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Abstract

In this report we describe the work we have done for our M2 project in the Erasmus Mundus
Masters in Complex Systems Science. We have studied a model of the cell cycle. The model was
conceived to explain experimental observations of respiratory oscillations in yeast cultures. An
essential feature of the model is that a negative feedback mechanism robustly produces clustering.
We explain the model and give a brief overview of previously obtained results. Then we discuss the
case of two unequal clusters, and elaborate on why a method based on reduction does not provide
accurate results. We then describe a phenomenon which we call decoupling and can be observed
for certain parameter values. We offer some perspectives on our results and outline directions for
further investigation. Throughout we illustrate with results obtained from numerical simulations.
The appendix contains some unfinished work and supplementary material.

1 Introduction

1.1 Synchronization and clustering

Synchronization is an often observed and well studied phenomenon. Illustrous examples in nature
include the simultaneous flashing of fireflies or chirping of crickets (Strogatz, 2003). Mathematically,
this is usually modeled by a system of coupled oscillators. A famous example is the Kuramoto model of
coupled oscillators (Kuramoto, 1984; Strogatz, 2000). In the classic Kuramoto model, the interaction
strength between oscillators with phase θ1 and θ2 is proportional to sin(θ1 − θ2). Depending on the
strength of the coupling, synchronization may occur. This model has been extensively studied, and
allows for a large number of analytic results.

A phenomenon related to synchronization is clustering, which is the topic of the present project. In
a clustered state, the oscillators are synchronized in groups, or clusters. They have the same phase
as the other oscillators in their cluster, but the phase differs from one cluster to another. Clustering
has been studied less often than synchronization, and is less observed in nature, although there are
some examples. A modified version of the Kuramoto model can produce clustering behaviour (Golomb
et al., 1992; Okuda, 1993). This happens when instead of the sine function, higher order harmonics
are included in the coupling function.

Other instances of clustering, however relatively sparse, can be found in a wide range of domains.
Examples are clustering in networks of firing neurons (Kilpatrick and Ermentrout, 2011), or in ex-
periments with elektrochemical oscillators (Taylor et al., 2011). In a paper by Paley et al. (2007),
clustering is seen and controlled in models for the collective motion of schools of fish. Mauroy and
Sepulchre (2008) have proven that clustering occurs in a model of integrate-and-fire oscillators, similar
to what Mirollo and Strogatz (1990) have done for synchronization. Clustering appears in some models
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(a) Microscope picture of yeast. Budded cells are
clearly visible. Source: “S cerevisiae under DIC
microscopy” by Masur - Own work. Licensed un-
der Public Domain via Wikimedia Commons

(b) Schematic representation of the yeast cell cy-
cle. Taken from (Young et al., 2012).

of opinion dynamics (Hegselmann and Krause, 2002), and clustering of coupled oscillators has even
been proposed as the basis for an algorithm for classifying data (Rhouma and Frigui, 2001), where
similarities between data points dictate coupling strengths.

Another example where synchronization and clustering occur is yeast autonomic oscillations, which
will be explained in the next section.

1.2 Yeast, the cell cycle and oscillations

Yeast is an often studied organism in biology. Being a simple eukaryotic cell, it offers a model for more
complicated animal and plant cells, and by studying it we hope to obtain some insight in the structure
of these more complicated cells. Yeast cultures can be grown relatively easily in the laboratory. In
addition yeast is of industrial and economic importance. It has been used for a long time in the
production of food and beer, for example. The particular yeast species we are concerned with is
Saccharomyces cerevisiae, or budding yeast (see also Figure 1a). More information on the importance
of this organism in the scientific study of cells can be found in the book by Feldmann (2011).

The cell cycle is a very fundamental concept in nature. In order for an organism to grow and survive,
its cells must continuously replicate. They must grow, copy their chromosomes and divide. There is
a whole range of biochemical and genetic mechanisms involved in the cell cycle. An introduction can
be found in the book by Murray and Hunt (1993). We will very briefly describe the concepts that
are important for the understanding of the model that we have studied. Figure 1b shows a schematic
representation of the cell cycle of budding yeast. The cell cycle is divided into different phases. The
final phase is mitosis, at the end of which the cell divides. Budding yeast is special in the sense that
division is asymmetric and procedes by budding: the cell grows a bud, which will later be the daughter
cell, and during mitosis the connection between mother and daughter narrows and the daughter cell
is separated from the mother. The bud leaves a distinct mark on the cell. This aids in experiments:
it gives an indication of the position of a cell in the cell cycle. Figure 1a shows yeast cells, of which
some are budded. The other important phase is the S-phase where the chromosomes are replicated.
Mitosis and S-phase are separated by two gap phases G1 and G2.

A topic of particular interest is oscillations in yeast cultures. Experiments have shown that under
certain conditions, variables such as dissolved oxygen, carbon dioxide or pH, show oscillatory behaviour.
These oscillations are self-sustained and can be observed for extended periods of time in the laboratory.
Different kinds of oscillations are observed, and they are usually classified according to the observable
under study (such as oxygen), and the period, which can range in order of magnitude from minutes
to hours. Overviews are given by Richard (2003) and Patnaik (2003). Oscillations where dissolved
oxygen level is varying are usually called respiratory or metabolic oscillations, and they should be
distinguished from glycolytic oscillations, which is another importand kind and typically have a higher
frequency. Metabolic oscillations were thought independent of the cell cycle for a long time, since the
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Figure 1: Figure taken from (Boczko et al., 2010), showing the dissolved oxygen (green), bud index
(blue) and cell density (red).

period of the oscillations does not match the period of the cell cycle. However, a relation between the
two has been noted in for example genetic expression data (Klevecz et al., 2004). A mechanism for
linking the two was proposed by Robertson et al. (2008) and Boczko et al. (2010). In these papers,
clustering of cells in the cell cycle was proposed as a mechanism that could explain the difference in
periods. Figure 1 shows the results of an experiment conducted to test the hypothesis of clustering
(Stowers et al., 2008; Boczko et al., 2010; Stowers et al., 2011). The oxygen level oscillates, as well as
the bud index. The bud index is the fraction of cells budded, and gives an indication for the position
of cells in the cell cycle. The bud growth commences in the S phase of the cycle. The bud index in
this experiment rises periodically up to 50%, suggesting that half of the cells go into S-phase at the
same time. The period of these oscillations is about half of the length of the cell cycle, which indicates
that there are two clusters of cells proceeding through the cell cycle. This observation is the basis for
the model studied in this project.

The study of oscillations in yeast is important since it can contribute to our knowledge of the coordi-
nation between cell cycle and cell metabolism, and for industrial purposes where oscillations are often
undesirable. Oscillations can also be relevant in context of biological clocks (Lloyd et al., 2008).

As in most areas of science, experimental studies are complemented by mathematical modeling. There
have been quite a few models that try to explain oscillations from yeast. Some of these models take
into account a lot of biochemical variables, an example is given by Wolf et al. (2001). Other models
discard the biological and chemical details, and focus on modeling basic mechanisms that might explain
observed phenomena. The model we have studied is an example thereof, as will be explained in the
next section. Patnaik (2003) gives an overview of some other models.

1.3 The present model

1.3.1 Explanation of the model

In this section we explain the model we studied, and review some of the important concepts. Precursors
to the current model were investigated by Boczko et al. (2010) and the main formulation is given in a
paper by Young et al. (2012). The cell cycle is modeled abstractly as a circle. The position of a cell in
its cycle is denoted by its location on the circle. When a cell hits 1, it returns to zero. This models the
biology of cell division, under the assumption that we are looking at a collection of a lot of cells where
the total population is constant, and where on average each cell has one descendant. This assumption
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Figure 2: Possible configuration for the model. The blue dots are the cells, which move counterclockwise
on the circle. The signalling and responsive regions are [0, s) and [r, 1).
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Figure 3: Left: random initial condition. Right: the system after at T = 100. Three clusters are
formed clearly (although the simulation has not fully converged).

can be justified by the fact that in a laboratory experiment, there is outflow from the bioreactor which
compensates for the growth of new cells.

A distinctive feature of the model is that cells in one region of the cell cycle (denoted S for signalling)
influence the cells in another region (R for responsive). The signalling region comes after the responsive
region, and is thought to correspond to the actual S region in the cell cycle where DNA is synthesized.
The feedback may be exerted through a chemical that is excreted by cells in this phase of the cycle.
The progression of the cells in the cell cycle is modeled by the following system of differential equations,
where xi denotes the position of the ith cell:

dxi
dt

=

{
1 if xi /∈ R
1 + f(I) if xi ∈ R,

(1)

where I is the fraction of cells in the signalling region and f is a feedback function. The regions S and
R will be taken [0, s) and [r, 1) respectively, in all that follows. Since 0 ∼ 1, the regions are adjacent.
A possible configuration is illustrated in Figure 2.

There are some conditions on the feedback function: it has to be monotone and satisfy f(0) = 0. If
f is positive, cells in the responsive region will be sped up by cells in the signalling region. This case
will be referred to as positive feedback. For negative f , the cells are slowed down. This case is referred
to as negative feedback. The most important characteristic of this model is that it produces clusters
for negative feedback. Depending on the parameters s and r, the state where cells are grouped into k
clusters (k ≥ 2) is attracting. This is illustrated in Figure 3. For positive feedback on the other hand,
the state where all cells are grouped into one big cluster (synchronization) is stable and attracting.
The model has been studied an extended in a series of papers. We will give a brief overview of them
in the next section.
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Figure 4: Isosequential regions for 12 clusters and negative feedback. Blue regions are stable, red
unstable and white neutrally stable. Along the edges, blue triangles correspond with numbers that are
coprime with 12.

1.3.2 Overview of earlier results

As mentioned above, a slightly different version of the model was studied by Boczko et al. (2010).
In this paper clustering was observed for so-called advancing and blocking models. In these models,
cells were either advanced forward with a jump or blocked at a position when the number of cells in
the signalling region exceeds a threshold. The model in the form as we study it was put forward and
formalized by Young et al. (2012). In this paper the basic behaviour of the model was outlined. The
main tool for studying the model, the Poincaré map, was brought into play and the two-cluster case
was studied in detail.

In a paper by Breitsch et al. (2014), the stability of k-cyclic solutions is studied for arbitrary k. A
k-cyclic solution is a special kind of periodic solution of the system, which has more symmetry. For a
k-cyclic solution, the stability can be characterized by the order of events, another important concept in
the study of the model. An event happens when a cell crosses the boundary of one of the regions. For a
given k-cyclic solution, the (s, r) parameter space can be subdivided into so-called isosequential regions.
In each of this regions, events occur in the same order. The order of events ultimately determines the
Jacobian matrix of the return map, and therefore determines the stability of the solution. The regions
where a k-cyclic solution is stable, unstable or neutrally stable have a lot of structure (see for example
Figure 4). Important results are that solutions with a lot of clusters are stable near the edges of
parameter space and that there are a lot of regions with bistability. Lower numbers of clusters such as
2 or 3 are stable in a larger part of the parameter space. The paper ends with some conjectures about
the structure of the parameter space (see also Appendix B.1 in this context).

Two other papers have studied the model with a gap between the R and S region (Gong et al., 2014a)
and with noise (Gong et al., 2014b). The former model represents a delay in the signalling by a gap
between the regions. The clustering behaviour is conserved, and the authors conclude that a gap might
enhance the stability of the clustered solutions. In the latter article, the cells are subject to different
kind of noise. Again, clustering behaviour is conserved when the noise is not too large. When the
noise grows, however, the clustering breaks down, and a order-disorder phase transition occurs which
resembles an Andronov-Hopf bifurcation. From this, the authors derive an approximate magnitude for
the coupling strength in real biological systems, which needs to be quite large to overcome the cell’s
tendency to disperse due to noise.

A final paper in the series (Buckalew, 2014) adds an explicit equation for the chemical agent that does
the signalling. It introduces interesting new dynamics, where clustered solutions become stable when
the population density is high enough (which is related to the biological concept of quorum sensing).

A nonpublished work, which nonetheless deserves mentioning, is the Master’s thesis of Rob Wesselink
(2013). A slightly different version of the model is studied, which is more general but is only concerned
with two clusters. The generality lies in the fact that a sensitivity function is introduced, which allows
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for the cell experiencing different amounts of feedback depending on its position in the cycle. The
analysis is rigourously mathematical and some interesting propositions, such as a reflection principle,
are proven. The clusters studied in that work have weights, something we considered for our project
and will be explained below.

2 Project: aim and methods

The principal goal of the project was to address some questions which have been left unanswered in
previous papers. The most important question was what happens when clusters do not have the same
size. The indistinguishability of the clusters plays a key role in most of the obtained theoretical results.
This assumption allows to reduce an N -dimensional system of equations, where N is very large, to a
k-dimensional system, where k is the amount of clusters, usually a small integer. While exploring this
question and looking at the results of simulations, we made some other interesting observations, such
as decoupling, which will be described below.

The main tool we used was numerical simulation. We relied heavily on a combination of Python and C
code to do the work. Two C programs were used. One program does the simulation of the dynamical
system, the other one implements a hierarchical clustering algorithm. The clustering algorithm groups
cells together when their distance is small enough, and this allows to determine how many clusters are
formed without needing to visually inspect data or plots. With this programs we were able to run many
simulations and do statistical analyses of the results. Python was used to control the execution of the
C programs, format the resulting data and visualize the results. In total we did about 30 numerical
experiments. Each experiment was run on the Warwick Cluster of Workstations (CoW), since they
were computationally demanding. In the appendix we list all the experiments we carried out. Not all
of them are mentioned in the main text since they did not all lead to interesting results.

In addition to numerical simulation, we carried out some pen-and-paper work in the best mathematical
tradition. To help our intuition, some symbolic computations were carried out using SymPy, a symbolic
computation package for Python. In the next sections the results are outlined.

3 Dynamics of two unequal clusters

3.1 Poincaré map and cyclic solutions

Young et al. (2012) describe the dynamics for 2 equal clusters. The work in that paper is an illustration
of a technique that proves to be very useful in the study of this system. The amount of cells in a real
bioreactor can be of the order N = 1010. This is inconvenient in computations to say the least, but
one can reduce the dimensions greatly by assuming that the cells are divided into k equal clusters.
Since cells that are synchronized at one point in time will stay synchronized for all future times, we
only need to look at k equations, for the k clusters. These equations are exactly the same equations as
for the individual cells, since in the feedback function only the fraction of cells is important. Instead
of looking at the continous time dynamics, the Poincaré map P is studied. We can take a Poincaré
section at x0 = 0, and look at the positions of other clusters every time x0 crosses 0. An important
observation is the fact that, since the k clusters are identical, the Poincaré map can be factorized. We
have P = F k, where F is the mapping defined by

F : (x1(0), x2(0), · · · , xk(0)) 7→ (x0(t), x1(t), · · · , xk−1(t)), (2)

where t is the time at which the k-th cluster hits one. We can now relabel the indices and look at
the map F again, and so forth until, after k times, x0 hits one and we obtain the Poincaré map. The
stability properties of F and P are the same. In stability results, usually the focus is on a specific type
of solutions called k-cyclic solutions. These solutions are fixed points of the map F (and therefore,
also of P ). In a cyclic solution, we have that xi(d) = xi+1(0) for some time d, i.e. every cluster takes
the position of the next cluster after a certain time.

In the case of two equal clusters, the Poincaré map and F are mappings from the unit interval to itself
(with 0 and 1 identified). This makes them easy to visualize.
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Figure 5: Return map for unequal clusters, a is the weight of the cluster starting at 0. Left: negative
feedback, right: positive feedback. Parameters: s = 0.5, r = 0.7.

We have done a similar analysis for 2 unequal clusters. We look at the case where the cluster x0 has
weight a (denoting the fraction of cells in that cluster), and x1 weight 1−a. We can define the map Fa
as follows: Fa(x) = x0(t), where t is the time it takes for x1 to hit 1, starting at position x and when
the cluster with weight a starts at 0. The full Poincaré map is then F1−a ◦Fa. In the paper by Young
et al. (2012), explicit formulae are given for the mapping F , which can be adapted to take the weight
into account. We will restrict us to a summary and discussion of the results. A distinction needs to
be made depending on the value of r − s. If r − s > 1/2, the gap between S and R is so large that
it is possible that the two clusters never interact. They are called isolated. This is reflected on the
return map: there is an interval of neutrally stable fixed points. This behaviour carries over to the case
of unequal clusters. If r − s < 1/2 however, the concept of a cyclic solution needs to be abandoned.
A cyclic solution would need to be a fixed point of both Fa and F1−a, which is only possible when
a = 1/2, so for when the clusters are equal.

Figure 5 shows the return maps for different values of the weight a. We can see that there is always a
fixed point, which is stable for negative feedback and unstable for positive feedback, analogous to the
case of two equal clusters.

3.2 Numerical experiments

The previous result seems counterintuitive: it implies that for any distribution of cells, the unequal
distribution is stable. This contradicts the results from experiments, where we always see two approx-
imately equal clusters in simulations. Figure 6 is an illustration of this. Differences in cluster sizes are
always relatively low, although they seem to increase when noise is added, when N becomes larger, and
when there is bistability between the 2 cluster solution and a higher number of clusters. This suggests
that the reduction method is not adequate here, even though it gives good results for equal clusters.
We note that in experiments, similar results are obtained for more than 2 clusters: for parameters
where the k cluster solution is stable, the clusters have approximately equal sizes.

We performed two other experiments to check whether an equal distribution is always attracting, even
when the system is initialized in two unequal clusters. For these experiments, we determined the initial
condition for unequal clusters from a simulation with two weighted clusters. We ran this simulation
until convergence to the periodic state, and took the final positions as initial positions for a simulation
with N cells. For different weights a ≤ 0.5, we initialized Na cells at the position of the small cluster
and N(1− a) cells at the position of the larger cluster.

In the first experiment, we looked at three different kinds of perturbations. We respectively perturbed
all cells, only the cells in the small cluster and only those in the large cluster. When perturbing all
or only the large cluster cells, the final distribution was half-half. When only the small cluster’s cells
were perturbed, the unequal distribution was conserved. This shows that cells from the large cluster
move to the smaller cluster, until an equal distribution is attained. We checked this more in detail in
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Figure 6: Histograms of the difference between largest and smallest cluster. Left: s = 0.4, r = 0.65,
two is stable. Middle, same parameter values but with noise. Right: s = 0.64, r = 0.67, a region with
bistability between 2 and 7 clusters. We took N = 1000. The clusters are almost always of near equal
size, but larger differences are observed with noise and in a region of bistability.
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Figure 7: Results of the experiment where we perturbed one cell at a time from the largest cluster.
The grey lines correspond to the amount of cells needed to move from the large to the small cluster in
order to make the distribution equal. The y-axis denotes the final difference between the two clusters.
It is clear that the cells tend to move from the large to the small cluster to equalize the distribution.
The average is over 100 simulation, the error bars are one standard deviation. The error bars are only
shown for a = 0.1, for clarity. They are very similar for the other curves.

a second experiment. In this experiment, we perturbed one cell at a time from the larger cluster, and
looked at the final configuration. An illustration of the result is shown in Figure 7. We can deduce
that each perturbed cell from the large cluster ends up in the small cluster, until N/2 −Na cells are
perturbed, which is the number needed to make the distribution equal. Above that, an approximately
equal distribution is always seen, but there can be some deviation from the exact half-half distribution
(visualized by the error bars in the figure).

The mechanism by which the cells move out from the large cluster can be the following. The cells in
the large cluster are spread out due to the perturbation, and when the cluster passes from R to S,
the cells that are lagging behind undergo feedback from the majority of cells in the large cluster. This
pushes them farther away from the large cluster. This is not completely mitigated by feedback from
the small cluster at a later time, exactly because this cluster is smaller and thus has less influence than
the big cluster. This happens each time the R-S boundary is crossed and the cells are thus pushed
farther from the large cluster until they are absorbed by the smaller one.

3.3 Conclusion on two unequal clusters

We can conclude that reducing the N -dimensional system to a 2 dimensional system does not give
accurate results when the clusters have unequal size. For equal clusters however, the stability of the
reduced system corresponds with the stability of the system in full phase space. We implicitly use
this, when looking at the stability triangles to pick suitable parameter values. The fact that it holds
is non-trivial, and has been proved recently (Moses, 2015).

The reason why the method fails here is the fact that looking at 2 clusters corresponds to restricting
the system to a 2-dimensional subspace of the N -dimensional phase space. The positions of all cells
are restricted, but also the perturbations. The reduction shows that, when restricted to perturbations
in the subspace (where the whole cluster is perturbed), the unequal solution is stable. The experi-
ments however show that it is unstable to perturbations which are transversal to this subspace (where
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individual cells can be perturbed out of the cluster). Originally we thought that a bifurcation might
occur for a certain value of a, below which the unequal clusters are unstable. This probably happens
in the full phase space, but in the 2-dimensional subspace it does not.

A sensible thing to ask is then, how can we obtain an accurate result on the two unequal cluster
system? One way is to look at linear stability of a state with unequal clusters in the full phase space.
This requires looking at the full Jacobian, which will be an N ×N matrix. But since we are interested
in the state where a fraction a of cells are in the same position, and the 1 − a others in another, the
Jacobian will have a specific structure. This could be exploited to obtain results on the spectrum of
the Jacobian and ultimately on the stability of the state with unequal clusters.

Another option is to use a formulation with partial differential equations, where densities are used
instead of discrete cells and clusters. This formulation requires the use of new techniques and might
be difficult to tackle.

We finally note that the same problem, of stability in a clustered subspace versus the full space, has
been considered by Golomb et al. (1992) and Okuda (1993) for a generalization of the Kuramoto model.
It might be fruitful to adapt their approach to our system.

4 Decoupling along the diagonal

In the previous section we have seen that, in regions were k clusters are stable, the resulting clusters
have near equal sizes. There are however some situations in which this behaviour breaks down. We
have reproduced the stability triangles from the article by Breitsch et al. (2014), and took a next
step: to overlay triangles for different k, and see what this implies about the corresponding k cluster
solutions. In regions of bi- or multistability, we observe different numbers of clusters, although not all
equally frequently. For example: in one experiment we counted how many times we observed two and
three clusters for s = 0.5, r = 0.8. Without noise it was 67 times 2 clusters and 7 times 3 clusters.
With noise the distribution was 90 to 10. This suggests the basin of attraction for 2 clusters is greater.

We observed something interesting when k = p× q, and k clusters is a neutrally stable solution while
p is stable. In this case, we often observe k clusters, but grouped in p groups. We call this decoupling.
Figure 8 shows an illustration, and more pictures can be found in Appendix A. This decoupling also
happens when noise is added and with different feedback functions, showing that it is quite robust.
We have performed simulations for different regions of parameter space to see when the decoupling
happens. The decoupling is only seen in the regions that lie along the diagonal. This is unexpected,
since the stability triangles themselves are usually symmetric, which suggests that the behaviour along
the three edges is similar. The diagonal thus shows special behaviour.

Most of the stability triangles show all symmetries of the triangle: rotations and mirroring (along the
antidiagonal). Our present result suggest that only the mirroring symmetry is relevant. The stability
triangles for k = 9 and k = 14 (see Appendix A), curiously, break the other symmetries. We have
looked into this symmetry, but haven’t advanced far enough to give a proof of it.

When decoupling occurs, a wide range of cluster sizes is seen, in sharp contrast with the almost equal
cluster sizes that are usually observed. Figure 9 shows a comparison of histograms for two 4 cluster
solutions, one decoupled and one non-decoupled. It is clear that the differences are much larger in the
case of decoupling.

When a k cluster solution decouples into p groups of q clusters, we can see this as a superposition of
q times a p-cluster solution. In each of the p groups, the same distribution of cluster sizes within this
group is observed, and the total amount of cells in each of the p groups is approximately equal. There
is a proposition in (Breitsch et al., 2014) which is related to this. Proposition 3.7 says that a weighted
average of cyclic solutions that follow the same number of events is also a cyclic solution. This seems
to be relevant to the observations we make here. To clarify this, see for example Figure 10. Here we
see 4 clusters, in two groups of two. We can take the two large clusters as one 2 cluster solution, and
the two small ones as another solution. Their superposition is thus a new solution, and the fact that
it doesn’t collapse onto two clusters might be because the four cluster solution is not repelling, but
neutrally stable. This is largely a conjecture, though.
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Figure 8: Left: overlay of stability regions for k = 3 and k = 12. Dark blue are regions where 3
is stable, lighter blue where 12 is neutrally stable. Right: clusters obtained for a simulation with
parameter values from one of the triangles along the diagonal where 3 is stable and 12 unstable. It can
be seen that the 12 clusters decouple into 3 groups of 4 clusters. The size of the dots is proportional
to the amount of cells in the cluster.
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Figure 9: Histogram for the difference between largest and smallest cluster observed in 4 cluster
solutions. Left: s = 0.2, r = 0.35, four clusters is stable. Right: s = 0.45, r = 0.6, four decouples into
two times two.
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Figure 10: Four cluster solution decoupled into two groups of two. The size of the dots is proportional
the the amount of cells in the cluster.
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5 Discussion

We have discussed some problems and perspectives on the two unequal cluster case in Section 3.3 and on
decoupling in the previous one. We now finish with some general remarks. It is clear that the study of
this model, however simple it may seem at first, is not yet complete. The two unequal cluster discussion
shows that there is need for another method to study this. An equal division of cells among clusters
seems to be in some sense the most stable state, even though small deviations are often observed. It
would be interesting to quantify how large these deviations can be. A mathematical explanation of the
decoupling phenomenon is also worth investigating. It is remarkable that the decoupling only occurs
in regions along the diagonal, for s and r close to each other. The diagonal therefore has a special role
in the model, even though the regions of stability seem to satisfy more symmetries (but see the case of
9 and 14 clusters). This symmetry can be further investigated. We also refer to the final paragraphs
of (Breitsch et al., 2014) for some conjectures and open problems on the stability regions.

In this project, we checked if decoupling happens when noise is added and when a different feedback
function is used. Application to the gap model (Gong et al., 2014a) and the mediated model (Buckalew,
2014) can be checked (some preliminary simulations with the gap model show that decoupling can
happen here, as well, but this is expected to depend on the size of the gap).

This model is very simple, and the mechanism that leads to clustering is very straightforward. We
would expect to see more examples of clustering in nature. It would be of interest to examine if the
model can be applied to other phenomena in biology or other domains. After having shown that
clusters are possible in the model, a next step could also be to investigate the possibility to control the
amount of clusters formed, for example by forcing the model. We imagine this could have applications
in experiments with yeast in bioreactors, were pulses of chemicals can be added.

To conclude, this model is a good example of how simple mechanisms can lead to complicated and
intriguing behaviour. It shows how mathematics and numerical simulation can be combined to obtain
more insight in a biological problem.
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A More pictures

Both the decoupling and the stability triangles have, along with the insight they provide, a certain
aesthetic quality. This appendix serves to exhibit some of this.

4 = 2× 2 6 = 3× 2 6 = 2× 3

8 = 4× 2 12 = 4× 3 15 = 3× 5

Figure 11: Results of decoupling for different values of s and r.
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s

r

k = 12

s

r

k = 12

Figure 12: Stability triangles for 12 clusters, on the left for a linear feedback function, on the right for
a sigmoidal feedback function. The regions themselves are still triangular, but the feedback function
is clearly recognizable. The sigmoidal function used is f(x) = −a xc

b+xc with a = 0.66, b = 0.1, c = 3.

s

r

k = 9

s

r

k = 14

Figure 13: Regions of stability for 9 and 14 clusters. For these values, there is no complete symmetry
(note the two blue triangles on the inside). For all other values, the triangles have all symmetries. See
(Breitsch et al., 2014) for more pictures.
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s

r

k = 2 · · · 25

Figure 14: Overlay of stability regions for k = 2 to k = 25. Dark blue areas indicate parameter values
for which a large number of k cluster solutions are stable. The large triangle in the middle is the region
where 2 clusters are stable and comes out clearly.
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B Partial results and observations

While working on the project, we often got sidetracked and explored some interesting things. This
appendix contains some results that have not been fully developed.

B.1 Stability regions

First of all we provide a proof related to the stability triangles. This results has been recently proved
in another way in G. Moses’ PhD Thesis (Moses, 2015). The method we used is to obtain an analytical
expression for the characteristic polynomial of the Jacobian of the factor map F , and then prove a
result on the eigenvalues.

We use the terminology used by Breitsch et al. (2014), and look at a k-cyclic solution, with σ cells in
the S-region and ρ cells not in the R-region. We take σ = 1 also assume that the first event to happen
is that xρ reaches r. The regions in parameter space that correspond to this situation are the ones
on the left edge of the triangle. The pattern of blue white can be explained as follows: if ρ− 1 and k
are coprime, the k-cyclic is stable in this region, else it is neutrally stable. We summarize this in the
following proposition.

Proposition 1. For a k-cyclic solution with σ = 1 and xρ crossing r before xσ crosses s, for negative
feedback, the eigenvalues of the linear part of the factor map F are all less than 1 in absolute value if
and only if gcd(ρ− 1, k) = 1.

Proof. First of all, the linear part of F has a very definite structure. We have

DF =



0 0 · · · −1
1 0 · · · −1

1
. . . · · · −1
. . . 0 · · · −1

1 + β1 0 · · · −1
. . . · · · −1

1 −1


, (3)

where the 1+β1 appears on the ρth row and (ρ−1)th column, and β1 is shorthand notation for f(1/k)
(which is smaller than zero for negative feedback). This is a (k− 1)× (k− 1) matrix. We will call the
characteristic polynomial of this matrix Dρ(λ). We will now inductively compute Dρ(λ). We expand
DF − λI along the first row and obtain

Dρ(λ) = (−λ)Dρ−1(λ) + (−1)k(1 + β1), (4)

where Dρ−1(λ) is of the same form as Dρ(λ), but with the 1 + β1 in the (ρ− 1)th row and (ρ− 2)th
column. In addition, we have that D1(λ) is the determinant of the matrix

−λ 0 · · · −1
1 −λ 0 · · · −1
0 1 · · · −1

1 −1− λ

 ,

with dimensions (k− ρ)× (k− ρ). This evaluates to
∑k−ρ
i=0 λ

i (using a similar induction). Now we use
the lemma below to get

Dρ(λ) = λρ−1
k−ρ∑
i=0

λi + (1 + β1)

ρ−2∑
i=0

λi. (5)

We now prove that the roots of this polynomial cannot be larger than 1 in absolute value, and that if
ρ− 1 and k are coprime, there is a root with absolute value 1. For the latter part, note that the roots
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of
∑n
i=0 λ

i are the (n + 1)th roots of unity. From basic number theory we know that if p and n are
coprime, their roots of unity are distinct, and when they are not coprime, there is a root in common.
Applied to the polynomial above, this shows that when ρ− 1 and k − ρ+ 1 are coprime, they do not
have a common root, and if not, they do have it. Note that gcd(ρ− 1, k − ρ− 1) = 1 is equivalent to
gcd(ρ− 1, k) = 1.

To show that none of the roots can have absolute value of more than 1, we can do something analogous
to a proof in the appendix of (Young et al., 2012). Assume that λ is a root and that |λ| > 1. Dividing
Eq. (5) by 1− λ and putting equal to zero, we have

λρ−1(1− λk−ρ+1) + (1 + β1)(1− λρ−1) = 0

⇔ λρ−1 =
1 + β1

λk−ρ+1 + β1
. (?)

Now note that β1 < 0. Using the reversed triangle inequality, we have that |λk−ρ+1 +β1| > ||λ|k−ρ+1 +
β1| > |1 + β1|, where the last inequality follows since |λ| > 1, by assumption. Therefore the right
member in (?) has absolute value less than one, which gives a contradiction since by assumption the
left hand side has absolute value greater than 1.

Lemma 1. If a sequence ak satisfies

ak+1 = xak + bk and a1 = a, (6)

then we have

ak = axk−1 +

k−1∑
i=1

bix
k−1−i. (7)

Proof. The lemma is easily proved by straightforward induction.

The left edge of the stability triangles is probably the easiest one, since the matrix DF has a very
regular structure. It might be possible to prove similar results for other parts of the parameter space,
where the structure is also regular.

We have contemplated proving an analogous result for the upper edge of the stability triangle, for
ρ = k. The matrix DF is more complicated here though, and a more elegant way of proving the result
would be to prove that the triangle exhibits mirror symmetry: the region with σ′ = k + 1 − ρ and
ρ′ = k+ 1−σ has the same stability as the region with σ, ρ. One observation is that inverting the map
F around the cyclic solution gives the right correspondence between σ, ρ and σ′, ρ′ in each region, but
now the region S is the responsive and R the signalling region. We have not proceeded further with
this approach.

C List of experiments

This section gives an overview of all the numerical experiments carried out, together with why they
were carried out and the obtained result. If a cluster number is mentioned in bold, it means this was
the most observed number of clusters. Feedback is negative and linear unless otherwise noted, and
initial condition is random. In experiments where different regions are checked, the a regions lie along
the diagonal while b and c are on the other edges of the stability triangle.

Remark: a small mistake was found in the application of the noise. The noise added was uniform on
[0, σ], while it should be on [−σ/2, σ/2]. This was only changed from experiment 26 onwards. Some
checks were carried out and none of the results seemed to be influenced by this mistake.

The list below was mainly used as a personal reference and may therefore contain sloppy notation,
errors, or both. Question marks denote that the exact parameter values are unknown.
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Table 1: Overview of the numerical experiments.

Experiment Description Goal Result

1 s = 0.3, r = 0.4,
N = 1000,σ = 0

Initial test run Some errors, for example
sometimes one big cluster

2 ? ? Always 2 clusters observed.

3 s = 0.4, r = 0.65,
N = 1000,σ = 0

Observe 2 clusters (stable) Always 2 clusters observed,
with low differences in size.

3b Same as 3 but with
σ = 0.003 (?)

Always 2 clusters observed.

4 s = 0.3, r = 0.5,
N = 1000,σ = 0

Observe 3 clusters (stable) Always 3 clusters observed,
with low differences in size.

4b Same as 4 but with
σ = 0.003 (?)

Always 3 clusters observed.

5 s = 0.2, r = 0.35,
N = 1000,σ = 0

Observe 4 clusters (stable) Always 4 clusters observed,
with low differences in size.

5b Same as 5 but with
σ = 0.003 (?)

Always 4 clusters observed.

6 s = 0.16, r =
0.45,N = 1000,σ =
0

Observe 5 clusters (stable, I
thought)

3 clusters observed, not 5
(not the right parameter val-
ues probably)

6b Same as 6 but with
σ = 0.003 (?)

Observe 5 clusters 3 clusters observed, not 5

7 s = 0.3, r = 0.4,
N = 1000,σ = 0

Redo of experiment 1 after er-
rors have been corrected

3, 6 and 7 clusters observed.
Decoupling of 6 into 2×3.
Note: seemingly more 3 clus-
ter solutions when N is lower,
more 6 cluster solutions when
N is larger. Also this experi-
ment was redone.

8 s = 0.3, r = 0.5,
N = 500,σ = 0

Redo of experiment 4 to ob-
serve 3 clusters, but with more
runs

Always 3 clusters observed
with low differences

9 Same as 8 but with
N = 900

Check whether the fact that N
is divisible by 3 changes any-
thing

Similar results as experiment 8

10 s = 0.3, r = 0.4,
N = 1000 (?), σ =
0.003

As experiment 7 but with noise Same results as 7, I noted
seemingly faster convergence
with noise

11 s = 0.65, r = 0.7 See what happens. Values of
s, r close to diagonal, we ex-
pect a lot of clusters

Almost always 12 clusters,
sometimes 17 observed.
Strong decoupling for 12
clusters

12 ? Not on CoW Running 2 unequal clusters
with small perturbations to
check stability

1 cell perturbed, seems to stay,
generally 50/50 ending distri-
bution

13 region a: s =
0.5,r = 0.6, region
b: s = 0.2,r = 0.6,
region c: s = 0.4,
r = 0.85. N = 1000,
σ = 0.03

Check if decoupling occurs in
all regions where 4 is neutrally
stable and 2 stable

Problem with output files, but
region b and c give 2 cluster so-
lutions (so only decoupling in
a)
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14 region a: s =
0.45,r = 0.6, region
b: s = 0.1,r = 0.55,
region c: s = 0.45,
r = 0.85. N = 1000,
σ = 0.03

Check for the regions where 6
is neutrally stable and 2 is sta-
ble

Didn’t see 6 clusters, but 4, de-
coupled only in region a and
not in b and c. In a: more 2
clusters than 4 clusters.

15 region a: s =
0.55,r = 0.6, region
b: s = 0.08,r =
0.55, region c: s =
0.5, r = 0.95. N =
1000, σ = 0.03

Check for the regions where 8
is neutrally stable and 2 is sta-
ble

Region a: many solutions are
found: 2, 4,6,8,10 mainly, but
also (very little) 5 and 7. Clear
decoupling for 4, 6,8,10,12 (but
for latter difficult to see since
few occurences). Histogram
for differences in 4 clusters un-
expected shape: no peak but
“plateau”. Region b and c:
almost only 2 clusters, some-
times 4,6 or 7 but very little.

16 region a: s = 0.5,
r = 0.8, region aa:
s = 0.3, r = 0.4,
region b: s = 0.15,
r = 0.4, region bb:
s = 0.15, r = 0.75,
region c: s = 0.3,
r = 0.9, region cc:
s = 0.65, r = 0.9,
N = 1000, σ = 0.03

Check for regions where 6 is
neutrally stable and 2 is stable

In regions b, bb, c, cc: only
3 cluster solutions. Region aa:
clear decoupling. Region a: 3
clusters, 2 clusters, no 6 →
took wrong parameters, should
be s = 0.7 instead of s = 0.5

17 region a: s = 0.72,
r = 0.8, region aa:
s = 0.33, r = 0.4,
region b: s = 0.09,
r = 0.37, region bb:
s = 0.07, r = 0.7,
region c: s = 0.31,
r = 0.94, region cc:
s = 0.65, r = 0.95,
N = 1000, σ = 0.03

Check for regions where 9 is
neutrally stable and 3 is stable

Regions a and aa: decou-
pling of 6 and 9 clusters.
Curious histogram for region
a and differences of 9 clus-
ters: seemingly uniform distri-
bution. But sample size here is
small (≈ 10)

18 region a: s = 0.53,
r = 0.6, region aa:
s = 0.53, r = 0.7,
region aaa: s =
0.42, r = 0.59, re-
gion b: s = 0.08,
r = 0.53, region bb:
s = 0.18, r = 0.56,
region bbb: s =
0.18, r = 0.65, re-
gion c: = 0.49, r =
0.95, region cc: s =
0.40, r = 0.86, re-
gion ccc: s = 0.50,
s = 0.88, N = 1000,
σ = 0.03

Check for regions where 10 is
neutrally stable and 2 is stable

No 10 clusters observed. De-
coupling in region a: 4 = 2× 2
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19 s = 0.53, r = 0.6.
Initial perturba-
tion of the cells:
added random
number uniform
from [−ε/2, ε/2]
with ε = 0.03.
N = 1000, values of
a: 0.05, 0.1, . . . , 0.5

Simulations, starting with two
unequal (weight a, 1− a) clus-
ters at the correct initial con-
dition (obtained from simula-
tion with two weighted clus-
ters). Different perturbations:
all cells, only cells in smaller
cluster, only cells in larger
cluster

Unfortunate parameter choice:
a lot of other different cluster
sizes are stable

20 N = 500, σ = 0,
grid 51× 51

for parameter values s, r, run
simulations, check when two
clusters are created and calcu-
late the mean of the difference
to see if this is different for dif-
ferent parameter values

Note: first tried with finer grid
and more cells, but took too
much time

21 Redo of experiment
19 with s = 0.3, r =
0.65

Perturb unequal clusters, see
what happens

When perturbing all cells or
only the cells in the large clus-
ter, there is always equilibra-
tion to a half-half distribution
(approximately). When only
perturbing the smaller cluster,
the sizes are conserved

22 Same as 20 with
noise

See how the differences dif-
fer over parameter space and
whether there is a difference
with or without noise

23 Same as 21 without
perturbation but
with noise σ = 0.03

Check what happens with
noise

Always equilibration to half-
half distribution

24 s = 0.3, r = 0.65,
N = 500, a =
0.05, 0.1, . . . , 0.5

Start with unequal clusters at
correct position, perturb cell
by cell from the larger cluster

The cells always move to the
smaller cluster, until enough
are perturbed to make the
distribution half-half. When
more cells are perturbed, an
approximately half-half distri-
bution is always seen

25 and 25b Redo of 24, but
a = 0.4, 0.41, . . . , 0.6
and we don’t go
until all cells in the
largest cluster are
perturbed, only up
to N/2 − (1 − a)N ,
enough to make
half-half

Get a finer result than for
experiment 24, and check
whether maybe the inequality
is preserved when close to half-
half

Same result as in 24: all cells
go to the smallest cluster to get
half-half

26 For 2,3: s = 0.5,
r = 0.8, 2,5: s =
0.5, r = 0.86, 2,7:
s = 0.5, r = 0.91,
N = 1000, σ = 0
and σ = 0.03

Regions of bistability: see
what fraction ends up in either
state

For 2,3: without noise 67-7,
with noise: 90 - 10. For the
other: bad parameter values
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26b redo of 26 but with
2,5: s = 0.52, r =
0.7 and 2,7: s =
0.64, r = 0.67

2,3, no noise: 508 - 54,
with noise: 679-44. 2,5, no
noise: 701-0, with noise: 730-
0. 2,7, no noise:602-13, with
noise:668-2

27 s = 0.3,
r = 0.65, N =
100, 200, 500, 1000, 2000,
σ = 0 and σ = 0.03

See how the differences differ
for N , with and without noise

More variance with noise, also
with N (expected)

28 Same as 25, but
now we perturb
more cells than are
needed to equili-
brate to half-half

Problem with the output files,
no sensible results
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