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ABSTRACT
A standard tool in studying gene expression profiling data is

clustering analysis. Bayesian hierarchical clustering (BHC) (Heller
and Ghahramani, 2005) employing a multinomial prior has been
shown to produce biologically meaningful results (Savage et al., 2009)
and the algorithm automatically learns the optimal number of clusters
in the data. We show in this paper that the standard BHC algorithm
is vulnerable to noise. In this paper, we present an extension of the
BHC algorithm for non-time-series microarray data. We incorporate
BHC with a Gaussian model assumption together with a normal-
gamma conjugate prior to capture intrinsic structure of the data. We
demonstrate our algorithm on four cancer gene expression datasets.
The results show that our algorithm consistently produces biologically
plausible results than other commonly used algorithms

1 INTRODUCTION
Microarray technology has become one of the indispensable
tools in cancer studies (Babu, 2004). It enables the
measurement of genetic signature of cancer cells in terms of
gene expression data. With this type of data, one can perform
several kinds of analyses, one of which is to identify groups
of genes with similar expression profile across different
experimental conditions (Dhaeseleer et al., 2000). Genes in
the same group are likely to be co-regulated by the same
transcriptor (Eisen et al., 1998). Also, these genes can be set
as a classifier between subtypes of cancer, aiding stratificate
of cancer patients for personalised medication (Kim et al.,
2010). On the other hand, one can identify groups of genes
exhibiting similar expression pattern across observations,
which can lead to a discovery of a new subtype of cancer
(Alizadeh et al., 2000; Golub et al., 1999; Tritchler et al.,
2009).

Identifying a group of genes with a similar profile is not
straightforward. With an advance in microarray technology,
expression levels of several thousands of genes can be
monitored in a parallel fashion, resulting in high-dimensional
data. It is often the case that only a subset of genes provides
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useful information. Therefore, filtering needs to be carried
out to get rid of non-informative genes (Hackstadt and Hess,
2009; Bourgon et al., 2010; Tritchler et al., 2009). Even if the
number of dimension has been reduced, finding a structure
inside the data can still be difficult. Clustering analysis plays
an important role here. The aim of clustering analysis is
simply to group similar objects together in the same place.

Clustering analysis has become a vital tool in microarray
analysis as it has demonstrated significant results in
numerous studies. Eisen et al. (1998) was a pioneer
to use clustering analysis in microarray study. In the
work, hierarchical clustering is employed to find groups of
genes with similar function of Saccharomyces cerevisiae.
Hierarchical clustering is the most frequently used clustering
algorithm in the gene expression data analysis literature
(Golub et al., 1999; Alizadeh et al., 2000; Laiho et al.,
2006; Singh et al., 2002). Gasch et al. (2002) used a
heuristically modified version of fuzzy k-means clustering
to identify overlapping clusters of yeast genes based on
published gene expression data. In the study, they have found
good correlation between between yeast genes and between
the experimental conditions, which provides insights into the
mechanism of the regulation of gene expression in yeast cells
corresponding to the environmental changes. McLachlan
et al. (2002) demonstrated the use of a mixture model-
based approach to clustering microarray expression data,
in particular, clustering relatively small number of tissue
samples based on a very large number of genes. Wang et al.

(2002) used self-organizing map to reanalyse the published
data of diffuse large B-cell lymphomas. The results showed
three patterns of expression described in the original paper,
plus one novel pattern.

Quite a number of clustering algorithms have been
proposed to aid the investigation of microarray data.
Commonly used approach such as hierarchical algorithm
(Sokal and Michener, 1958; McQuitty, 1960; Sokal et al.,
1963), k-means (MacQueen et al., 1967), and self-organising
map (SOM) (Kohonen, 1990) gained their popularity since
they can be used at ease. There are few or no parameters
to be adjusted. However, these algorithms provide no guide
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about the “correct” numbers of clusters in the data. For
hierarchical algorithms, identifying the number of clusters
or level at which to prune a tree depends mainly on visual
identification. For k-means and SOM, the number of clusters
need predefined. Often, finding the correct number of clusters
is difficult, and ones might end up introducing some bias
into their analysis for not choosing the right number of
clusters. Another question that needs to be addressed is
how to select a distance metric. In hierarchical clustering
algorithms, the relation between objects is considered in
terms of dissimilarity, and is measured by the distance
between them.

Bayesian hierarchical clustering (BHC) algorithm (Heller
and Ghahramani, 2005) was proposed to overcome the
limitations of traditional clustering algorithms. The advantages
of BHC are that it is formulated as a statistical inference
framework. Describing data with a probabilistic model, it
allows us to say how good or bad the clustering result is
in terms of probability. It uses hypothesis testing to decide
which merge is advantage as to avoid overfitting. More
importantly, it recommends the number of clusters in the
data.

In this paper, we extend a standard BHC algorithm in order
to apply to non-time-series microarray data. We integrate a
standard BHC algorithm with a Gaussian model assumption
and a normal-gamma prior since there are several literature
confirming that a Gaussian model is suitable for describing
this type of data (Yeung et al., 2001; De Souto et al., 2008;
Medvedovic and Sivaganesan, 2002; Dubey et al., 2004). We
then test our algorithm against other commonly used and
recently proposed methods based on 4 case studies.

2 METHODS
2.1 Bayesian hierarchical clustering (BHC) algorithm
Bayesian hierarchical clustering algorithm (BHC), proposed
by Heller and Ghahramani (2005), is a type of agglomerative
hierarchical algorithm which is a bottom-up process. Let
D = {x(1), ...,x(n)} denote a dataset containing n data
points. Initially, each object forms its own cluster. So, we will
have n trivial clusters Di = {x(i)}. Then BHC merges a pair
of clusters Di and Dj , which are the most similar according
to a statistical criterion, into a new cluster Dk = Di ∪ Dj .
The algorithm will merge only one pair of clusters at each
step. The merging process is repeated until all data points
are placed in a single cluster. We can represent this merging
process by a dendrogram (see Figure 1). For any i, let Ti be
a subtree whose leaf is a cluster Di. If any subtrees Ti and Tj

are linked by a horizontal line, it means they are merged into
a new tree Tk with a leaf Dk = Di ∪ Dj . Furthermore, the
level of a horizontal line is connected to dissimilarity between
clusters.

BHC is a probabilistic model-based algorithm. It assumes
that a data point is distributed according to some probability
distribution, and the characteristic parameter of that
distribution is again governed by some prior belief. In other
words, a data point x(i) can be described by a hierarchical
model:

x(i) ∼ p(x(i)|θ) (1)

θ ∼ p(θ|β) (2)

in which θ denotes a parameter of a distribution governing
x(i), and a hyperparameter β characterises a prior
distribution.

Unlike traditional clustering algorithms which use distances,
such as Euclidean metric, Manhattan, etc, as dissimilarity
measure, BHC uses statistical hypothesis testing to decide
which clusters should be fused together. Suppose we are
considering to merge subtrees Ti and Tj into a subtree Tk as
illustrated in Figure 1. We compare the following hypotheses.
The null hypothesis, H0, states that all data points in Dk

are identical and independently distributed according to the
same probability distribution. The alternative hypothesis,
H1, states that data points in Di and data points in Dj are
generated according to different distributions. Given this, we
can express the marginal probability of data points in Dk

under H0 as

P (Dk|Hk
0) =

� 


�

x(i)∈Dk

p(x(i)|θ)



 p(θ|β) dθ. (3)

The probability that Dk consists of two clusters according to
H1 simply is

P (Dk|Hk
1) = P (Di|Ti)P (Dj |Tj). (4)

The above equation follows from the assumption that Di and
Dj are generated independently under different distributions.
Using (3) and (4), we can recursively define the marginal
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Fig. 1: An illustration of a part of a dendrogram. Subtrees Ti and Tj

merge into a tree Tk, resulting in Dk = Di ∪ Dj .
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probability of data in Tk as

P (Dk|Tk) = πkP (Dk|Hk
0) + (1− πk)P (Di|Ti)P (Dj |Tj).

(5)
which is a weighted sum of probabilities of data under H0

and H1. The weight term πk is defined as πk = P (Hk
0),

a prior that all data points in Dk are from the same cluster.
Using Bayes’ rule, we therefore obtain the merged hypothesis
probability:

rk = P (Tk|Hk
0) =

πkP (Dk|Hk
0)

P (Dk|Tk)
. (6)

The prior on merged hypothesis πk is recursively given by

πk =
αΓ(nk)

dk
(7)

dk = αΓ(nk) + didj (8)

where nk denote the number of objects in Dk, Γ(·) is a
gamma function, and α is a concentration parameter. Note
that the bigger the value of α, the higher the value of expected
number of clusters. Here, πk is intentionally defined in such
a way that the probability of a new point joining an existing
cluster is proportional to the number of data points already
in that cluster. This property mimics a character of Dirichlet
process mixture model. Indeed, BHC is a fast approximate
method for Dirichlet process mixture model (Heller and
Ghahramani, 2005) because it makes an inference based on
a finite number of tree-consistent partitions rather than all
possible partitions of a dataset.

One of the features that make BHC more desirable than
other clustering algorithms is that it recommends at which
level a dendrogram should be pruned. This automatically
results in the final partition that we need. The algorithm
prunes a tree Tk into Ti and Tj if the merged hypothesis
probability rk is less than 0.5. Intuitively, clusters are less
likely to merge at this level.

Lastly, BHC algorithm can be implemented as follows
(Heller and Ghahramani, 2005):

Inputs: a dataset D = {x(i), ...,x(n)}, a model p(x|θ), a
prior p(θ|β), and a concentration perameter α
Initialise: Di = {x(i)}, di = α, πi = 1, ni = 1 for each
leaf i, and set c = n
Construct a dendrogram:
while c > 1 do

Calculate rk for every pair of clusters.
Find a pair Di and Dj with the highest rk
Merge Di and Dj into Dk, i.e. Dk ← Di ∪ Dj

Delete Di and Dj . Set c ← c− 1
end while
Prune the dendrogram at level rk = 0.5

2.2 A Gaussian model with a normal-gamma conjugate
prior

Previously, a standard BHC algorithm as described in
subsection 2.1 has been successfully applied to a gene
expression data (Savage et al., 2009), using a multinomial
model assumption. On performing experimental sample
clustering of Arabidopsis thaliana microarray dataset
(de Torres-Zabala et al., 2007), BHC with a multinomial
model assumption shows higher dendrogram purity as well
as more meaningful clusters in comparison with a complete-
linkage hierarchical algorithm with uncentred correlation
coefficient metric. For gene clustering on the same dataset,
BHC with a multinomial model assumption still performs
better. It produces more biologically meaningful clusters than
those of the conventional hierarchical algorithm.

However, BHC with a multinomial model assumption has a
downside. It requires us to first discretise continuous relative
expression data into three bins, namely over-expressed,
unchanged, and under-expressed. This imposes too strong an
assumption on the data. Even if expression values are trivially
fluctuating due to noise, they will be pushed into different
bins anyway. In other words, it is highly sensitive to noise.
Moreover, finding an optimal discretisation in a large dataset
is very costly. This encourages us to find a way to improve it.

There are several factors pointing to a Gaussian model
assumption as an alternative to the multinomial model
assumption. Regarding a finite Gaussian mixture model
(McLachlan and Basford, 1988), Yeung et al. (2001) used
this method to cluster expression profiles. Given the true
number of clusters, it can reliably assign an individual data
to the correct cluster. This has been proven again recently
by De Souto et al. (2008), where a finite Gaussian mixture
model is the best approach among 7 different clustering
algorithms to recover the underlying structure of cancer data,
provided a correct number of clusters (see De Souto et al.

2008 for detail). Taking into account the number of clusters is
often unknown, attention has been moved toward an infinite
Gaussian mixture model (Ferguson, 1973; Neal, 2000;
Rasmussen, 2000) which allows the data to automatically
discover how many clusters it has. This model is also
known as a Dirichlet process mixture model with a Gaussian
model assumption. Medvedovic and Sivaganesan (2002)
developed a clustering method for the microarray data based
on an infinite multivariate Gaussian mixture model, where
an optimal partition is found through MCMC and Gibbs
sampler. Dubey et al. (2004) also used the same method to
cluster protein sequences and discover protein families and
subfamilies. Moreover, Gaussian process regression has been
used in BHC for a microarray time-series data recently. This
method consistently yields a high quality and biologically
meaningful clustering results. As mentioned in Section 2.1,
BHC is a fast inference method for a Dirichlet mixture
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model, this encourages us a to try developing the BHC with
a Gaussian model assumption.

Since our aim is to develop an alternative BHC method for
a non-time-series microarray data, we assume explicitly that
expressions across experiments are mutually independent.
Also, we assume that expressions of different genes
in the same experiment are identical and independently
distributed according to a Gaussian distribution. Let x(i) =

(x(i)
1 , ..., x(i)

d ) be an array containing expression values
across d experiments of the ith genes, and let its attribute
x(i)
j denote an expression value of the ith gene in the jth

experiment. Thus, we have that

x(i)
j ∼ N(x(i)

j |µ, σ). (9)
For a prior distribution on parameters µ and σ, we employ a

normal-gamma distribution which is a conjugate of Gaussian
distribution. Following the notation of DeGroot (2004), we
write a normal-gamma prior as

NG(µ, λ|µ0, κ0, α0, β0)

= N(µ|µ0, (κ0λ)
−1)Gamma(λ|α0, β0)

=
1

ZNG(µ0, κ0, α0, β0)
λα0− 1

2 exp

�
−λ
2

�
κ0(µ− µ0)

2 + 2β0

��

(10)

where λ = σ−2 is a precision parameter, µ0, κ0, α0 and β0

are hyperparameters, and

ZNG(µ0, κ0, α0, β0) =
Γ(α0)

βα0
0

�
2π

κ0

� 1
2

. (11)

Let D = {x(1), ...,x(n)} where n is the total number of data
points, and Dj = {x(1)

j , ...,x(n)
j }. A marginal distribution of

data points in Dj is expressed as

P (Dj |µ0, κ0, α0, β0) =
Γ(αn)

Γ(α0)

βα0
0

βαn
n,j

�
κ0

κn

� 1
2

(2π)−
n
2

(12)
where

κn = κ0 + n (13)

αn = α0 +
n

2
(14)

βn,j = β0 +
1

2

�
n�

i=1

(x(i)
j − x̄j)

2 +
κ0n(x̄j − µ)2

κn

�
. (15)

The total marginal distribution is then given by

P (D|µ0, κ0, α0, β0) =
d�

j=1

[p(Dj |µ0, κ0, α0, β0)] . (16)

The above equation is all we need in (3).

2.3 Other clustering methods
Apart from BHC with a Gaussian model assumption, we
consider another 7 clustering algorithms: BHC with a

multinomial model assumption, average-linkage, complete-
linkage, k-means, divisive analysis (Diana), SOM, and
affinity propagation (AP). These algorithms are frequently
found in gene clustering analysis literature. Later on in this
work, we shall refer to BHC with a multinomial model
assumption as BHC(multinomial), and our BHC with a
Gaussian model assumption as BHC(Gaussian).

BHC(multinomial) is constructed on the same basis as
BHC(Gaussian), but it assumes that the data are multinomial
distributed and therefore it is suitable for data of this type. To
apply this method to microarray data, continuous expression
levels for each gene need to be discretised into three levels
(unchanged, under- or over-expressed). For more detail of
how it is formulated, consult Heller and Ghahramani (2005)
and Savage et al. (2009).

Average-linkage (Sokal and Michener, 1958) and complete-
linkage methods (McQuitty, 1960; Sokal et al., 1963;
Macnaughton-Smith, 1965) are also a kind of agglomerative
hierarchical algorithms. The differences between these
algorithms and BHC are that firstly, they are not model-based
algorithms. Therefore, distances are used as dissimilarity
measures rather than for statistical hypothesis testing.
Secondly, they do not tell how many clusters are there in
the data. However, with the simplicity of algorithm, they
are less computationally intensive. Another strong point is
they are very easy to use. No parameters need to be adjusted.
This makes these algorithms very popular in bioinformatic
field (Costa et al., 2004; Datta and Datta, 2003; Quackenbush
et al., 2001). Average-linkage and complete-linkage differ
on how the dissimilarity between two clusters is calculated.
Average-linkage uses the average distance of any pairs of data
points between these clusters, whereas complete-linkage uses
the largest distance among distances of any pair of data points
between two clusters.

Diana (Kaufman et al., 1990) is an example of
divisive hierarchical algorithm. In contrast to agglomerative
algorithms, it starts by gathering every data point into a
single big cluster and then it splits a big cluster into two
smaller clusters at each time step. The algorithm terminates
when clusters are all singleton. Diana is also used in gene
expression clustering (Datta and Datta, 2006; Sherlock, 2000;
Jiang et al., 2004) but vastly ignored in other literature.
k-means (MacQueen et al., 1967) is a partitioning

algorithm which is intensively used for gene expression data
analysis. Given a pre-specified number of cluster, k-means
find the optimal partition which minimises error sum of
squares between data and their clusters’ centroid. k-means
has initial randomness. It starts with random partition. Then
data points are assigned to a cluster of the nearest centroid. A
centroid is recalculated every time there is a change occurring
in a cluster. The algorithm stops when there are no changes
in the assignment of data points to clusters taking place.

SOM (Kohonen, 1990) clusters a dataset by mapping
a high-dimensional data into a lower dimensional space.
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Higher-dimensional data points with close structure will be
represented by the same object in the lower dimensional
space. This mapping is unsupervisedly constructed through
a neuron network.

AP (Frey and Dueck, 2007) is a partitioning algorithms
which can also determine the number of clusters in the data
by itself. Similar to k-means, it chooses a data point called
examplar to represent a cluster. Picturing each data point as a
node in a network, the algorithm recursively exchanges real-
valued messages along edges of the network. At each time
step, the affinity a data point has for choosing another point
as its examplar is reflected by the magnitude of messages
exchanged among them. This allows a set of examplars
and their corresponding clusters to gradually emerge. AP
has several applications in genes clustering analysis (Kiddle
et al., 2010; Frey and Dueck, 2007)

In this work, we have implemented BHC(Gaussian) and
BHC(multinomial) algorithms by ourselves in MATLAB.
AP is conducted using a MATLAB code written by Frey
and Dueck (2007). All the rest of algorithms are carried
out using freely available R packages. Average-linkage,
complete linkage, and K-means algorithms are available in
stats package. Diana is provided in cluster package, and
SOM is provided in kohonen package.

2.4 Dissimilarity measures
A dissimilarity measure is key for traditional clustering
analysis. Without dissimilarity measure, we cannot tell
how close two data points or clusters are. Consequently,
we cannot group data points or clusters which are more
similar together. We use two dissimilarity measure, namely
Euclidean distance and Pearson’s correlation. According to
microarray clustering analysis guideline by D’haeseleer et al.

(2005), these metrics often produce a good result.

2.5 Performance validation indices
First, biological homogeneity index (BHI) (Datta and Datta,
2006) is used to evaluate the performance of algorithms
on gene clustering. In gene clustering, the aspect in which
we are interested is meaning of clusters. BHI is an index
that indicates how biologically meaningful a clustering result
is. Its score is between 0 and 1. Higher score will be
assigned to a partition whose clusters exhibit more biological
homogeneity. The reference of biological homogeneity is
an annotation set. In this case, we use gene ontology (GO)
annotations, which indicates biological functional classes
of genes in three domains, namely cellular component,
molecular function, and biological process. In this work, BHI
score of a partition is calculated using clValid package in R
statistical program (Brock et al., 2008).

Second, adjusted rand index (ARI) (Hubert and Arabie,
1985) is used to evaluate the performance of algorithms on
sample clustering. When performing sample clustering, the
question is how well an algorithm recovers the ground truth

structure. In this case, since the underlying structure of the
data is known, ARI is a suitable index. This index tells us
how agreeable a pair of partitions is, excluding by chance
agreement. This allows us to compare between a partition
from clustering and a true partition. A score of ARI is
bounded by 1. The higher the score, the more agreeable a
pair of partitions is.

2.6 Datasets and associated annotation databases
To assess the performance of our methods, we used four
case studies. Three out of four are published microarray
datasets. The first dataset is of colon cancer (Laiho et al.,
2006), and the second one is of bone marrow cancer (Golub
et al., 1999). Both have been proposed as a benchmark
dataset in comparative study of clustering methods (De Souto
et al., 2008). We used the filtered version of these datasets,
available online1. Filtered colon cancer dataset contains 8
serrated and 29 conventional colorectal carcinomas. Each
of which has 2,202 probes. In our analysis, it was filtered
again with Wilcoxon rank sum test with significance level
0.05, resulting in only 431 probes left. The filtered bone
marrow cancer dataset consists of 72 samples: 47 acute
myeloid leukemia and 25 acute lymphoblastic leukemia. The
data has 1,877 probes. In the same way as colon cancer
dataset, we filtered it again using Wilcoxon rank sum test
with significance level 0.01. There are 373 probes passing
the filter.

The third dataset is of breast cancer used in studying
mechanisms underlying breast cancer initiation and progres-
sion (Graham et al., 2010). It has 42 samples: 9 normal
breast epithelia from ER- breast cancer patients, 9 normal
breast epithelia from ER+ breast cancer patients, 6 normal
breast epithelia from prophylactic mastectomy patients, and
18 normal breast epithelia from reduction mammoplasty
patients. The original data has 22,283 probes. We use
Wilcoxon rank sum for testing between a group of samples
from cancer patients and a group of samples from non-cancer
patients with significance level 0.01 to reduce dimensionality
of the data, yielding 753 probes left.

In the last case study, we illustrated our method on
an unpublished lung cancer dataset, which consists of 16
samples: 7 normal lung biopsies, 5 large-cell neuroendocrine
carcinomas (LCNEC), and 4 small-cell lung carcinomas
(SCLC). The microarray experiment of this data has
been conducted on AGilent SurePrint G3 Human Gene
Expression 8x60K microarrays. Then the raw expression
data was processed using a bioconductor package limma

in R statistical program, and after that it was quantiled
normalised. A-priori to our analysis, Kruskal-Wallis test for
testing between three subgroups with significant level 0.003
has been carried to filter noisy genes out. Finally, there are
628 significant probes left.

1 http://algorithmics.molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm
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An annotation database associated with a dataset provides
the connection between genes and their GO terms. We
used annotation databases available in bioconductor2. The
following are annotation databases we used: hgu133a.db

(colon cancer), hu6800.db (bone marrow), hgu133a2.db

(breast cancer), and hgug4112a.db (lung cancer).

3 RESULTS AND DISCUSSION
3.1 Comparison of BHC(Gaussian) to other clustering

algorithms
We compared BHC(Gaussian) to other clustering algorithms
mentioned in Section 2.3. In the case of BHC(Gaussian),
we performed clustering based on three types of data:
the original expression data, pairwise correlation distance
matrix, and pairwise Euclidean distance matrix. In addition,
for k-means and SOM which have random initialisation,
we ran the algorithms for 100 times and the results were
averaged.

Datasets described in Section 2.3 are used here. For each
dataset, we performed both gene clustering and sample
clustering. Regarding gene clustering, BHI was used to
gauge the performance of each algorithm in terms of how
well a biologically meaningful partition was produced. Note
that besides BHC(Gaussian), BHC(multinomial), and AP
which can automatically determine the number of clusters
by themselves, the rest of algorithms need as an input a
pre-specified number of clusters. So, we first compared
BHC(Gaussian) to BHC(multinomial) and AP using the
partitions they had found. The results are given in Table 1.
Then we compared the best result among three settings of
BHC(Gaussian) with the rest of algorithms. However, in
order to make a fair comparison, the numbers of clusters for
the other algorithms were assigned to be that of the setting of
BHC(Gaussian) that display highest value of BHI. The results
are shown in Table 2.

We can see that the performance of BHC(Gaussian) in
producing biologically meaningful results is among the
top. According to Table 1, comparing between algorithms
which can determine the number of clusters, BHI scores
produced by BHC(Gaussian) with all different types of
data are regularly taking the first three places on a rank.
For BHC(Gaussian) with the original expression data,
it is consistently ranked as one of the first two best
ranking methods. On average, BHC(Gaussian) with the
original expression data and BHC(Gaussian) with a pairwise
Euclidean distance matrix are the first and the second,
respectively, to give the highest BHI scores. Also in
Table 2, when a comparison was made at the same level,
BHC(Gaussian) still works very well. The BHI scores of the
best setting of BHC(Gaussian) sit within the first four out of

2 http://www.bioconductor.org/

nine on the ranking. BHC(Gaussian) comes in the first place
on average.

For sample clustering, since the underlying structure of
the data is known, we are interested in how well algorithms
can rediscover the true structure given the actual number
of classes. We therefore assigned the actual number of
classes to every algorithm including BHC(Gaussian) and
BHC(multinomial). Then, ARI was used to assess their
performances. The results are shown in Table 3. When we
consider the results of all 12 different settings on average,
BHC(Gaussian) with a pairwise Euclidean distance matrix
and BHC(Gaussian) with the original expression data take
the third and the forth places on the rank, respectively.

3.2 Comparison of BHC(Gaussian) and
BHC(multinomial)

We compared BHC(Gaussian) and BHC(multinomial) via
both performance and visualisation of the clustering results.
The clustering results of both algorithms on all datasets are
illustrated in Figures 2 - 5. In each figure, the red lines in
row or sample dendrograms indicate where the dendrogram
is pruned. If genes or samples are connected by blue lines or
black lines, it indicates that they are in the same cluster.

In terms of biological homogeneity of clustering results,
BHC(Gaussian) performs better than BHC(multinomial) in
our experiments. Judging by visual examination of every
figure, it appears that BHC(multinomial) does very well
in placing genes with similar expression pattern into the
same group. Surprisingly this is not the case according
to their BHI scores. The reason that BHC(multinomial)
does not do well is over-discretisation. As mentioned
earlier, BHC(multinomial) tends to discriminate continuous
expression values into different categories even if they do
not differ significantly. BHC(Gaussian) which is built to deal
directly with continuous values therefore performs better.

In our experiments, BHC(Gaussian) with the original
expression data and BHC(Gaussian) with a pairwise
correlation distance matrix appear better than BHC(multinomial)
on average in terms of recognising the true structure of the
data. In particular for colon cancer data, ARI scores of
these 2 settings of BHC(Gaussian) are significantly much
higher than that of BHC(multinomial). From the visual
examination of BHC(Gaussian) and BHC(multinomial)
clustering results illustrated in Figure 4, we are able to see
that BHC(Gaussian) recognises the actual classes of samples
better than BHC(multinomial). Even though a heat map
produced by BHC(multinomial) is more orderly, it is again
a result from over-discretisation.
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Table 1. BHI scores of partitions found by BHC(Gaussian), BHC(multinomial) and AP on performing gene clustering

dataset name BHC(Gaussian) BHC(Gaussian) BHC(Gaussian) BHC(multinomial) AP AP
original data correlation Euclidean correlation Euclidean

# clusters BHI # clusters BHI # clusters BHI # clusters BHI # clusters BHI # clusters BHI

bone marrow cancer 4 0.3032 7 0.289 20 0.3111 7 0.277 26 0.282 15 0.3003

breast cancer 23 0.2951 17 0.2782 98 0.2753 5 0.267 19 0.265 8 0.268
colon cancer 6 0.2751 13 0.2672 38 0.2672 8 0.240 24 0.246 10 0.2613

lung cancer 23 0.2502 29 0.224 83 0.2453 8 0.243 5 0.2591 12 0.244

mean 0.2811 0.265 0.2742 0.257 0.263 0.2683

superscript numbers behind the BHI values indicate the rank of values within a row

Table 2. BHI scores of partitions found by all cluster algorithms when the number of clusters are assigned to be that of the best setting from
BHC(Gaussian) given in Table 1

dataset name # clusters BHC Average- Average- k-means Diana Diana Complete- Complete- SOM
(Gaussian) linkage linkage correlation Euclidean linkage linkage

correlation Euclidean correlation Euclidean

bone marrow cancer 20 0.3112 0.256 0.283 0.2963 0.265 0.3461 0.283 0.262 0.291
breast cancer 23 0.2953 0.215 0.3032 0.284 0.282 0.276 0.268 0.3051 0.276
colon cancer 6 0.2751 0.201 0.2693 0.263 0.245 0.261 0.234 0.2712 0.264
lung cancer 23 0.2504 0.231 0.2761 0.242 0.2602 0.245 0.222 0.2583 0.248

mean 0.2831 0.226 0.2831 0.271 0.263 0.2822 0.252 0.2743 0.270

superscript numbers behind the BHI values indicate the rank of values within a row

4 CONCLUSIONS
In this paper, we presented an extension to the standard
BHC algorithm (Heller and Ghahramani, 2005) for non-
time-series microarray data, assuming that the data is
independent and identically Gaussian distributed. We
employed a normal-gamma distribution as a prior on
a Gaussian distribution parameters. We have intensively
compared performance of our algorithm to that of other
well-known algorithms on four different datasets. The
results showed that firstly BHC(Gaussian) with the original
expression data is the best algorithm on average to produce
biologically meaningful results among the algorithms which
can determine the number of clusters. Secondly, when we
compared BHC(Gaussian) with other algorithms that need
predefined number of clusters, BHC(Gaussian) still performs
better on average. Thirdly, in terms of how well the algorithm
can recognise the actual label of the data, BHC(Gaussian)
with a pairwise Euclidean distance matrix comes as the third
best setting on average. Furthermore, being more robust to
noise, our algorithm can also be consider as an improvement
of to the BHC with multinomial model assumption for
non-time-series microarray data proposed by Savage et al.

(2009).

We cannot definitely claim that our method is significantly
better than the others in general, as the number of datasets
involving in our study is too small to allow a strong
conclusion. Moreover, in the case that data is not Gaussian
distributed, our algorithm might not perform well. Therefore,
we shall include more case studies in the future work.

Our future work will look into how to effectively find
optimal hyperparameters of a normal-gamma distribution.
Right now, we fixed the hyperparameters κ0 and µ0 to
be constant and perform numerical gradient search for the
hyperparameters α0 and β0. Clustering is performed every
time to evaluate the objective function, making it very
expensive. There is also an issue of computational cost that
need to be improved. BHC has computational complexity
O(n2), which makes it unpromising for large-scale data. We
therefore are going to develop the randomised version of our
algorithm, according to randomised BHC algorithm proposed
by Heller and Ghahramani (2005).
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Table 3. ARI score evaluated between an algorithm discovered partition and the true partition

dataset name BHC BHC BHC BHC Average- Average- k-means Diana Diana Complete- Complete- SOM
(Gaussian) (Gaussian) (Gaussian) (multinomial) linkage linkage correlation Euclidean linkage linkage
actual data correlation Euclidean correlation Euclidean Correlation Euclidean

bone marrow cancer 0.178 0.203 0.188 0.235 -0.019 0.3821 0.263 0.3312 0.263 0.2833 0.229 0.225
breast cancer 0.046 0.249 0.199 0.238 0.049 0.064 0.2802 0.082 0.156 0.258 0.2783 0.2951
colon cancer 0.7693 0.106 0.7693 0.296 -0.088 0.8781 0.531 -0.111 0.7772 -0.102 -0.090 0.694
lung cancer 1 1 1 1 1 1 0.764 1 1 1 1 0.742

mean 0.4984 0.390 0.5393 0.442 0.236 0.5811 0.459 0.325 0.5492 0.360 0.354 0.489

superscript numbers behind the BHI values indicates the rank of values within a row
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providing us the lung cancer dataset. We are grateful to
Katherine A. Heller for sharing her code for the standard
BHC algorithm.

REFERENCES
Alizadeh, A., Eisen, M., Davis, R., Ma, C., Lossos, I., Rosenwald, A., Boldrick, J.,

Sabet, H., Tran, T., Yu, X., et al. (2000). Distinct types of diffuse large B-cell
lymphoma identified by gene expression profiling. Nature, 403(6769), 503–511.

Babu, M. (2004). Introduction to microarray data analysis. Computational Genomics:

Theory and Application, pages 225–249.
Bourgon, R., Gentleman, R., and Huber, W. (2010). Independent filtering increases

detection power for high-throughput experiments. Proceedings of the National

Academy of Sciences, 107(21), 9546.
Brock, G., Pihur, V., Datta, S., and Datta, S. (2008). clValid: An R package for cluster

validation. Journal of Statistical Software, 25(4), 1–22.
Costa, I., Carvalho, F., and Souto, M. (2004). Comparative analysis of clustering

methods for gene expression time course data. Genetics and Molecular Biology,
27(4), 623–631.

Datta, S. and Datta, S. (2003). Comparisons and validation of statistical clustering
techniques for microarray gene expression data. Bioinformatics, 19(4), 459–466.

Datta, S. and Datta, S. (2006). Methods for evaluating clustering algorithms for gene
expression data using a reference set of functional classes. BMC bioinformatics,
7(1), 397.

De Souto, M., Costa, I., De Araujo, D., Ludermir, T., and Schliep, A. (2008). Clustering
cancer gene expression data: a comparative study. BMC bioinformatics, 9(1), 497.

de Torres-Zabala, M., Truman, W., Bennett, M., Lafforgue, G., Mansfield, J., Egea,
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(a) A heatmap found by BHC(Gaussian) algorithm. (b) A heatmap found by BHC(multinomial) algorithm.

Fig. 2: Hierarchical clustering results on the bone marrow cancer dataset. In Figure 2a, gene clustering was performed on a pairwise Euclidean
distance matrix of genes in the original expression data, and sample clustering was performed on a pairwise correlation distance matrix of
sample in the original expression data. In Figure 2b, for each gene, the original expression values were discretised into three groups (over-
expressed, unchanged, and under-expressed) prior to clustering. In dendrograms, the merge that BHC algorithms do not prefer to make is
displayed by red line. The blue lines show the preferable merges. Up-regulated genes are presented by red colors and down-regulated genes
are presented by green colors.

Savage, R., Heller, K., Xu, Y., Ghahramani, Z., Truman, W., Grant, M., Denby, K., and
Wild, D. (2009). R/BHC: fast Bayesian hierarchical clustering for microarray data.
BMC bioinformatics, 10(1), 242.

Sherlock, G. (2000). Analysis of large-scale gene expression data. Current opinion in

immunology, 12(2), 201–205.
Singh, D., Febbo, P., Ross, K., Jackson, D., Manola, J., Ladd, C., Tamayo, P., Renshaw,

A., D’Amico, A., Richie, J., et al. (2002). Gene expression correlates of clinical
prostate cancer behavior. Cancer cell, 1(2), 203–209.

Sokal, R. and Michener, C. (1958). A statistical method for evaluating systematic
relationships. Univ. Kans. Sci. Bull., 38, 1409–1438.

Sokal, R., Sneath, P., et al. (1963). Principles of numerical taxonomy. Principles of

numerical taxonomy.

Tritchler, D., Parkhomenko, E., and Beyene, J. (2009). Filtering genes for cluster and
network analysis. BMC bioinformatics, 10(1), 193.

Wang, J., Delabie, J., Aasheim, H., Smeland, E., and Myklebost, O. (2002). Clustering
of the SOM easily reveals distinct gene expression patterns: results of a reanalysis

9



Sirinukunwattana et al

(a) A heatmap found by BHC(Gaussian) algorithm. (b) A heatmap found by BHC(multinomial) algorithm.

Fig. 3: Hierarchical clustering results on the breast cancer dataset. In Figure 3a, gene clustering was performed on the original expression
data, and sample clustering was performed on a pairwise correlation distance matrix of samples in the original expression data. In Figure 3b,
for each gene, the expression values were discretised into three groups (over-expressed, unchanged, and under-expressed) prior to clustering.
In dendrograms, the merge that BHC algorithms do not prefer to make is displayed by red line. The blue lines show the preferable merges.
Up-regulated genes are presented by red colors and down-regulated genes are presented by green colors.

of lymphoma study. BMC bioinformatics, 3(1), 36.
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(a) A heatmap found by BHC(Gaussian) algorithm. (b) A heatmap found by BHC(multinomial) algorithm.

Fig. 4: Hierarchical clustering results on colon cancer dataset. In Figure 5a, both gene and sample clusterings were performed on the original
expression data. In Figure 5b, for each gene, the expression values were discretised into three groups (over-expressed, unchanged, and
under-expressed) prior to clustering. In dendrograms, the merge that BHC algorithms do not prefer to make is displayed by red line. The blue
and black lines both show the preferable merges. Up-regulated genes are presented by red colors and down-regulated genes are presented by
green colors.
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(a) A heatmap found by BHC(Gaussian) algorithm. (b) A heatmap found by BHC(multinomial) algorithm.

Fig. 5: Hierarchical clustering results on lung cancer dataset. In Figure 5a, both gene and sample clusterings were performed on the original
expression data. In Figure 5b, the expression values were discretised into three groups (over-expressed, unchanged, and under-expressed)
prior to clustering. In dendrograms, the merge that BHC algorithms do not prefer to make is displayed by red line. The blue lines show the
preferable merges. Up-regulated genes are presented by red colors and down-regulated genes are presented by green colors.
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