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Abstract

We investigate the unusual observed patterns of influenza A strain dynamics in the northern hemisphere in the
2009/2010 and 2010/2011 influenza seasons, with particular attention to the US and the UK. During the 2009 pan-
demic, the novel A(H1N1)pdm09 strain, the so-called swine flu, dominated in both regions. Afterwards, the winter
of 2010/2011 brought an overwhelming reinfection by the pandemic strain in Europe, but co-occurring epidemics of
A(H1N1)pdm09 and a seasonal H3N2 strain in the US. Here we develop a single strain model with seasonal effects for
the summer holidays and the winter months which can reproduce the two waves of the 2009/2010 season given there is
a significant seasonal increase in transmission. A two-strain model with waning immunity, partial cross-immunity and
prior immunity against the seasonal strain can display both UK-like and US-like behaviours, with the only difference
being the initial conditions, namely, seeding and prior immunity.
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Introduction

Influenza is an infectious disease of birds and mam-
mals, spreading all over the world mainly in seasonal
epidemics. Influenza A is of particular interest to mod-
ellers, due to the rich dynamics of its subtypes and
strains and the now publicly available strain-specific
data from surveillance schemes; serving commonly as a
case study for the modelling of multi-strain pathogens.

Influenza A subtypes are classified based on
the hemagglutinin (HA) and neuraminidase (NA)
molecules, the antigenically active parts of the influenza
A surface. As the primary antibody targets, these are
under selection pressure from the immune system and
mutate rapidly. Continuous changes, due to point muta-
tions, are referred to as genetic drift. Drift leads to new
virus strains capable of partially escaping pre-existing
immunity in the population, acquired from prior infec-
tions. A genetic shift, on the other hand, refers to the
introduction of a distinct HA or NA region in a virus.
The resulting strain thus might be able to fully over-
come prior immunity and cause a global pandemic.

The newly emerged A(H1N1)pdm09 strain, causing
the first influenza pandemic of the 21st century in 2009,
was the result of such a shift. It was the combination
of an Eurasian ’avian-like’ swine H1N1 strain and a
North-American triple-reassortant strain, which carried

genetic material from human seasonal H3N2, classical
swine H1N1 and avian H1N1 strains (1).

The details of human immune response to the virus
are still unclear, but evidence can be found for a rich va-
riety of dynamics. Ferguson et. al. show that an immune
response composing of a long-term strain-specific mem-
ory response and a short-term non-specific response is
required to reproduce phylogenetic patterns as seen in
sequence data (2). Mathews et. al consider two data sets
showing a second wave, namely, the 1918 Spanish flu
in RAF camps and an H3N2 outbreak on the island of
Tristan de Cunha (TdC). Their study implies that pre-
existing immunity plays an important role in the course
of an epidemic, both by decreasing the chance of infec-
tion and mitigating the severity of symptoms, whereas
waning immunity is needed to produce multiple waves
(3). An other work of the TdC outbreak by Camacho
et. al. implies that some hosts with either a delayed or
deficient humoral immune response to the primary in-
fection could be reinfected by the same strain (4).

By keeping track of the number of infectives of
each strain and the history of susceptible hosts, one
can formulate a natural multi-strain extension to the
well-known SIR model. This approach has been used
to model strains interacting through prohibiting su-
perinfection by Dietz (5) or offering partial cross-
immunity in an age-structured framework by Castillo-
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Chavez et.al. (6). These works focused on two interact-
ing strains and found conditions for stable coexistence
when suitable invasion criteria are satisfied.

Further extensions of the model consider several
strains, especially relevant for evolutionary epidemiol-
ogy. Andreasen et. al. consider the history of suscepti-
ble individuals and the infection pressure for each strain
(7) and show that sustained oscillations driven by cross-
immunity can arise already for four interacting strains.
Work by Gomes et. al. considers several strains with
the same “fitness” in a circular strain-space, interacting
through cross-immunity. They find that this system can
self-organize into three different patterns, depending on
the magnitude and distribution of cross-immunity: ho-
mogeneous or heterogeneous steady incidence or oscil-
latory dynamics with travelling waves in strain space
(8). Gog & Grenfell formulate an alternative, status-
based approach, greatly reducing the state space’s di-
mensionality. This model also allows the investigation
of antigenic drift and can produce emerging clusters of
infection, resembling interpandemic influenza activity
(9).

Our investigations were motivated by the unusual pat-
terns observed following the 2009 (swine flu) pandemic.
In the winter of 2010/2011, Europe experienced over-
whelming infection by the pandemic H1N1 strain. In
the UK in particular, influenza activity in these two
years were of similar magnitude, while the burden of
severe illness caused by influenza was even greater in
the second year than in the pandemic year (10). The
US, on the other hand, experienced infection by both
the pandemic H1N1 and a seasonal H3N2 strain after
the exclusive dominance of the pandemic strain in the
season of 2009/2010 (11),(12).

An age-structure model based on the simple SIR
model, with a variety of seasonal effects (different trans-
mission rates for the seasons) and (waning and non-
waning) prior immunity in order to explaining the three
pandemic waves in the UK was formulated by Dori-
gatti et.al.. Heterogeneous immunity was assumed not
to wane. They found that increased transmission in the
third wave (2010/2011 season) was needed to reproduce
the time-series, but other effects did not increase the
quality of the fit substantially (13).

The purpose of this study is twofold. First, it attempts
to investigate the role of temporal forcing and waning
immunity in the three well-pronounced pandemic waves
of swine flu in 2009 and 2010 in the UK. Second, it aims
to explore some of the possible mechanisms to explain
the qualitative difference in influenza A strain domi-
nance between the UK and the US in the 2010/2011
influenza season.

Data

Influenza surveillance all over the world generally
provides information on GP consultation rates and hos-
pitalization rates, as well as virological data on strain
dominance. The Centers for Disease Control and Pre-
vention (CDC) publishes weekly surveillance reports
for the United States as well as a summary at the end
of each season. The Health Protection Agency (part
of Public Health England) is responsible for weekly
and annual summary reports on influenza activity over
the United Kingdom. GP consultation and virological
data fully covers these two countries, but hospitaliza-
tion rates were limited for the USA. While laboratories
and health care providers from all of the 50 states of
the USA participated in the virological and outpatient
surveillance systems, widely available hospitalization
data is based on reports from only 13 states. We used
virological and GP consultation data from annual sum-
mary reports in the US and the UK for the 2009/2010
and 2010/2011 seasons (Refs. (14), (15), (11) and (12)).

Description

Approximate time-series, based on GP consultation
rates, are shown on Fig. 1. The rates are weighted ac-
cording to the ratio of samples testing positive for the
pandemic strain (H1N1) and the most common seasonal
H3N2 strain. We can observe, that the pandemic strain
was by far dominant in 2010, only interrupted in the
summer months. The timing of the interruption coin-
cides well with the timing of summer holidays in the
given region. Summary statistics used in this study
are shown in Tables A.1 and A.2. Wave sizes are ob-
tained by the aggregation of corresponding data and
growth rates from a naive linear fit on a logarithmic
scale. These growth rates are in accordance with other
estimates from different sources and areas (16).

It is also interesting to consider patterns in strain
dominance on a longer time-scale. For this rea-
son, we considered a public database maintained by
WHO (FluNet), of laboratory-confirmed influenza-
surveillance data by type and subtype (B, A(H3N2),
A(H1N1), A(H1N1)pndm09). The proportion of sam-
ples for each category (Fig. 2) show the general trends,
although small number of samples, especially for ear-
lier years, makes the exact numbers uncertain. The
general picture shows synchronisation for A(H3N2) be-
tween these two regions, as found in (17). However, in
the year preceding the swine flu pandemic, different in-
fluenza A strains were dominant in the US and the UK:
a seasonal H1N1 strain in the UK, but an H3N2 strain
in the US.
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Figure 1: GP consultation rates for the US (top) and the UK (bottom) between 2009 April and 2010 April, multiplied by the proportion of samples
positive for the pandemic H1N1 and seasonal H3N2 strains, corrected for type A samples not further subtyped. H3N2 incidence for the UK is not
indicated, because it remained very low (under 2%) for these years. Grey areas indicate the summer school holidays.
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Figure 2: Proportion of annual isolates for the UK (top) and the US (bottom), plotted for each season from 1998/1999 to 2012/2013.
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Limitations

There are various limitations in the data sources.
First, the model produces incidence levels, whereas the
best we can hope for in terms of the data, is time-series
proportional to incidence. Often we don’t quite get
even that: the proportionality constant (e.g. reporting or
hospitalization rates given infection) often substantially
varies in time. Some typical sources of variability are
the panic after the discovery of the new strain in Mex-
ico; low public awareness in 2010 after the perceived
overreaction to swine flu; changes in policy, such as
the introduction of a novel telephone and internet based
system (National Flu Service) during the 2009 autumn
wave in the UK; or seasonal effects, like a higher rate
of severe complications in harsh winter weather. As for
the virological data, the quality also heavily depended
on the number of samples collected and the efficiency
of randomization.

An alarming sign of poor data quality is that different
sources tell different stories. For instance, GP consulta-
tion rates for the UK show a large 2009 spring wave, a
moderate 2009 autumn wave and a large 2010 autumn
wave. Hospitalization data, on the other hand, imply
similar waves in the spring and autumn of 2009 and
a considerably larger and more abrupt peak starting in
the autumn of 2010 (Fig. 3.). In general, hospitalization
data is thought to be more accurate, as it depends less
on the decision of individuals, but it is also less widely
available.

Another limitation, more related to the simplicity of
our model, is that we treated whole nations as well-
mixed, homogeneous populations. No structure (e.g.
spatial or population structure) was taken into account,
not even for the US, and all data was aggregated per
country.

Single strain

Model

The single-strain model was based on the simple SIR
model, with added waning immunity and seasonality.
The corresponding ODE system is shown on equation 1.
It is worthwhile to mention that since we only consid-
ered a single pathogen for each subtype, waning immu-
nity can be interpreted in two ways: either the immune
response becoming deficient to prevent infection, or the
given subtype drifting sufficiently to escape from prior
immunity.

Two different seasonal effects were taken into ac-
count: decreased transmission during school holi-
days and increased transmission throughout the win-
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Figure 4: Functional form of seasonality used in the model.

ter months, both represented as multipliers to the in-
fection rate. A step function is the natural representa-
tive of school holidays, whereas for the winter months,
the functional form makes no qualitative difference. We
therefore decided to use the same step-function form for
both, as shown on Fig. 4. A summary of all parameters
of the model is shown in Table B.3.

dS
dt

= −β(t)S I + ωR (1)

dI
dt

= β(t)S I − γI

dR
dt

= γI − ωR

Results
We explored three versions of the model, with differ-

ent seasonal effects for the winter months:

(i) No increased transmissibility.
(ii) Same increase in transmissibility in the winters of

2009/2010 and 2010/2011.
(iii) Increased transmissibility only for the winter of

2010/2011.
(iv) Different increase in transmissibility in the winters

of 2009/2010 and 2010/2011.

The last two versions are similar to the model in (13),
used to explain the third wave of infection by the pan-
demic H1N1 strain in the UK. Furthermore, we investi-
gated both models in the absence of waning immunity.

Exploration of seasonality and waning immunity
Initially, we kept all parameters constant except for

the magnitude of the seasonal increase in transmission,
δ and the waning rate, ω. We chose the recovery rate γ
to represent a biologically plausible recovery period for
influenza (we made the same choice as (13)), the basic
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Figure 3: Hospitalization and GP consultation rates in the UK from 2009 January to 2011 April. Grey areas indicate the summer school holidays.

infection rate β0 to reproduce growth rates as seen in
the data and the drop in transmission rate for the school
holidays to be in accordance with the decrease rate for
the summer period. These constants are shown in Ta-
ble B.4. Next, we performed a full parameter search on
the rest of the parameters, namely δ and ω, for models
(ii) and (iii) with waning immunity. As we will see, the
added complexity for model (iv), with different trans-
mission rates for each wave, hardly increased the level
of agreement with the data. We chose the maximal wan-
ing rate (ω) to increase up to 1 per year for the model
with increased transmission in only 2010 and up to 2
per year for the version with the same magnitude of
increase. These limits were set to capture the param-
eter regime corresponding to the data but avoid multi-
ple waves in a single season, not supported by the data.
Seasonality was allowed to increase up to 0.5, again to
capture the relevant behaviour.

The results (Figs. 5 and 6) show different behaviours
for these two models and data sources. For the hos-
pitalization data set, the model with the same magni-
tude of seasonality in both years struggles to reproduce
the medium-sized autumn wave in 2009 followed by a
large, steep peak next year. The model with increased
transmissibility in 2010, on the other hand, can produce
wave sizes as seen in the data. Results from the GP con-
sultation rates are similar, but the model with the same
amount of seasonality can also reproduce approximately
correct wave sizes.

A further phenomenon worth mentioning, is the
trade-off between waning immunity, increasing the sus-
ceptible pool, and increased transmission, increasing
the infection rate; both increasing the effective repro-
ductive ratio of the infection. One more interesting fea-

ture of the investigations is the emergence of an area
with intermediate waning rate and low seasonal increase
resulting in a small second, but large third wave for the
model variant with the same increased transmission in
both years. This is especially notable for the GP consul-
tation data (Fig. 5, bottom-right panel) and corresponds
to the second wave not taking off, leaving enough sus-
ceptibility for a third wave.

Reproducing time-series
To verify the previous observations, we also at-

tempted to fit time-series of hospitalization and GP con-
sultation rates for the UK, despite the data sources’ lim-
itations. Euclidean distance from the data was used as
a cost function, since the number of cases was large.
We integrated the ODEs using the Runge-Kutta method
in Matlab R2011b and applied Matlab’s fminsearch

algorithm to search for an optimum. fminsearch

is a non-gradient-based method utilizing the simplex
method ((18)). Such a tool is useful for such a non-
smooth fitness landscape, with high sensitivity to seed-
ing through the timing of the peaks.

The obtained results from model variants with wan-
ing immunity, as shown in Table B.5 and Fig. 8, were in
accordance with previous observations: the fit was sat-
isfying for different infection rates and model types, but
some form of increase in transmission was required for a
good fit. As was already visible during the exploration,
model (ii) with the same level of seasonality struggled
to produce such a dominant third wave as seen in the
hospitalization data. The ILI data, on the other hand,
favoured model (ii). It was interesting to observe that
the fit to neither of the data sources saw a remarkable
improvement when the infection rate was allowed to be
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different for all three waves.
It is worthwhile to note the wide range of waning

rates corresponding to the best-fitting models. While
models with an increased transmission rate in 2010
favoured lower waning rates (ω = 0.0008/day and ω =

0.0002/day, corresponding to average waning periods of
3.5 years and 13.5 years for the hospitalization and GP
consultation data, respectively), immunity waned much
quicker in those with the same magnitude of season-
ality in both years (0.0048/day and 0.0024/day, corre-
sponding to average waning periods of 0.5 year and 1
year for the hospitalization and GP consultation data, re-
spectively). The latter values are too high, marked also
by the slight rise in incidence in the summer of 2010,
clearly visible for the variant using the hospitalization
data. Such oscillatory behaviour in a single season is not
typical for influenza, but would possibly be suppressed
by a smooth representation of the seasonal increase even
in our model.

The magnitude of seasonal increase in transmission
for the winter months also varied between different
models and data sources. For models (iii) and (iv) with-
out waning immunity (the only two variants that pro-
duced three waves in the absence of this effect), δwinter

for the 2010/2011 season was high, ranging from 70%
to 310% (Table B.6). Some model variants required
a similarly high increase in transmission for the third
wave even with waning immunity. These were models
(iii) and (iv) for the hospitalization data and (iii) for the
GP consultation data. On the other hand, variant (ii) for
the hospitalization and variants (ii) and (iv) for the GP
consultation data could produce three waves even with
a smaller seasonal effect, with the magnitude of addi-
tional infection rate between 20% and 36% (Table B.5).

As a further investigation, the model was also fitted to
the time-series in absence of waning immunity (Fig. B.6
and Fig. 7). This variant required increased transmis-
sion in the third season for a third wave to occur, similar
to the result of (13). In accordance with our observa-
tions with the model variant with waning immunity and
also with those of (13), the quality of the fit hardly im-
proved when different transmission rates were allowed
for all three waves.

Two interacting strains

Model

We chose to work with a standard history-based
model and omitted super-infection or co-infection by
the two strains. The former is limited by neuraminidase
as part of the cell based secondary immune system (19)

and the latter is thought to be existing, but rare (20).
Cross-immunity was represented as decreased suscepti-
bility for a strain after having recovered from the other.
An alternative mechanism would have been decreased
infectivity, but these two approaches act in the same
way for two strains and lead to similar results even for
many strains (21). The final assumption was that strain-
specific immunity wanes independently. An illustra-
tion of the model is shown on Fig. 9a., while the cor-
responding system of ordinary differential equations are
described in Eq. 2.

The general behaviour of the model is as follows. Sta-
ble co-existence is possible if appropriate invasion crite-
ria are satisfied, corresponding to weak cross-immunity
and the reproductive ratios of the pathogens being close
enough (22). The transient behaviour, however, can
show rich dynamics, based on the time-scales and re-
productive ratios of the two pathogens and the degree
of cross-protection. These include multiple peaks sep-
arated in time, one strain suppressed by the other or si-
multaneous epidemics by both strains. Seasonality fur-
ther complicates the variety of scenarios but the length
of this study does not permit us to conduct a full inves-
tigation. We will instead focus on the model’s ability to
reproduce the main characteristics of our data.

A minor modification to the model was also inves-
tigated, namely, a short-term heterogeneous immunity.
Individuals in this model were first transferred to a class
totally protected from any strain before arriving at their
respective recovered class. An illustration of this variant
is shown on Fig. 9b.

dNS S

dt
= ωNRS + ωNS R − (2)

−NS S (β1 (NIS + NIR) + β2 (NS I + NRI))
dNIS

dt
= NS S β1 (NIS + NIR) − γNIS

dNRS

dt
= γNIS − NRSσβ2 (NS I + NRI) +

+ωNRR − ωNRS

dNS I

dt
= NS S β2 (NS I + NRI) − γNS I

dNRI

dt
= NRSσβ2 (NS I + NRI) − γNRI

dNS R

dt
= γNS I − NS Rσβ1 (NS I + NRI) +

+ωNRR − ωNS R

dNIR

dt
= NS Rσβ1 (NIS + NIR) − γNIR

dNRR

dt
= γNIR + γNRI − 2ωNRR
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(a) Hospitalization data (b) GP consultation data

Figure 5: Results for variant (ii), with the same seasonality in both years, based on hospitalization (5a) and GP consultation (5b) data. Sizes of
the autumn waves in 2009 (left) and 2010 (right) relative to the 2009 spring wave are color coded and shown as a function of waning rate ω and
winter seasonality δ. All other parameters were fixed to reproduce the 2009 spring wave, with values as in Table B.4. Wave sizes from the data are
displayed as black (autumn 2009) and grey (autumn 2010) lines.

(a) Hospitalization data (b) GP consultation data

Figure 6: Results for variant (iii), with seasonality only in the the winter of 2010/2011, based on hospitalization (6a) and GP consultation (6b) data.
Sizes of the autumn waves in 2009 (left panels) and 2010 (right panels) relative to the 2009 spring wave are color coded and shown as a function
of waning rate ω and winter seasonality δ. All other parameters were fixed to reproduce the 2009 spring wave, with values as in Table B.4. Wave
sizes from the data are displayed as black (autumn 2009) and grey (autumn 2010) lines.
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Figure 7: Fitting to the time-series from hospitalization (top row) and GP consultation (bottom row) data, without waning immunity and different
seasonal effects. Types of seasonal effects, as organized by coloumns from left to right, are as follows: no increase in transmission, same magnitude
of increased transmission in 2009 and 2010, increased transmission only in 2010, and different magnitudes of increased transmission in 2009 and
2010.
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Figure 8: Fitting to the time-series from hospitalization (top row) and GP consultation (bottom row) data, with waning immunity. Types of seasonal
effects, as organized by coloumns from left to right, are as follows: no increase in transmission, same magnitude of increased transmission in 2009
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Figure 9: Illustration of the two-strain model with (9a) and without (9b) short-term immunity.

We were only considering two influenza A strains,
similar in nature. Therefore, all parameters were set to
be equal, except for infection rates β1 and β2, in order to
account for variability in transmissibility.

We used data from GP consultation rates while fit-
ting for both strains, since they were readily available
from the same areas as the virological data. Due to the
large uncertainties in the data, we decided to use only
the sizes of the waves relative to the 2009 autumn wave,
which was well pronounced in both regions.

A summary of all parameters of the model are shown
on Table C.7. First, all parameters were estimated, but
since the resulting simulations often had an unrealistic
shape, namely, very large growth rates, and the number
of parameters was very high, we decided to take ini-
tial growth rates of the pandemic into account as well.
In this model variant, the recovery rate was fixed to a
biologically plausible value for influenza, and the infec-
tion rate for the pandemic strain was set to reproduce
the growth rate of the 2009 spring wave from GP con-
sultation data in the UK (0.0888/day, number of cases
doubling approximately every 8 days). The growth rate
r0 in the presented two-strain model and notation, for

one of the strains, is as follows:

r1
0 = β1 (NS S + σNS R) − γ (3)

We integrated the ODEs using the Runge-Kutta
method in Matlab R2011b and Matlab’s gradient-based
GlobalSearch tool for minimizing the Euclidean dis-
tance between the data and the model output (18). The
choice of optimization method was based on perfor-
mance, after experimenting with Matlab’s fminsearch
and GlobalSearch algorithms as well as a self-
implemented evolutionary algorithm and simulated an-
nealing.

Results
At the start of the 2009 spring wave, individuals were

assigned to the four disease-free compartments. With-
out waning immunity, the model could not reproduce
the data even if all parameters were allowed to vary
and converged to a case with only the pandemic strain
present for all model variants instead.

The model variant with fixed growth rate and recov-
ery rate managed to reproduce the data, given some
prior immunity against the seasonal strain. The best-
fitting parameter sets are given in Table C.8, while the
resulting wave sizes are shown on Figs. 10a to 10d. The
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shape of the time-series was somewhat different from
what is seen in the data (Figs. 11a and 11b), possibly
caused by the non-smooth functional form for seasonal-
ity.

The best-fitting parameter set without prior immu-
nity did not manage to produce correctly sized waves,
whereas the variant with immunity only against the pan-
demic strain resulted in no prior immunity at all and
similarly bad fit. When prior immunity was allowed
only against the non-pandemic H3N2 strain, the quality
of the fit was high, with all wave sizes approximately
correct. The best fitting parameter set consisted of bi-
ologically plausible parameters and initial conditions.
In particular, immune levels against the non-pandemic
strain in the UK (≈ 72 %) exceeded that in the US (≈
60 %), which seems biologically plausible, given that
a seasonal H3N2 strain was dominant in the 2008/2009
influenza season in the UK and an H1N1 strain in the
same season in the US.

When all initial conditions were fitted, the quality of
the fit improved slightly even more. The best fitting pa-
rameters for the US had lower levels of prior immunity
than those for the UK, both against the pandemic strain
(NNRS + NRR ≈ 31% as opposed to NNRS + NRR ≈ 34%),
and the seasonal H3N2 strain (NNS R + NRR ≈ 80% in
contrast with NNS R + NRR ≈ 87%). The latter was ex-
pected, but the former is in contrast with previous epi-
demiological history of the two regions. However, the
differences are to small to draw any firm conclusion.

The general pattern of higher pre-existing immunity
in the UK than in the US could have been a consequence
of prior immunity decreasing the final proportion of re-
covered individuals in a population after a single epi-
demic. Therefore, a high immune level in 2009 spring
decreases immune levels by the start of the 2010 sea-
son, permitting a larger epidemic by the same strain, as
it happened in the UK. The interruption by school hol-
idays has a similar effect, but that was present in both
regions.

Well-fitting parameter sets had high levels of cross-
reactivity, equivalent to low levels of remaining sus-
ceptibility: approximately 24% and 37% for variants
with pre-existing immunity against the seasonal or both
strains, respectively. They also had low waning rates:
0.0008 and 0.0005, corresponding to average waning
times of around 3.5 years and 5.5 years for these two
models. The seasonal increase in transmissibility for
well-fitting models was intermediate; roughly 50% and
80% for the models with prior immunity against H3N2
or both strains, respectively.

It is worthwhile to note that if all parameters were
estimated and the limits were generous enough, cor-

rect wave sizes could be reproduced even without prior
immunity. However, when started from random ini-
tial conditions, this model variant converged to param-
eter sets with unrealistically high growth rates (at least
1.7/day, about twice as much as in the data) and, in some
cases, high recovery rates as well. When started from
the optimum of the constrained model, it remained close
to the initial condition with a final cost close to the ini-
tial value (within 20%).

A further remark is that the model variant with short-
term heterogeneous immunity did not increase the qual-
ity of the fit to the data substantially. The optimization
method favoured the waning rate for this effect being
close to the lowest allowed value and the values of the
cost function were similar to those without the added
effect (never more than 10% less).

Once we obtained some models capable of recon-
structing waves similar to the data, we very briefly had
a look at their long-term behaviour. The time-series
seemed to reach an equilibrium, but the nature of this
equilibrium was sensitive to the exact parameter set.
Some examples from the best-fitting parameter sets with
fixed growth rate and recovery rate and prior immunity
against the seasonal strain or both strains are shown on
Figs. 11a and 11b, respectively. These models show a
two-year pattern of epidemics, with an alternating dom-
inant strain, not unlike general seasonal influenza pat-
terns. In reality, in 2011, the normal seasonal epidemic
was nearly absent in the UK, before the seasonal H3N2
strain returned, but this particular behaviour is not cap-
tured by our simple model. As for the US, both the
pandemic H1N1 and the seasonal H3N2 strains were
present in subsequent years, similar to the long-term be-
haviour of our best-fitting models.

Discussion

These very simple models applied to data from the
2009/2010 and 2010/2011 influenza seasons managed
to reproduce the main trends seen in the data. The one-
strain model showed that some form of seasonality (ei-
ther in both years or for only 2010) was needed to re-
produce three distinct waves of the pandemic strain, as
seen in the UK. Most model variants required a large
increase in transmission, but some with waning immu-
nity and seasonality in both years produced realistic re-
sults even with a weaker seasonal effect. Furthermore,
school holidays played an important role in shaping the
pandemic in 2009, starting in spring, an unusual time
for influenza. An interesting trade-off between waning
immunity and the seasonal increase could also be ob-
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(a) No prior immunity
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(b) Prior immunity only against the seasonal H3N2 strain.
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(c) Prior immunity only against the pandemic H1N1 strain.
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(d) Prior immunity against both strains.

Figure 10: Wave sizes from the best-fitting model for the UK and the US between 2009 April and 2010 April, with fixed growth rate and recovery
rate and various constraints on prior immunity.
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(a) Prior immunity only against the seasonal H3N2 strain.
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(b) Prior immunity against both strains.

Figure 11: Long-term behaviour of the best-fitting model for the UK and the US between 2009 April and 2010 April, with fixed growth rate and
recovery rate and prior immunity only against the seasonal H3N2 strain (11a) or both strains (11b).
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served, where the replenishment of susceptibles play the
same role as an increase in the infection rate.

The two-strain version of the model showed both UK-
like and US-like behaviours, switching between the two
by changing only the initial conditions (seeding and pre-
existing immunity) and the timing of school holidays.
Unless growth rates were allowed to be unrealistically
high, prior immunity was necessary to achieve correctly
sized waves. Agreement with the data was satisfactory
even if the population was assumed to be totally suscep-
tible to the pandemic strain and levels of immunity were
in accordance with previous epidemiological history of
the two regions. Prior immunity against the pandemic
strain further increased the quality of the fit, although
also resulted in immunity patterns slightly contradict-
ing the patterns of strain dominance from previous sea-
sonal influenza epidemics. An intermediate increase in
transmission during the winter months was enough for
both versions of the model: roughly 50% and 80% for
variants with prior immunity only against H3N2 or both
strains, respectively.

Our models suffer from numerous limitations. No
spatial structure was taken into account, which is a
very crude approximation, especially for the US. Fur-
thermore, no age-structure or demographic processes
were included. Vaccination was also not modelled,
even though a vaccine was made available and used
even before the pandemic year, unlike previous pan-
demics. Vaccination coverage reached significant pro-
portions, especially in the elderly and at-risk cohorts,
by administering about 5.5 million doses in 2009/2010
and 9 million doses in 2010/2011 in England (23), (24);
and around 80 million doses in 2009/2010 and 130 mil-
lion doses in 2010/2011 in the US (25), (26). Futher-
more, only two strains and simple dynamics of immu-
nity were taken into account, despite the rich dynamics
of influenza.

Strain-specific epidemiological modelling is a vast
field, offering many perspectives with regards to our
model. First, it could be extended to a more realistic
form, or even complemented with additional immuno-
logical mechanisms, although one would have to take
care not to overcomplicate the model, given the poor
quality of the data. A simpler modification would be
simply to allow some other parameters to differ between
the two strains or the two regions. Second, the long-
term behaviour of this model could be investigated in
more detail, either by examining the result of numeri-
cal integration, or by constructing a discrete-time model
consisting of prior immunities at, say, the beginning of
each season. Third, considering other countries, such as
other European countries with UK-like behaviour but

US-like school holidays, or Australia with the onset
of the pandemic in the normal influenza season, could
strengthen our conclusions.
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Appendix A. Summary statistics for the data

Due to the poor data quality and an unknown proportionality constant present in both data sources, we had to rely
on summary statistics to compare our model to the observed dynamics. The first table (Table A.1) shows summary
statistics for the UK from hospitalization and GP consultation data, used in the study of our single strain model.
The second table focuses on characteristics of strain-specific data from GP consultation rates in the US and the UK,
utilized in the investigation of our two-strain model (Table A.2).

Table A.1: Summary statistics of the two different data sources for the UK. All wave sizes are relative to the size of the 2009 spring wave. Growth
and decrease rates are computed from a linear fit to the logarithm of the data.

Hospitalization GP consultation
2009 autumn wave size 2.1287 1.0829

2010 autumn wave size [1/day] 3.6345 1.2536
2009 spring growth rate [1/day] 0.0718 0.0888

2009 summer decrease rate [1/day] 0.0506 0.0589

Table A.2: Wave sizes for the two strains (pandemic H1N1 and seasonal H3N2) in the two regions (US and UK), for the three waves (2009 spring,
2009 autumn, 2010 autumn), relative to the 2009 autumn wave of the pandemic H1N1 strain.

UK H1N1 H3N2
2009 spring 0.9466 0.0048
2009 autumn 1.0000 0.0051
2010 autumn 0.7399 0.0123

US H1N1 H3N2
2009 spring 0.3150 0.0198
2009 autumn 1.0000 0.0011
2010 autumn 0.1957 0.3261

Appendix B. Parameter values for the single strain model

Tables summarizing parameter values for the single strain model are shown below, with all parameters explained on
Table B.3. Most parameters were fixed during the exploration of variant (ii), with the same magnitude of seasonality
in both years; and variant (iii), with increased transmission in both years. The values of these constants are shown in
Table B.4. The recovery rate γ was fixed at a biologically plausible value, from Ref. (13). The infection rate β was
set to produce the correct (exponential) growth rate, calculated as r0 = β − γ. The decrease in transmission during
the summer holidays, δsummer, was chosen such that the (exponential) decrease rate, r0 = (1 + δsummer)β − γ was as
seen in the data. The values for these rates as estimated from the data are shown in Table A.1. The initial fraction
of infectives (seed) for the spring wave was chosen to produce wave sizes that include the observed values within the
explored parameter set. Since we were only interested in the size of each wave during this exploration, the seeding for
the next year did not matter, as long as the bulk of the 2010 autumn wave fell within the 2010/2011 influenza season.

Tables B.5 and B.6 show the best-fitting parameter sets from fitting the four variants of the model to time-series from
GP consultation rates and hospitalization rates. The dynamics during low-incidence periods are governed by processes
not included in our model, such as the spatial spread between different regions or stochasticity. Therefore, the only
role of seeds is to set the timing of peaks. For instance, small negative seeds, although biologically meaningless, delay
the onset of the epidemic.
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Table B.3: Summary of model parameters for the single-strain model.

Notation Parameter Value for exploration Value for fitting
β Infection rate [1/day] fixed estimated
γ Recovery rate [1/day] fixed estimated
ω Waning rate [1/day] estimated estimated or fixed

δsummer Additional infection rate relative to
base level for the summer holidays

fixed estimated

δ1
winter Additional infection rate relative to

base level for the winter months in
2009

estimated estimated or fixed

δ2
winter Additional infection rate relative to

base level for the winter months in
2010

estimated estimated or fixed

i1 Initial proportion of infectives in
the beginning of 2009 spring wave
(April 20)

fixed estimated

i2 Initial proportion of infectives in
the beginning of 2010 autumn wave
(September 10)

fixed estimated

Table B.4: Fixed parameters used during the exploration of variants (ii) and (iii) of the single-strain model, for the two data sources.

Data source beta γ δsummer i1 i2
Hospitalization 0.4117 0.3548 -0.0153 1.15e-04 0
GP consultation 0.4367 0.3548 -0.3224 8.00e-05 0

Table B.5: Best-fitting parameter sets for all four variants of the single-strain model with waning immunity.

Data source Hospitalization GP consultation
Model variant (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)
Cost 0.1775 0.1779 0.0405 0.0332 0.0586 0.058 0.0358 0.0355
β 0.1882 0.0978 0.241 0.4341 0.3843 1.0174 0.176 0.1613
γ 0.0025 0.0284 0.1667 0.3705 0.0216 0.8754 0.0967 0.0856
δsummer -2.7718 -2.329 -0.4119 -0.1907 -2.519 0.0092 -0.7031 -0.6858
δ2009

winter 0 1.2916 0 0.0801 0 0.2893 0 -0.0023
δ2010

winter 0 1.2916 1.888 0.7288 0 0.2893 2.2956 3.1068
i1 1.22e-05 0.0023 4.23e-05 3.87e-05 9.65E-012 5.73e-07 1.46e-04 2.21e-04
i2 -5.72e-05 0.0012 -1.05e-05 1.80e-08 3.06e-04 1.98e-06 -2.36e-05 -4.71e-05

Table B.6: Best-fitting parameter sets for all four variants of the single-strain model without waning immunity.

Data source Hospitalization GP consultation
Model variant (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)
Cost 0.1299 0.0835 0.0402 0.0395 0.0422 0.0257 0.0361 0.0245
β 0.4766 0.4115 0.2311 0.2506 0.2196 0.5486 0.1752 0.6159
γ 0.3462 0.3551 0.1567 0.173 0.0575 0.4415 0.0953 0.4865
ω 0.0084 0.0048 0.0008 0.0008 0.0056 0.0024 0.0002 0.0034
δsummer -0.3693 -0.0611 -0.4287 -0.4501 -1.7835 -0.0622 -0.7634 0
δ2009

winter 0 0.3631 0 0.0734 0 0.3032 0 0.3247
δ2010

winter 0 0.3631 1.3405 1.5204 0 0.3032 1.7877 0.2086
i1 3.06e-07 4.47e-04 5.09e-05 4.28e-05 5.91e-06 1.75e-05 1.52e-04 3.84e-06
i2 2.80e-05 -2.85e-05 -1.13e-05 -5.31e-07 -3.00e-05 -6.20e-07 -3.42e-05 -2.33e-06
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Appendix C. Parameter values for the two-strain model

Tables summarizing parameter values for the two-strain model are shown below, with all parameters explained
on Table C.7. Table C.8 shows the best-fitting parameter sets for the two-strain model with waning immunity,
fixed recovery and growth rates, and different assumptions for pre-existing immunities. The recovery rate was
set to a biologically plausible value, γ = 0.345/day (13). The growth rate of the pandemic strain in the UK,
rUK

0 = β1 (NS S + σNS R) − γ = 0.0888/day, was kept fixed by adjusting the infection rate of the pandemic strain,
β1.

Table C.7: Summary of model parameters for the two-strain model

Notation Parameter Value
β1 Infection rate for the pandemic strain

[1/day]
fixed

β2 Infection rate for strain the seasonal strain
[1/day]

estimated

γ Recovery rate [1/day] fixed
σ Remaining susceptibility after first infec-

tion
estimated

δwinter Additional infection rate relative to base
level for the winter months in 2009

estimated

δsommer Additional infection rate relative to base
level for the summer holidays in 2009

estimated

NX
AB Proportion of population initially in class

AB ∈∈ {S S , S R,RS ,RR} in region X ∈

{US ,UK}

all estimated, one estimated or fixed

iX
1 Initial proportion of infectives in the begin-

ning of 2009 spring wave (April 20) in re-
gion X ∈ {US ,UK}

estimated

iX
2 Initial proportion of infectives in the begin-

ning of 2010 autumn wave (September 10)
in region X ∈ {US ,UK}

estimated

r j
0 Initial growth rate for strain j ∈ {1, 2} computed
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Table C.8: Best-fitting parameter sets for the two-strain model with waning immunity, fixed recovery and growth rates, and different assumptions
for pre-existing immunities.

Prior immunity None Only against H3N2 Only against H1N1 Against both strains
Cost 0.3287 0.0193 0.3157 0.0072
β2 0.1475 0.9104 0.2709 1.2334
σ 0.9923 0.2411 0.7611 0.3748
ω 0.0016 0.0008 0.0016 0.0005

δwinter 0.6864 0.4954 0.6123 0.7298
δsommer -0.1216 -0.9272 -0.2898 -0.1625

NUS
S R 0 0.6042 0 0.6170

NUS
RS 0 0 0 0.1338

NUS
RR 0 0 0 0.1803

iUS
1 1.7511e-10 8.5348e-05 3.8916e-20 0.0050

iUS
2 0.0063 2.7356e-08 0.0014 7.4633e-05

NUK
S R 0 0.7195 0 0.5316

NUK
RS 0 0 0 0.0012

NUK
RR 0 0 0 0.3349

iUK
1 0.0011 8.5564e-05 4.6521e-04 3.1527e-05

iUK
2 2.7558e-05 1.9609e-08 1.1503e-06 5.88846e-09
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