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The phenomenon of inverse cascade of energy is a peculiarity of two-dimensional tur-
bulence caused by a nonlinear coupling between different scales of motion in the Navier-
Stokes equation. The coherent structures originated by this process are known to have a
certain velocity profile V ∝ rα with α = −1

4 : a numerical simulation of turbulence via
forced Navier-Stokes equation seems to contradict this hypothesis, yielding to a different
question concerning the decay of the vortex body. The flow of energy between the different
scales is then visualised by filtering the Navier-Stokes equation and qualitatively shown to
be non-isotropic with respect to the vortex core.

Introduction

Although the scientific observation of what today constitutes fluid mechanics can be dated at
least to 250 BC with Archimedes, the origin of the word turbulence referring to a chaotic water
flow (originating from the latin turba: chaos, disorder) has to be traced back to 1507: this term is
another invention of Leonardo da Vinci himself, (see [1], [2]), who dedicated considerable time
and efforts to the study of this topic and produced astonishing representations of eddying and
whirling motions in water.

FIG. 1: One of the most famous representations of turbulent flow by Leonardo da Vinci

To find a proper starting point for our discussion we move forward to the work of Kraichnan
[3], Leith [4], and Batchelor [5], which introduce one of the peculiarities of turbulence in two
dimensions - the so called inverse energy cascade (See the plot of E(k) in Figure 2a): the energy
introduced in the system at a certain length scale tends to flow towards larger scales of motion
(Figure 2b), and this process characterises two-dimensional turbulence only, as in three dimensions
energy flows instead towards small scales where it gets dissipated (direct energy cascade). For the
intermediate scales, the so called inertial range, the slope of the E(k) plot / exponent γ of E(k) ∝ kγ

as in Figure 2a is −5
3 , as Kolmogorov has elegantly proved in [6] in 1941 by means of dimensional

analysis only.//
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FIG. 2: The inverse cascade, energy E over wavenumber k (a) and its evolution (b) (from [7])

The phenomenon of the inverse energy cascade, caused by a nonlinear coupling between
different scales of motion in the Navier-Stokes equations, takes place until a limit size, imposed
by the finite boundaries of the systems, is reached. Energy then "piles up" in coherent structures,
namely a positive/negative vortex dipole: Figure 3 shows how the system evolves towards this
configuration as the smaller structures are washed out and absorbed into the two main vortices.The
main subjects of this report are the shape of these vortices formed as the previously mentioned
phenomenon of inverse energy cascade takes place, and the energy flow from one scale size to
another: we initially analyse a numerical simulation of turbulence and compare the structural prop-
erties of vortices with the currently accepted (although more and more discussed) hypothesis of a
velocity profile V (r) ∝ r−

1
4 (please notice how this is equivalent to the vorticity profile ω(r) ∝ r−

5
4

considered from now onwards). Using the same model we then focus on the energy flow from one
scale to the other and its asymmetry towards smaller scales that origins the inverse energy cascade.

This miniproject was originally intended to retrace and verify numerically the calculations and
assumptions in [8], where the −1

4 scaling exponent for the velocity within a vortex is proven to
be right (and claimed to be universal, as in not related to the geometry of the box or details of the
forcing acting on the system) by purely theoretical means , but the side-quests emerged during this
process proved to be of no less relevance and interest, although more feasible in the limited time
in which this research was expected to be completed, and have therefore become the main topic of
discussion [17].

The Navier-Stokes Equations

It is worth explaining briefly the structure of these fundamental equations of fluid dynamics,
somehow the direct extension of Newton’s Laws to fluids. In their most general form, they are:

{
ρ

(
∂!v
∂ t +!v ·∇!v

)
= −∇p+∇ ·T+!F conservation of momentum

∂ρ
∂ t +∇ · (ρ!v) = 0 conservation of mass
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FIG. 3: The vortices dipole emerges from a disordered configuration (top: from [9], bottom: from [10])

FIG. 4: Single snapshot of the system (vorticity field over [0,2π]2) and zoom on the positive vortex

and can be simplified for the incompressible case as
{

ρ
(

∂!v
∂ t +!v ·∇!v

)
= −∇p+ µ∇2!v+!F

∂ρ
∂ t +∇ · (ρ!v) = 0

where ρ is the fluid density, !v is the flow velocity, p is the pressure, T is the stress tensor, !F
is the resultant of the forces acting on the fluid per unit of mass (or body forces) and µ is the
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dynamic viscosity. Further equations may include informations about the boundary conditions,
other conservations (we assumed the conservation of mass, but this is not necessarily true) or
more.
We will consider the case of an incompressible fluid and generally mention the equation for the
conservation of momentum as "the" Navier-Stokes equation. In the following representation, the
role of each of its terms is mentioned [18]. (For a deeper discussion on the topic one can refer to
any good manual on fluid dynamics, as [11])

Inertia (per volume)︷ ︸︸ ︷
ρ
( ∂v

∂ t︸︷︷︸
Unsteady

acceleration

+ v ·∇v︸ ︷︷ ︸
Convective
acceleration

)
=

Divergence of stress︷ ︸︸ ︷
−∇p︸︷︷︸

Pressure
gradient

+ µ∇2v︸ ︷︷ ︸
Viscosity

+ !F︸︷︷︸
Other
body
forces

.

It has to be evidenced the relevance of v ·∇v: this is the part making the whole equation nonlinear,
and therefore unsolvable/extremely interesting.

I. DATA ANALYSIS

The model (the very same used in [9]) generates our system in a [0,2π]× [0,2π] box (2562

gridpoints) with periodic boundary conditions. For a bidimensional flow, vorticity can be
represented as a scalar field [0,2π]× [0,2π] → R , since ∇× (ux,uy,0) = (0,0,ωz). Once the
initial transient has finished and the dipole has been formed, the system looks like Figure 4: the
two vortices are evident, and it is possible to observe a certain pattern surrounding them. 100 of
such snapshots of the vorticity field were provided for the data analysis.

The first task is to centre the (positive) vortex, as this eliminates finite-size issues when
evaluating the distances of every point from this vortex, making it straightforward as it is not
required to take into account the boundary conditions. The values of ω(r,θ) are then averaged
over the angle and then over all the snapshots in order to obtain an averaged vorticity profile only
depending on the radius, as shown in Figure 6. We expect to distinguish three different regions
within a vortex: a core, for r < forcing scale, a tail, in which the interactions with the opposite
vortex start to become relevant, for r > 1

4 of the box size, and a main body in between. In our
case the cutoff in the vorticity profile between body and tail is actually present at r values smaller
than 1

4 , and this will become crucial soon.

The averaged vorticity profile obtained is also compared to one obtained from an "ideal vortex
dipole" in Figure 7 (how to obtain such an ideal profile, implementing the boundary conditions, is
explained in Appendix A): it is interesting to notice how this actually presents the cutoff at π

2 as
just mentioned, while the "real" system seems to exhibit an earlier cutoff at approximately π

4 .

The range over which the exponent has to be fitted must be chosen in order to exclude the core and
the tail: for our generating model we know the forcing scale to be about 1

50 of the box, which gives
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distance related to their interaction (red and blue indicate positive and negative vortex)
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FIG. 6: Vorticity profile - single snapshot vs. average
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FIG. 7: Average vs ideal vortex dipole

us a lower bound of rmin = 2
50π; on the other end we want to consider that part of system which is

influenced by a single vortex and therefore we may want to stop at some point between rmax = 1
2π

and 1
4π - we will, for now, consider these two extreme values as the right boundary of our region

of interest. By fitting our exponential function in these two regions,
[ 2

50π, 1
4π

]
and

[ 2
50π, 1

2π
]

for
each snapshot we obtain 100 values of the (two) exponents, which averages are comparable to the
exponents found by directly fitting the averaged vorticity profile within the same regions, but in
this way it is also possible to obtain an uncertainty on these measures. Figure 9 shows the fitting
functions ω (r) ∝ rα as obtained over the range

[ 1
25π < r < 1

4π
]

in magenta,
[ 1

25 < r < 1
2π

]
in

red, and plotted together with the −5
4 slope (in black, dashed): the uncertainty on these α is also

present as error bars, and the histograms in Figure 8 show how the values of α are distributed.

The obtained values of α , α1 = −1.07±0.02 and α2 = −1.304±0.015 seem directly incompat-
ible with α = −1.25, but it has to be stressed that the choice of which region to fit (specifically,
of the boundary between the body and the tail of the vortex) has not been done in a rigorous way.
One can in fact turn this problem upside down by looking at the form of the velocity profile,
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(b) α2 obtained for π
25 < r < π

2

FIG. 8: Distribution of α from fit on single snapshots: superimposed, Gaussians with same µ and σ

especially between the values π
4 and π

2 , and considering that for the first the fitting exponent is
too high, while for the second it is too low: for a question of continuity we should be able to
determine a new rmax somewhere in between those two values such that the fitted exponent is
(almost) anything in between α1 and α2, and so we can find a good region to fit −4

5 [19] for
rmax ≈ 3

7π ≈ 4
3 .

Α = #1.304 ± 0.015

Α = #1.07 ± 0.02
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II. FILTERED NS

Given a certain function f (!x), we define its filtered version according to the filtering scale " as

f " (!x) =
∫

d!y f (!y)G" (!x−!y)
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where G"(!x) = G
(

1
"d!x

)
, G(!x) is our filtering distribution - for us, a Gaussian 1√

2π e−
x2
2 , and d is

the dimensionality of!y.
It is important to notice that the filtering operator is linear and commutes with the differentiation,
as in ∂x f " = (∂x f )", and this will be of great use when dealing with the filtering of Navier-Stokes
equations.
This gaussian filtering operates a smoothening of the function on which it is applied, and the larger
the " the stronger its effect, as it is shown in Figure 11: this smoothening can be seen somehow
as a blurring of the field, for which each point will adjust its value according to his neighbours,
weighting them with G"(!x). It is easy to see its effect on an image, as in Figure 10:

FIG. 10: The effects of Gaussian filtering on an image: original and " = 5,15,25,50 pixels

Similarly, acting on a scalar field, it smoothens it out progressively:

FIG. 11: An original function and three different filterings at " = 5,10,50

The previously shown Navier-Stokes equation (conservation of momentum) with no body forces
can be written, according to Einstein notation, as

∂tui +
(
u j∂ j

)
ui = −∂i p+ν∂iiui
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By noticing that ∂iui = 0 is the new notation equivalent of ∇ ·!u = 0, which is true due to the
the incompressible assumption, we can see how ∂ j

(
u jui

)
= u j

(
∂ jui

)
+!!!!!(

∂ ju j
)

ui = u j
(
∂ jui

)
and

rewrite the whole equation as

∂tui +∂ j(uiu j)+∂i p−ν∂iiui = 0

before applying the filter (remember the previously mentioned properties of linearity and commu-
tation with the differentiation operator) [20]

∂tui +∂ j(uiu j)+∂i p−ν∂iiui = 0 → ∂tui +∂ j(uiu j) = −∂i p+ν∂iiui

The filtering acts therefore on each component of the equation individually, and it is by easy
algebra that we obtain what follows

∂tui +∂ j(uiu j) = −∂i p+ν∂iiui

∂tui +∂ j(τi j +uiu j) = −∂i p+ν∂iiui (having defined τi j = uiu j −uiu j)
∂tui +∂ j(uiu j)+∂i p−ν∂iiui = −∂ jτi j

⇒ Filtered Navier-Stokes = Navier-Stokes+∂ jτi j

By filtering the Navier-Stokes equations we therefore obtain a new term, ∂ jτi j, which will act
either as a source or sink given by the interaction at smaller scales (< " used for filtering). This τi j
is the turbulent stress tensor, a sort of measure of the correlation between filtered velocities given
by τi j = uiu j −uiu j

In analogy to the classic kinetic energy K = 1
2mv2 we define the large scale kinetic energy as

e = 1
2uiui. From a straightforward differentiation of this quantity, and using he same ∂tui from the

filtered Navier-Stokes above, we obtain:

∂te = ui∂tui = −ui∂ j(uiu j)−ui∂i p+uiν∂iiui −ui∂ jτi j

A certain number of equalities, some quite obvious, some less, allows us to obtain from this
expression a continuity equation of the form

∂te+∂iJi = −ν(∂iui)2 +Π (1)

where Ji is the spatial flux of the large scale energy and Π = Π(x,y), with its dimension of[
energy · time−1], is the term describing the scale-to-scale energy flux that we will be considering.

This Π(x,y) has been obtained numerically from 100 snapshots of the stream function ψ over
[0,2π]2: its shape within the box can be seen in Figure 13, while a plot of different values of
Πtot = ∑( x,y) ∈ [0,2π]2 for different snapshots is shown in Figure 12. It is worth noticing how Π
is not isotropic on the vortex, as the vorticity was instead (compare Figure 4, right, and Figure 13,
right).

An easier way to visualise the geometry (and non-isotropy) of this energy flow is to use
contour plots, as in Figure 14 (a different snapshot has been considered). From these it is
possible to notice that my work has a major flaw: periodic boundary conditions were not
implemented for this part of work, as once the previous analysis was completed without them
they proved to be computationally too demanding for giving any result in a short time, and
a brief discussion of how this lack has influenced the results is presented in Appendix B. A
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FIG. 12: (top) Values of Π (summed on the whole box) for different ". Each line is a snapshot.
(bottom) Π averaged on the different snapshots: the vertical bars are the range of Π for those values of ".

better algorithm for solving this issue would be an ideal (and necessary) continuation to this report.

From Figure 12 we see how the term Πtot is mostly positive, confirming a flux of energy towards
the small scales, although for some lines=snapshots the system actually brings some energy back
to smaller scales. The dependance of the averaged Πtot on " is furthermore a topic on which I
would like to continue working, both for understanding how the lack of boundary conditions in
our case has compromised the result and also to find any explicit relation Πtot = f (").

FIG. 13: Plot of Π(!x) and closeup on the central (positive) vortex
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FIG. 14: Contour plots of Π(x,y) and closeup on the central vortex (approx. [0.75π,1.25π]2). Filtering
lengths: " = 5,15,25. The range of values (min/max reported in the legend on the right) may vary severely
according to different snapshots and different "s up to Π(x,y)±10−6J/s (calculated on a single gridpoint)

III. CONCLUSIONS AND FURTHER WORK

In conclusion, it is certainly interesting the fact that data analysis seems to contradict the
current model of V (r) ∝ r−

1
4 if we consider, as the limit between body and tail of a vortex, two

of the values that appear to be the most sensible. The question becomes then: why should we
consider a rmax ≈ 3

7π to be the correct value of such boundary? Are there physical considerations
that may justify this? If these are lacking, then one may actually seriously consider whether the
current model is correct.
As for the energy flux, it is shown how this is related to the filtering length ", but the missing
boundary conditions have a growing relevance effecting the results as this value increases. The
spatial dependence of the energy flow process is nevertheless validly represented for small "s
and probably not too dissimilar from the actual behaviour. On this part of the work the unsolved
questions are many, starting from the previously mentioned dependance of the averaged Πtot on
", to finding a better algorithm for processing the filtering and analysis, to the role of boundary
conditions.
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Appendix A: A model of vortex dipole and the implementation of boundary conditions

It is interesting to try and build an ideal vorticity field which profile decays exactly as −5
4 in

order to directly visualise how the analysed system differs from it. Given the positive vortex to be
centred in (x+,y+) and the negative one similarly in (x−,y−), we define this field as

f (x,y) =
1

√
(x− x+)2 +(y− y+)2

5
4
− 1

√
(x− x−)2 +(y− y−)2

5
4

= d+(x,y)−5/4 −d−(x,y)−5/4

(A1)
where d+ and d− are the distances of a given point from the positive and negative vortex.
This function is easily evaluated ∀!x = (x,y) ∈ R2/{!x−,!x+} (where!x− and!x+ are the positions of
the two vortices, on which the function would have a singularity), but we are interested in applying
it to our finite case [0,2π]2 with periodic boundary conditions. There are two equivalent ways to
implement these:

• first, we may extend our region of interest from one box to n×n boxes: assume that our orig-
inal box was [−π,π]2 (shifted for simplicity), we now consider [−(2n+1)π,(2n+1)π]2,
but leave the vortices where they originally were - we simply drop our boundaries and eval-
uate the function further away from !x−,!x+. Once we obtained f (!x) as previously defined
within this larger region, we say that

f̃ (x,y) =
n

∑
i, j=−n

f ((2i+1)x,(2 j +1)y)

which intuitively means that, once f has been calculated for every point in the extended
region, all the copies of the original [−π,π]2 box are superimposed and the value of f̃ (x,y)
is given by the sum of f (x,y) of the n superimposed points.

• alternatively, we may work in the "opposite" way: instead of keeping the vortices fixed
and extend our measurements far over the boundaries, we can create "virtual" copies of
our vortices outside the main box, as in a (finite) lattice Λ, and then, picked a point within
the box, evaluate all the distances from (!x−)i ,(!x+) j , i, j ∈ Λ (all the vortices forming the
lattice).
We end up with a formula which generalises equation (A1) for more than two vortices, as

f (x,y) = ∑
i∈Λ

sign(Λi)
√

(x− xΛi)
2 +(y− yΛi)

2
5
4

= ∑
i∈Λ

sign(Λi)d (xΛi,yΛi)
− 5

4 (A2)

where Λi refers to the i−th vortex on the lattice, which coordinates are (xΛi,yΛi). This
equation is actually a particular case of Weierstrass’ P-function

This second method proved easier to implement and was used to generate different pseudo-
vorticity profiles: in Figure 15 we can see how these evolve as the lattice gets bigger and bigger -
at 15×15 the profile looks already stabilised and the cutoff starting at π

2 discussed
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Appendix B: Lack of Periodic Boundary Conditions in Gaussian Filtering

Due to computational reasons, it has not been possible to perform the analysis of section II
with the requested periodic boundary conditions, as shown from the contour plots of Figure 11
that exhibit no continuity between the left/right and top/bottom edge. This means that points
within a distance d < " from the boundaries will not see a certain number of points on the other
side/s during the filtering, but also, ∀ " < 128(" < π in the correct notation), ∃S ⊂ [0,2π]2 in
which the filtering is correct, and having centred the positive vortex means that its shape, as shown
in Figure 11 actually is the feature that remains correct for the highest values of ", while on the
boundaries of the boxes it is almost immediately noticeable how this mistake is relevant.
What is even more important is how this could have affected the results shown in Figure 12: is the
behaviour exhibited for large " still valid?
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