oscillatory behaviour. It opens up some questions as well: could the
model be extended to a (more realistic) spatial model? Or, how can vegetation be included in
ODE models for ice-ages cycles?
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