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Abstract

Structured populations are of particular interest when discussing disease dynamics.
A common approach is to consider metapopulations: a group of coupled, well-mixed
patches (also called (sub)populations or households). Two, frequently used ways to
realize coupling are to introduce between-patch contact rates and to allow migration.
Although these two ways describe different real-life situations, they result in similar
dynamics under certain conditions.

My project consists of two parts. In the first part, I focused on two different metapop-
ulation models, both consisting of equally-sized, well-mixed, coupled patches. The first
model consisted of subpopulations with standard SIR (susceptible-infected-recovered)
dynamics, coupled by contact. In the second model, a latent period was introduces
and patches were coupled by migration, but infectives were not allowed to migrate. For
both of the models, stochastic individual-based models and the corresponding determin-
istic dynamics in the limit of an infinite number of (not necessarily large) patches were
constructed and compared. The results imply equivalence for weak coupling.

In the second part, I focus on the Tasmanian Devil Facial Tumour Disease (DFTD),
an infectious cancer that threatens the species of tasmanian devils, the largest marsupial
carnivore with extinction. I developed a stochastic, spatial, age-structured SEI model
consisting of well-mixed patches with nearest neighbour interaction: migration and con-
tact. I used parameter estimations from the literature, where available, and fit the rest
of the parameters to published data. Results showed that migration was required for a
healthy population to survive despite the strong demographic fluctuations and contact
was needed to match the speed of the spatial spread. In the future, I will apply my
model to make predictions and investigate possible control measures.
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1
Introduction

The influence of spatial structure in population dynamics, including disease dynamics
have been studied intensively in the recent years. One way to incorporate structure
is to consider metapopulations, consisting of well-mixed, coupled patches, also called
populations or households. The reproductive ratio R0 is an important quantity in all
models, determining the behaviour of the system, but it is less straightforward to define
in structured populations.

1.1 Local dynamics

In metapopulation models, the patches are usually thought to be homogeneously mixed,
containing individuals in different states of the disease. There are several choices for the
underlying local dynamics and they can be classified according to the considered phases
of the disease (compartments) and the reaction between them.

The commonly considered types of individuals are susceptible (S), exposed (E), in-
fected (I) and recovered (R). The models are generally named after these compartments,
for example the standard SIR model uses only susceptible, infected and recovered indi-
viduals, with a constant population size. Susceptibles can be infected by infectives and
can first turn exposed, carrying the disease but not infecting yet. Infected individuals
can recover. Exposed individuals can be disregarded, corresponding to a lack of latent
period and infected individuals can be removed from the dynamics instead of recovering.

The behaviour of the system is fundamentally different if we allow the recruitment
of susceptibles. Recruitment can occur through natural birth- and death processes (e.g.
SIRBD: SIR dynamics with birth and death [1][2][3], SEIRBD: [4]), individuals re-
turning to the susceptible pool after the last phase of the disease (e.g. SIRS [1]) or
the combination of the two (e.g. SISBD [5]). In models with recruitment, an endemic
stable steady state can exist in an infinite population for R0 > 1. Without recruitment,
however, the only steady-state is disease-free, but the number of infectives initially grow
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1.2. METAPOPULATIONS CHAPTER 1. INTRODUCTION

for R0 > 1. The time to extinction is infinity for an infinite population in both cases,
but becomes finite for a finite population.[6]

During my general investigations, I will use the standard SIR and SEIR models for
the local dynamics (no recruitment, with/without latency). A more detailed description
and analysis is included in appendix A. In my application for DFTD, however, the time-
scales of the disease and the demography of the devil are not separated and thus natural
birth- and death processes has to be taken into account. Moreover, the disease has a
long latent period and is lethal, so I used the SEIBD model.

Density-dependent versus frequency-dependent infection rate The infection
rate λ in all of the above described models can be defined to be either ”density-dependent”:
λ = ηSI or ”frequency-dependent”: λ = ηSI/N , where η is a constant, S is the number
of susceptibles, I is the number of infectives and N is the population size. Note, that if
the patch sizes are all equal and constant, the difference is only a constant factor. It is
the case for my general investigations (precisely for the contact model and approximately
for the migration model), but not for my application.

The ”density-dependent” case corresponds to a constant individual-to-individual con-
tact rate, leading to the total number of contacts an individual makes to be proportional
to the population size. As a result, the contact rate and the basic reproductive number
R0 is also proportional to the population size, leading to the extinction of the disease
under a critical size, determined by R0 = 1 [6].

The ”frequency-dependent” case, on the other hand, corresponds to all individuals
creating a fixed number of contacts, independent of the population size. As a result,
R0 is also independent of the population size, and - provided that R0 > 1 initially - the
disease does not die out in a decreasing population. Consequentially, such a disease (like,
apparently, the devil facial tumor disease in tasmanian devils) can lead to the extinction
of its host [7].

1.2 Metapopulations

Metapopulations are formed by well-mixed, coupled patches. In a standard metapopu-
lation model, the local dynamics consist only of natural birth and death while patches
are connected by migration (detailed description and analysis in appendix B). In order
to investigate the spreading of infections, I used compartmental epidemiological models
for the local dynamics, as described in section 1.1.

Coupling There are two main methods to enable coupling in a metapopulation with
disease dynamics. The first is to allow individuals on different patches to contact each
other (e.g. [8][9] for the SIR and [10][11] for the SEIRS model, all with homogeneous
coupling). The second is to include migration. For example, in [2], no spacial structure
while [12] uses a lattice and [13] a complex spatial structure. The main effect, between-
patch spread, is the same for both, but migration also has a secondary effect on the
local dynamics. The equivalence of contact and migration for two infinite patches was
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1.2. METAPOPULATIONS CHAPTER 1. INTRODUCTION

investigated by looking at the eigenvalues of the corresponding determinstic differential
equation system [14]. Other ways of connection are possible, such as adding special
individuals, belonging to multiple patches [15].

I will consider both contact and migration, in the first part of my report by comparing
them in a homogeneous model. In the second part, describing the application for Devil
Facial Tumour Disease, I will use a model realizing contact and migration simultaneously.

Structure In the simplest case, without spatial structure, any patch interacts with
any other equally likely [8][9][2]. However, the need to consider spatial structure arises
naturally once we would like to apply a metapopulation model: homogeneous contacts
among patches is the easiest to analyse, but often not very realistic. The simplest way is
to consider a two-dimensional lattice, with a patch on each cell and allow homogeneous
nearest-neighbour interaction only [16][12][1]. An even more realistic way is to construct
a contact network between the patches [13], but it raises the number of parameters in
the model considerably.

I will investigate homogeneous, all-to-all interactions in the general case and a lattice-
like structure with unequal patch sizes but homogeneous nearest-neighbour interactions
for my application on the Tasmanian Devil Facial Tumour Disease.

Reproductive number The local reproductive number is defined as the expected
number of infections caused by a typical infectious individual in a completely susceptible
population. For a metapopulation, a ”typical infectious individual” is less straightfor-
ward to define; different reproductive numbers can be used, all with the same threshold
behaviour: the disease can only spread if it is larger than unity [17]. The most common
version is the group/household reproductive number: the number of patches contacted
by a patch containing a single initial infective during its lifetime, while disregarding the
effect of other patches [8][9][18][19][17][11][15].
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2
Homogeneous models

I first conducted an analysis on metapopulations with homogeneous mixing. My goal was
to investigate how the two most common ways of coupling, contact and migration, effect
the dynamics, together with latency. In order to achieve this, I derived the deterministic
counterpart of two stochastic models, in the limit of an infinite number of patches. I
compared the models through examining the group reproductive number, a quantity
fundamentally determining the behaviour of the system.

2.1 Definition of the models

Both of the investigated models consist of homogeneously coupled, well-mixed patches.
The local dynamics are according to a compartmental model without recruitment, as-
suming a recovered class and thus a constant population size. The first model consists
of simple SIR patches coupled by contact, identical to that described in [8]. I will refer
to this model as the ”contact model”. The second, that I will refer to as the ”migration
model with latency”, consists of SEIR patches, coupled by the migration of all individuals
except for infectives.

2.1.1 Contact model

In the contact model, the local dynamics are according to the standard, stochastic SIR
dynamics. Moreover, individuals make global contacts at the points of a Poisson process
with rate λG, corresponding to an individual-to-individual rate of λL/Npop, where Npop =
NK is the (constant) population size, N the number of patches and K the number of
individuals per patch (carrying capacity). Consequently, the possible events are local
infection, global infection and recovery, with rates and effects as shown on table 2.1.

This model is the simplest case of the so-called ”epidemic models with two levels
of mixing”. They are studied deeply in [8], including a simple formula for the group
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Process Rate Effects

Local infection λLSiIi Ii → Ii + 1, Si → Si − 1

Global infection λG
Npop

Si
∑
j
Ij Ii → Ii + 1, Si → Si − 1

Recovery Ii/τI Ii → Ii − 1, Ri → Ri + 1

Table 2.1: Rates and effects of possible events on patch i consisting of Si susceptibles, Ii
infected and Ri recovered individuals for the contact model.

Process Rate Effects

Infection ηSiIi Ei → Ei + 1, Si → Si − 1

Outbreak Ei/τU Ii → Ii + 1, Ei → Ei − 1

Recovery Ii/τI Ii → Ii − 1, Ri → Ri + 1

Emigration (class X) mXi Xi → Xi − 1

Immigration (class X) 1
N

∑
j
mXj Xi → Xi + 1

Table 2.2: Rates and effects of possible events on patch i consisting of Si susceptibles, Ei
exposed, Ii infected and Ri recovered individuals for the migration model with latency.

reproductive number R∗. Different reproductive numbers, all with the same threshold
behaviour are described in [17], while the real-time growth rate r0 is discussed in [19].

The group reproductive number in the above described, simple model can be calcu-
lated from the following formula

R∗ = λGµτI , (2.1)

where µ is the expected size of the local epidemy [8].

2.1.2 Migration model with latency

In the migration model with latency, the local dynamics are according to the standard
SEIR dynamics. Moreover, individuals except for infectives are allowed to migrate.
Every individual emigrates with a constant rate m to a randomly chosen destination,
instantaneously. As a result, the possible events are infection, outbreak and migration,
with the rates and effects shown on table 2.2.

It is less straightforward to determine a simple formula for the group reproductive
number in the migration model than in the contact model, due to the secondary effects of
migration on the local dynamics. Since emigrated individuals, once turning infected, can
not migrate any more, global infectiouns are caused solely by exposed migrants. Conse-
quently, if the size of the local epidemy is not affected by migration, an approximation
for the group reproductive number would be the following:

R∗ = µPd, (2.2)
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where µ is the expected size of the local epidemy and Pd is the probability that an exposed
individual emigrates before falling ill. In our model, using the Poisson approximation
for all processes, the dispersal probability Pd is

Pd =
m

m+ 1/τE
(2.3)

The above formula was inspired by an apparent scaling relation between the migration
rate m and the average latent period 1/τE : both the average size of an epidemy and the
probability of a large outbreak seems to depend on these two parameters only through
Pd (figure 2.1).

Figure 2.1: Fraction of susceptibles x unaffected by the epidemy conditional on a large
outbreak (x < 0.25) and the fraction of cases resulting in a large outbreak F for η = 0.005,
τI = 4, K = 100, N = 200 and averaging for 2000 simulations. m and τE were varied
independently of each other in the intervals m ∈ [0.001,0.1] and τE ∈ [1,20].

2.2 Stochastic simulations

The starting point in investigating disease spreading in a metapopulation was a stochas-
tic, individual-based model. All processes are assumed to be Poisson processes with the
appropriate rates. I use continuous-time models: in each step, the sum of all rates are
computed, an event on a patch is chosen with probabilities proportional to their rates
and the elapsed time between two events is drawn from an exponential distribution with
its parameter equal to the sum of all rates, as shown on tables 2.1 and 2.2.

2.3 Deterministic equations

In order to derive the deterministic dynamics, I considered the limit of an infinite number
of patches in each model. The main variable was first the number of patches in a given
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Process Rate in state (i,j) Terms with positive contribution to dfi,j/dt

Local infection λLij fi−1,j+1 − 1/N → fi−1,j+1,

Global infection λG
K i
∑
i,j
jfi,j fi,j + 1/N → fi,j

Recovery j/τI fi,j−1 − 1/N → fi,j−1, fi,j + 1/N → fi,j
Table 2.3: Contributions to the master equation in the contact model

local state (n), described by the number of individuals in each compartment. The
common approach then is to consider the master equation for the change in time of
ρ(n), the probability of observing the (global) state described by n.

In order to acquire smooth functions for large number of patches, it is convenient to
use the fraction of patches f = n/N as a variable. Next, we can consider the limit of
an infinite number of patches N →∞ by considering only the zeroth order terms in the
1/N expansion of the master equation. It usually yields a transfer equation with some
velocity v, which will thus be the velocity of f in the deterministic model.

Moreover, to nicely formulate the master equation, a shift operator acting on a
function of a function of, for example, s,e,i,r can be defined and - for continuous functions
- expressed in terms of derivatives as following:

E±s,e,i,rg(f0,0,0,0,...,fs,e,i,r,...) = g(...,fs,e,i,r + 1/N,...) =
∞∑
k=0

(±1/N)k

k!

∂kg

∂fks,e,i,r
= e
± 1
N

d
dfs,e,i,r g(s,e,i) (2.4)

Shift operators for a different number of variables are defined analogously.

2.3.1 Contact model

As the size of each patch is constant K and there are only three types of individuals, two
indices are enough to describe a state in the contact model. I will denote the fraction of
patches containing i susceptibles, j infectives and K − i− j recovered individuals by fi,j
and the probability that the system is in state fi,j by ρ(fi,j). The processes contributing
to the time derivative of fi,j are shown in table 2.3.

After collecting all terms and using the shift operator as defined in (2.4), the following
master equation can be obtained:

dρ

dt
=

∑
i,j

E−i−1,j+1E
+
i,jλLijNfi,jρ+ (2.5)

∑
i,j

E−i−1,j+1E
+
i,j

λG
K
i < j > Nfi,jρ+

∑
i,j

E−i,j−1E
+
i,jj/τINfi,jρ

where < j >=
∑
k,l

lfk,l is the average number of infectives on a patch.
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2.3. DETERMINISTIC EQUATIONS CHAPTER 2. HOMOGENEOUS MODELS

After expanding the above equation in 1/N to the first order, a transfer equation for
ρ can be obtained, corresponding to the deterministic equation dfi,j/dt = vi,j where

vi,j = (i+ 1) (λL(j − 1) + λG < j > /K) fi+1,j−1 +
1

τI
(j + 1)fi,j+1 (2.6)

− (λLij + λGi < j > /K + j/τI) fi,j

2.3.2 Migration model

I first characterise a state by the number of patches with a certain number of susceptible,
exposed, infected and recovered individuals, denoted by ns,e,i,r. The probability of such
a state is ρ(ns,e,i,r) (note, that all indices (s,e,i,r) cover the range [0,∞)). Changes in ρ
originate from the disease dynamics: infection, outbreak, recovery and from immigration
and emigration for the three types of mobile individuals, with contributions as shown in
table 2.4.

Thus the following master equation can be obtained:

dρ

dt
=

∞∑
i,j,k,l=0

(E+
i,j,k,lE

−
i−1,j+1,k,l − 1)αi,j,k,lNfi,j,k,l + (2.7)

∞∑
s,e,i,r=0

(E+
i,j,k,lE

−
i,j−1,k+1,l − 1)βi,j,k,lNfi,j,k,l +

∞∑
i,j,k,l=0

(E+
i,j,k,lE

−
i,j,k−1,l+1 − 1)γs,e,i,rNfi,j,k,l +∑

i,j,k,l

∑
p,q,r,s

N(E−i−1,j,k,lE
+
i,j,k,lE

+
p,q,r,sE

−
p+1,q,r,s − 1)mifi,j,k,l

(fp,q,r,s − δipδjqδkrδls/N + δi−1,pδjqδkrδls/N) +∑
s,e,i,r

∑
p,q,r,s

N(E−i,j−1,k,lE
+
i,j,k,lE

+
p,q,r,sE

−
p,q+1,r,s − 1)mifi,j,k,l

(fp,q,r,s − δipδjqδkrδls/N + δipδj−1,qδkrδls/N) +∑
i,j,k,l

∑
p,q,r,s

N(E−i,j,k,l−1E
+
i,j,k,lE

+
p,q,r,sE

−
p,q,r,s+1 − 1)mifi,j,k,l

(fp,q,r,s − δipδjqδkrδls/N + δipδjqδkrδl−1,s/N),

where I is the immigration rate which can be expressed, for example for exposed indi-
viduals, as following:

IE =
1

N

∞∑
s,e,i,r=0

mens,e,i,r (2.8)

The above equation can be expanded in 1/N, using (2.4). In the limit of infinitely
many patches, only the first non-vanishing term remains, resulting in a transfer equation
of the form

dρ

dt
= −

∞∑
i,j,k,l=0

∂

∂fijkl
(vijklρ) (2.9)
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Process Sign Effect Contribution

infection + ni−1,j+1,k,l − 1→ ni−1,j+1,k,l αijkl(nijkl + 1)×
(on ijkl) nijkl + 1→ nijkl ρ(...,ni−1,j+1,k,l − 1,...,nijkl + 1,...)

- nijkl → nijkl − 1 αijklnijklρ

ni−1,j+1,k,l → ni−1,j+1,k,l + 1

outbreak + ni,j−1,k+1,l − 1→ ni,j−1,k+1,l βijkl(nijkl + 1)×
(on ijkl) nijkl + 1→ nijkl ρ(...,ni,j−1,k+1,l − 1,...,nijkl + 1,...)

- nijkl → nijkl − 1 βijklnijklρ

ni,j−1,k+1,l → ni,j−1,k+1,l + 1

recovery + ni,j,k−1,l+1 − 1→ ni,j,k−1,l+1 γijkl(nijkl + 1)×
(on ijkl) nijkl + 1→ nijkl ρ(...,ni,j,k−1,l+1 − 1,...,nijkl + 1,...)

- nijkl → nijkl − 1 γijklnijklρ

ni,j,k−1,l+1 → ni,j,k−1,rl1 + 1

migration + ni−1,j,k,l − 1→ ni−1,j,k,l
1
N

∞∑
p,q,r,s=0

mi(nijkl + 1)×

(S) ni,j,k,l + 1→ ni,j,k,l (npqrs + 1− δipδjqδkrδls + δi−1,pδjqδkrδls)

(on ijkl) np+1,q,r,s − 1→ np+1,q,r,s

np,q,r,s + 1→ np,q,r,s

- ns,e,i,r → ns,e,i,r − 1 msnseirρ

ns−1,e,i,r → ns−1,i,r + 1

migration + ni,j−1,k,l − 1→ ni,j−1,k,l
1
N

∞∑
p,q,r,s=0

mj(nijkl + 1)×

(E) ni,j,k,l + 1→ ni,j,k,l (npqrs + 1− δipδjqδkrδls + δipδj−1,qδkrδls)

(on ijkl) np,q+1,r,s − 1→ np,q+1,r,s

np,q,r,s + 1→ np,q,r,s

- ns,e,i,r → ns,e,i,r − 1 menseirρ

ns,e−1,i,r → ns,i−1,r + 1

migration + ni,j,k,l−1 − 1→ ni,j,k,l−1
1
N

∞∑
p,q,r,s=0

ml(nijkl + 1)×

(R) ni,j,k,l + 1→ ni,j,k,l (npqrs + 1− δipδjqδkrδls + δipδjqδkrδl−1,s)

(on ijkl) np,q,r,s+1 − 1→ np,q,r,s+1

np,q,r,s + 1→ np,q,r,s

- ns,e,i,r → ns,e,i,r − 1 mrnseirρ

ns,e,i,r−1 → ns,i,r−1 + 1

Table 2.4: Contributions to the master equation in the migration model with latency
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where

vijkl = αi+1,j−1,k,lfi+1,j−1,k,l + βi,j+1,k−1,lfi,j+1,k−1,l + γi,j,k+1,l−1fi,j,k+1,l−1 − (2.10)

(αijkl + βijkl + γijkl + IS + IE + IR +mi +mj +ml)fijkl +

ISfi−1,j,k,l + IEfi,j−1,k,l + IRfi,j,k,l−1 +mi+1fi+1,j,k,lmj+1fi,j+1,k,l +ml+1fi,j,k,l+1

This corresponds to the deterministic dynamics

dfijkl
dt

= vijkl (2.11)

2.4 Comparison between stochastic and deterministic dy-
namics

First, I compared the deterministic dynamics to the stochastic model, using an individual-
based simulation and numerically integrating the deterministic dynamics. I recorded the
distribution of susceptibles fS =

∑
jkl

fijkl after the epidemy ended in both cases. The

results agreed, with better agreement for a higher number of patches in the stochastic
simulations, as expected. Some results are shown on figures 2.2 and 2.3).

Figure 2.2: Distribution of the number of susceptibles on a patch after the epidemy has
passed in the contact model for one of the parameter sets examined (K = 10, λL = 0.2,
λG = 0.5, τI = 1). Averaging for 50 simulations in the stochastic case.

2.5 Applications

2.5.1 Calculating R∗ from the deterministic dynamics

The group reproductive number, R∗ is defined as the number of patches infected by a
patch with a single initial infective while all other patches are susceptible and thus can
be determined from the deterministic dynamics.

10
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Figure 2.3: Distribution of the number of susceptibles on a patch after the epidemy has
passed in the migration model with latency for one of the parameter sets examined (K = 10,
η = 0.2, τE = 2, τI = 2, m = 0.1). Averaging for 50 simulations in the stochastic case.

Contact model

In the contact model, assuming that all global contacts target a susceptible patch (as
it is the case in our approximation of an infinite number of susceptible patches), it is
the number of global contacts made by a single patch over its lifetime. In terms of the
dynamics, it corresponds to integrating the global contact rate over time, while disabling
global contacts (which does not effect local dynamics in the limit of N →∞):

R0 =

∞∫
t=0

λGI =

∞∫
t=0

λG

∞∑
i,j=0

fi,jj (2.12)

The initial condition was set to fi,j = δK−1,1 where δ is the Kronecker delta, cor-
responding to a single initial infective on each patch. Since the local epidemy lasts
forever in a deterministic model, I ran the simulation until the number of infectives or
susceptibles per patch dropped below a pre-defined threshold (10−16).

I performed a quick comparison with the result from [8]: R∗ = µλGτI , determining
µ from a stochastic, individual-based, local simulation. The two group reproductive
numbers agreed, as shown on figure 2.4.

Migration model with latency

In the migration model with latency, patches can only be infected globally by an ex-
posed migrant. Consequentially, the group reproductive ratio R∗ can be determined by
counting exposed migrants from a patch with a single initial infective during its lifetime

11
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Figure 2.4: Group reproductive number R∗ obtained from integrating the modified deter-
ministic dynamics and using the result from [8]. All parameters have been varied, solid line
marks the identity function.

in absence of immigration, corresponding to:

R0 =

∞∫
t=0

IE (2.13)

where IE = m
∑
ijkl

jfijkl is the immigration rate where fijkl is obtained from the modified

dynamics, without immigration:

vijkl = αi+1,j−1,k,lfi+1,j−1,k,l + βi,j+1,k−1,lfi,j+1,k−1,l + γi,j,k+1,l−1fi,j,k+1,l−1 −(2.14)

(αijkl + βijkl + γijkl + IS + IE + IR +mi +mj +ml)fijkl +

mi+1fi+1,j,k,lmj+1fi,j+1,k,l +ml+1fi,j,k,l+1

Just like in the previous case, this approximation requires that all exposed migrants
arrive at a different, completely susceptible patch, which is the case as long as a patch is
among an infinite number of completely susceptible patches. The initial condition was
analogous with the previous case: fse,i,r = δK−1,1,0,0.

Comparison

By comparing equations 2.1 and 2.2, our expectation is that the reproductive ratio will
be the same for λGτI = Pd = m

m+1/τE
. In order to investigate, under what circumstances

this assumption is true, I determined R0 from the deterministic dynamics in both cases.
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Figure 2.5: Basic reproductive numbers for Ball’s model with global contacts and our
model with migration for different parameters.

My results are shown on figures 2.5 and 2.6 and the parameters used are explained in
table 2.5.

What we can see on these figures is that the two models agree for small dispersal
probabilities. The relative difference starts linearly, indicating that if we would expand
the expressions for R0 for the two models, they would first differ in the second order
term. Agreement for Pd = 0 is trivial, since the only difference in the local models is
latency, but that does not influence R0 in a model without recruitment. An identical
first order term, on the other hand, is not trivial, it implies that the approximation works
for weak coupling. The difference in the second order term probably corresponds to the
secondary effect of migration on the local dynamics.

A clearly visible property of R0 for the model with migration is that it saturates,
caused by the fact that the dispersal probability can’t be more than unity. A metapopu-
lation with a very high dispersal probability would correspond to a well-mixed population
with KN individuals and SEIR dynamics with the appropriate local rates.

2.5.2 Future applications

The derived deterministic equations can be used to investigate the models in other ways.
For example, the real-time growth rate could be extracted from linearizing the dynamics
around the initial state, providing an other characteristic of the dynamics that can
be compared among different models. Moreover, by expanding the modified dynamics
around the absence of coupling, equivalence between contact and migration might be
extracted. Furthermore, additional models could be investigated analogously, like the

13



2.5. APPLICATIONS CHAPTER 2. HOMOGENEOUS MODELS

Figure 2.6: Relative difference between the basic reproductive numbers b for different
parameters as a function of the dispersal probability Pd.

migration model without latency.
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ID K λL τE τI

1 5 2 1 1

2 5 4 1 1

3 5 2 0.5 1

4 5 2 2 1

5 10 1 1 1

6 10 1 2 1

7 10 1 1 2

8 10 1 0.5 1

9 10 1 1 0.5

10 5 1 0.01 1

Table 2.5: Examined parameter sets. The values for the migration rate varied between
10−3 and 10−0.1, with 10 values logarithmically spaced and the global infection rate was set
to λG = m

τI(m+1/τE) .
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3
Application - DFTD

The Devil Facial Tumor Disease (DFTD) is an infectious cancer, causing a severe de-
cline in the Tasmanian devil population, the largest surviving marsupial carnivore. The
disease seems to spread independent of the population density, threatening the species
with extinction [20].

3.1 Introduction

3.1.1 The Tasmanian devil

Tasmanian devils are solitary, except for females bringing up their pups. They are not
territorial, living in overlapping ”home ranges” instead and interacting through social
feeding and during the mating season [21]. Most mating occurs seasonally, from mid-
February to mid-march. After a short gestation (14–22 days), up to four young may be
suckled, which emerge from the pouch in July through August and become independent
of their mother by early February [22]. Devils have a lifespan of <6 years in the wild,
and only a few females reproduce before 2 years of age, although an increased early
reproduction have been observed in infected populations [23]. Devils are wide-spread in
Tasmania, the population forming one continuous block. They are most common in the
eastern and northern parts of the island (figure 3.1) [24].

Contact between tasmanian devils have been studied, with special attention to the
seasonal, demographic and density-related patterns through observing social feeding [26]
and using proximity sensing radio collars [27]. The resulting contact networks were not
highly aggregated, but still differed slightly from random networks. A seasonal pattern
was observed in the interaction among sexes: female-male interactions dominate the
mating and female-female other seasons.
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Figure 3.1: Distribution of Tasmanian devils represented as the probability of occurrence
in 1 km2 grid blocks, predicted by species environmental domain analysis on the basis of
results from a combination of presence survey techniques [25]. Circles indicate the location
of some sites trapped by the Devil Disease Project Team [24].

3.1.2 Tasmanian Devil Facial Tumour Disease (DFTD)

DFTD is an infectious cancer with a long latent period ( 3-9 months), leading to certain
death in approximately 6 months. The disease spreads mainly through biting, with a
transmission rate apparently independent of density, predicting the extinction of the
species [20]. DFTD has spread over the majority of Tasmania, leading to an overall
population decrease of approximately 60% and local declines up to 90 % [28]. However,
the population in the north-western part of Tasmania slightly differs from the rest of the
population, leading to decreased susceptibility to the disease [29].

Time-series on the density of devils and the prevalence of the disease (proportion
of infected animals in the population) are available from a number of sites [7], while
less detailed data on population sizes is obtained through spotlighting surveys across
the whole island [24] [20]. Local prevalence generally increases exponentially, reaching a
constant value (see figure 3.2) with a continously decreasing population size.

3.2 Previous models

Detailed analysis is available on the local dynamics. These models are compartmen-
tal, with susceptible (S), exposed (E) and infective (I) classes with respect to disease
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Figure 3.2: Estimated prevalence from mark-recapture analysis at all monitored sites with
95% confidence intervals, as a function of time since (estimated) disease arrival. Data from
[7].

dynamics. Since the time-scale of the disease is in the same range as the devil’s life-
time, demography can’t be neglected. The demography of the devil is included through
age-classes and birth- and death rates according to the logistic growth model.

Most of the previous models are deterministic and well-mixed. A simple model
with exponential transfer times have been used to estimate parameters and show that
a frequency-dependent transmission rate is more appropriate to describe the disease
dynamics than a density dependent one, since prevalence from field data appears to
remain high even for significantly decreased population sizes [7].

A similar model, generalized to incorporate gamma-distributed delays have been used
to estimate the effects of a possible control measure, culling. It has been found, that
unrealistically effective efforts are needed for success, in agreement with the inefficiency
of a culling trial on one of the sites in Tasmania. Immigration from sites unaffected by
culling probably worsens the model predictions even more. A fundamentally different
model, using delay differential equations gave similar conclusions [30].

Lastly, a stochastic model was used to investigate the effect of heterogeneity in con-
tact patterns. Disease was simulated on a contact network empirically derived, using
data collected by proximity sensors. The result was, that the network structure changed
the probabilities for the different outcomes, but hardly changed the reproductive num-
bers [31].

3.3 My spatial model

The model I constructed is a stochastic, individual-based, spatially explicit model in-
corporating age-structure and continuous in time. I used 5 age classes and demographic
parameters as estimated from current knowledge of devil life history and some basic
modelling in [30]. In order to simplify the model and minimize the number of parame-
ters, I used exponentially distributed delays both for the latent period and for aging. I
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Process Rate Effects

Birth
∑
α
bαNα

i (1−N/K) S1
i → S1

i + 1

Aging of type X, age class α Xα
i Xα

i → Xα
i − 1, Xα+1

i → Xα+1
i + 1

Death of type X, age class α dαXα
i Xα

i → Xα
i − 1

Infection from age class α to β 1
Ni

(Iαi + c
∑

j∈NN
Iαj )η

β
αS

β
i Sαi → Sαi − 1, Eαi → Eαi + 1

Outbreak in age class α 1
τE
Eαi Eαi → Eαi − 1, Iαi → Iαi + 1

DFTD-associated death in age class α 1
τI
Iαi Iαi → Iαi − 1

Migration from patch i to j µα
Nh

Xα
i Xα

i → Xα
i − 1, Xα

j → Xα
j + 1

Table 3.1: Rates and effects of possible events in the spatial model of DFTD. Compart-
ments: S-susceptible, E-exposed and I-infected, while N = S+E+I denotes the population
size. Latin characters index patches and greek letters the Na age classes. ηαβ is an Na by Na
constant matrix, bα, dα and mα are Na long constant vectors and τE and τI are constants

assumed the transmission rate to be frequency-dependent.

Spatial structure I placed a grid on the island of Tasmania, each cell corresponding
to a population in my metapopulation model. Carrying capacities were set to be propor-
tional with the average devil density on the site from [24] and the total population was
set approximately to 140.000 in order to match informal estimates of the total healthy
tasmanian devil population of 130.000-150.000 individuals [20].

Between-patch interactions Coupling between patches was realized in two ways.
First, individuals were allowed to migrate, corresponding to permanently moving away.
Migration was assumed to be instantaneous and the new site was chosen uniformly
randomly among all hospitable (K > 0) nearest neighbour sites. The age-class dependent
rate µβ was constant (m) per adult animal and zero for juveniles, since they spend most
of their times in the den with their mother.

Second, individuals on neighbouring patches were allowed to interact and possibly
infect each other. This kind of contact originates from the overlap between home-ranges
of animals on different, neighbouring patches. Infectives of neighbouring patches were
considered as candidates for infecting susceptibles, with their effect damped by a constant
factor c (see the resulting rate in table 3.1).

Initialization All patches were initialized with an age-distribution according to the
fixed point of my local demographic model’s deterministic version, age-structured demog-
raphy with logistic growth The definition of the model and its fixed points are shown
on figure 3.3. To start the infection, a small proportion of the population on the initial
case’s site was turned infective.
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dN1

dt =
k∑
i=1

biNi(1−
k∑
i=1

Ni)− (1 + d1)N1

dNi
dt = Ni−1 − (1 + di)Ni
dNk
dt = Nk−1 − dkNk

N∗
1 =

∑
i
biαi−1−d1

(
∑
j
αj)

∑
i
biαi

N∗
i = αiN1

α1 = 1

αi = αi−1

1+di

αk = αk−1

dk

Figure 3.3: Left: deterministic age-structured model with logistic growth. Middle, right:
fixed point of the model. Latin characters index age cohorts.

3.4 Fitting the model

My first task was to fit the model to the data and investigate whether it can capture all
main aspects of the real-life disease dynamics.

3.4.1 Parameters to fit

I used the local, age-dependent birth rate and death rate as estimated in [30]. Moreover,
I used the infection matrix ηα,β up to a constant factor, that I will call infection rate,
from the same article. Besides the two parameters describing the spatial spread, the
migration rate and the between-patch contact rate, this leaves two local parameters to
fit. The latent period was not well-known due to the lack of diagnostic tools capable
of diagnosing the disease before the visible signs. The infection rate in previous models
was determined to fit the initial increase in prevalence, so I had to fit it again to take
the effect of other patches into account.

Indirect data on the migration rate was available through the apparent yearly survival
rates, consisting of natural death and emigration. I scaled the apparent yearly survival
rates from [28] to match the median life expectancy of devils (the same procedure as
in [30]). Then, since these rates consist of death and emigration, rest of the rates, not
explained by natural death, could be considered as the migration rate.

3.4.2 Response variables

I choose four simple characteristics of the disease dynamics for quantifying the agree-
ment between my simulation and field data. Firstly, for the short-term, local dynamics,
I used the initial increase in adult prevalence, determining the speed of the local spread.
Secondly, for the long-term local behaviour, I focused on the equilibrial value of preva-
lence in adults. Finally, to characterize the spatial spreading, I chose the speed of the
disease front.

Initial increase in adult prevalence

The rate of initial increase in adult prevalence is the increase in the proportion of infected
and exposed individuals in the population per unit of time, on a logarithmic scale,
excluding the first age class. This quantity is often denoted as r0.

20



3.4. FITTING THE MODEL CHAPTER 3. APPLICATION - DFTD

From the data, I considered only a single site, Fentonbury, since all other sites were
problematic (e.g. late start of monitoring, spatial structure, participation in a culling
trial, special genetics). r0 for this site is estimated to be 2.2644, with 95% confidence
interval [1.4663, 3.1208], derived from Highest Posterior Density intervals from a Markov
chain Monte Carlo sample (n=50000 iterations) in [7].

As for the simulations, I recorded the adult prevalence on all sites. I considered
central, large sites, similar to Fentonbury, and determined r0 from a linear fit after
a logaritmic transformation of the initial phase of the disease (figure 3.4). Finally, I
averaged for sites yielding a good fit (R2 > 0.8), checking that most sites resulted in
good fits.

Equilibrial prevalence

According to the data, the long-term local behaviour is characterized by a constantly
decreasing population size with an approximately constant prevalence, in agreement with
a frequency-dependent transmission rate. In order to determine this equilibrial value
from the data, I considered sites where the disease has long been established (for at least
10 years): Mount Williams, the site where the first case was observed, Bronte Park and
Buckland. Confidence intervals were large but there was hardly any evidence for a trend
in time (low correlations with time). Moreover, the mean long-term prevalence did not
differ significantly between sites, based on a one-way ANOVA test. The mean of all data
points was 0.6424 with a 95% confidence interval of [0.5203, 0.7644].

In the simulations, I averaged for a time-range based on r0, in order to avoid taking
the initial transient into account, but also keep the effects of strong fluctuations due to
low population size and/or prevalence in very early and very late phases low. I used data
from 5/r0 to 15/r0 after the establishment of the disease, defined as the point where the
number of diseased animals reached 5 (figure 3.4).

Speed of the disease front

Last, for the spatial spread, I chose the speed of the travelling wave of infection, the
disease front. Field data consisted only of a few points, since the front could not be
monitored closely. Moreover, the distance of documented cases from the initial case
appears to be random, but this is only due to the increased publicity of the epidemy:
the number of reports increased drastically after 2003, but they were mostly from already
diseased, but not yet monitored sites.

However, if we consider only the case at maximal distance in each year, the data
points fall on a line. This approach is especially useful since it masks inhomogeneities
that my model with homogeneous contacts could not and did not attempt to capture.
I modified the time and location of the initial case for the data in order to achieve a
better fit, since the exact values are not well-known. All reports and the result of the
fit are shown on figure 3.5. The resulting estimation for the speed of the disease front is
25.8081, with a 95% confidence interval of [17.2490, 34.3671].
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Figure 3.4: Typical time-series from a single site in my spatially explicit, stochastic sim-
ulation. Red lines illustrate the results of fitting for the initial increase in prevalence and
equilibrial prevalence.

The wave of infection was also clearly visible on my simulation (figure 3.6). The
maximal distance from the initial site to the disease front was recorded 100 times a year
and a linear fit was performed for the ”middle” part of the spread (from 1/6 up to 3/4
times the maximal distance) in order to avoid strong fluctuations during establishment
and finite-size effects towards reaching the edge of the island (figure 3.7). Results were
considered to be in agreement with the data, if the slope of the fit was within the 95%
confidence interval of the estimation from the data.

3.4.3 Results

First, I considered the case without migration. However, the resulting population was
highly susceptible to stochastic fluctuations, leading to extinctions in smaller patches.
Next, I set the contact rate to zero, considering migration only. In this case, however,
a very high migration rate was needed for the speed of the disease front to match the
data: average adult individuals were supposed to change patches once a year, more than
one would suppose from the rate of 0.584, as estimated from the data.

Finally, I considered the general case of both migration and contact. I investigated
three, realistic values of latent periods (3 months, 6 months and 9 months) and performed
a full parameter search on the other three input parameters (local infection rate, between-
patch contact rate and migration rate). Example results for a fixed latent period of 6
months are shown on figure 3.8.

We can observe that the effect of migration on the local dynamics is small compared
to that of contact, due to the increased infection pressure coming from neighbouring
patches through contact (first row pn figure 3.8). Moreover, an unrealistically large
migration rate (above 1) results in irregular dynamics that cannot be characterized by
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Figure 3.5: Spatial spread of DFTD. Blue circles: all reports on diseased animals from
Tasmania with the sizes of circles proportional to the number of infected animals reported.
Red diamonds: cases at maximal distance from the initial case in each year. Red line: result
of a linear fit.

these output parameters.
We can also learn from these figures, that there is a parameter range where my

simulation captures all of the above described characteristics of the dynamics and thus
can be used to model the spatial spreading of devil facial tumour disease.

3.5 Future work

Next, I will use the model with parameters where it describes the dynamics of DFTD in
applications. For instance, it can be used to make predictions about the global outcome
of the epidemy. To the local model, only three outcomes are possible: host extinction,
disease extinction or disease-host coexistence, the last one not relevant in the case of
DFTD, due to density-dependent transmission. However, the spatial dimension also
allows a spatially inhomogeneous disease-host coexistence, where patches eradicated by
the disease can recover and be infected again, while the epidemy travels around the
island.

Furthermore, possible control measures could be modelled. For instance, culling
(the removal of infective individuals) or influencing the coupling strength (e.g. through
construction of fences or artificially transporting individuals) could be investigated in a
spatial context.
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Figure 3.6: Snapshot of the spatial simulation with a clearly visible disease front.

Figure 3.7: Typical simulation results for the speed of the disease front.
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Figure 3.8: The output parameters as a function of pairs of input parameters for a latent
period τE = 6 months. r0: rate of initial increase in prevalence, eqPrev: equilibrial value of
prevalence and waveSpeed: speed of the disease front ([km/year]). A lack of local/spatial
spread is denoted by zero outputs. Parameters estimated from data are marked on the
colorbars (black: estimation, red: 95% confidence interval).
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A
Local model

A.1 SEIR model and its deterministic approximation

I investigate the local SEIR dynamics in this section in order to verify the local dynamics
of the patches in my model before connecting them into a metapopulation. The model
consists of four compartments: susceptible (S), exposed (E), infected (I) and recovered
(R) individuals in a well-mixed population. The following transitions are possible be-
tween the types: S → E (infection), E → I (outbreak) and I → R (recovery), with rates
according to the law of mass action (figure A.1).

The following deterministic approximation is precise for an infinite population:

Ṡ = −ηSI , (A.1)

Ė = ηSI − τ−1E E ,

İ = τ−1E E − τ−1I I ,

Ṙ = τ−1I I .

Consequentially, S + E + I + R = K, where K is the constant population size. As a
result, the difference between the density-dependent (ηSI) and the density-independent
rates (ηSI/K) is a constant factor. I will continue to use the notation for the density-
dependent case.

The fraction of individuals unaffected by the disease can be approximated from the
deterministic model, assuming the initial conditions E0 = I0 = R0 = 0, K = S0. From
equation (A.1),

Ṡ

S
= −ηI = −ητIṘ ≡ −R0Ṙ (A.2)

resulting in
S(t) = S0e

−ητIR(t) . (A.3)
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type number fraction

susceptibles S s = S/K

infectives I i = I/K

exposed E e = E/K

recovered R r = R/K

process rate

infection α(S,E,I,R) = ηSI

outbreak β(S,E,I,R) = τ−1
E

E

recovery γ(S,E,I,R) = τ−1
I

I

Figure A.1: Left: local SEIR model. Middle: susceptibles S, exposed (or latent) E,
infectives I, recovered R. Right: rates in stochastic model.

Since E(∞) = I(∞) = 0, this implies S(∞) = S0 exp[−ητI(K − S(∞)] and thus

x = e−R0(1−x) (A.4)

where x = S(∞)/S0 is the fraction of individuals unaffected by the disease, and R0 =
ητIS0 is the reproductive value of the infection. The above result also means that latency
has no effect upon x.

A.2 Stochastic simulations

First, I computed the final fraction of susceptibles by stochastic simulations and com-
pared my results to the prediction of the deterministic approximation (A.4). I used the
initial condition E0 = 1 in order to be closest to the assumption K = S0. However, this
made the system extremely sensitive to stochastic fluctuations in the early stages of an
epidemy, where the number of individuals effected is still low. In order to avoid taking
cases with premature extinction due to stochasticity into account, I only considered cases
with a ”large” outbreak by discarding all runs with less than K/4 individuals effected.

I simulated several epidemies, measuring x and the fraction of runs discarded, F .
The distribution of x for certain parameters with R0 not too close to unity can be seen
on figure A.2. A sharp peak at x = 1 (no individuals affected) can be observed runsfor
the unconditional case, corresponding to the premature extinction of the epidemy, as
mentioned above. This peak - trivially - is missing in the conditional case, since it cuts
the distribution at x = 0.75. Also, the mean with the condition is relatively close to
the theoretical value for K →∞, but without the condition, the distribution is strongly
biased towards x = 1, resulting in a significantly larger mean.

Next, I varied the parameters K, η, τE and τI , measuring the mean value of x
conditional on an outbreak. I investigated the effect of varying a single parameter, while
keeping the other three fixed. My results can be seen on figures A.4 and A.3. We can
observe, that x depends only on R0 = ητIS0, according to (A.4) and is independent of
τE .

Afterwards, I considered the fraction of runs discarded, F (figure A.3). The simula-
tions agreed with the prediction F ≈ 1 − 1/R0 provided that R0 was not too close to
unity.

Finally, I reduced the population size K while keeping R0 = 2 fixed and computed
the distribution and mean value of x (figure A.5). The distribution becomes sharper
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Figure A.2: Distribution of x for K = 100, η = 0.005, τI = 4, τE = 1 with conditional
and unconditional on an outbreak. Horizontal lines mark the theoretical value of x from the
deterministic model (grey) and the means of the distributions (red and green, respectively).

Figure A.3: Fraction of susceptibles left after epidemy and fraction of cases without epi-
demy as a function of R0 = ητIS0. Average over 500 runs.

as K increases, since fluctuations become less significant. Moreover, the mean value of
x approaches the theoretical value for K → ∞ from higher values, corresponding to a
tendency of downward fluctuations for smaller population sizes.

The agreement of the results both for x and F with the theoretical results show that
the local dynamics in my stochastic simulations indeed correctly model disease spreading.
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Figure A.4: Fraction of susceptibles left after epidemy and fraction of cases without epi-
demy for R0 = 2 and several values of τE . Average over 500 runs. ∆x/x ≈ 1%, ∆f/f ≈ 3.7%
(1/sqrt(500) ≈ 4%)

Figure A.5: Distribution and mean value of x for different K, R0 = 2, 500 simulations.

A.3 Master equation

The local, stochastic SEIR model can also be described in terms of a master equation.
The master equation is the differential equation determining the evolution of ρS,E,I , the
probability that the population is in the state (S,E,I): S susceptible, E exposed, I
infected and R = K − S − E − I recovered individuals.

Every process in the population (infection, outbreak and recovery) contributes with
two terms: a positive for the population reaching the state and a negative for leaving it.
For example, the change in ρ under an infinitesimal time interval ∆t due to infection is
the following: αS+1,E−1,IρS+1,E−1,I∆t − αS,E,IρS,E,I∆t, while contributions from other
processes can be computed similarly. After summing all terms, the following master
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equation is obtained:

dρS,E,I
dt

= αS+1,E−1,IρS+1,E−1,I + βS,E+1,I−1ρS,E+1,I−1 +

γS,E,I+1ρS,E,I+1 − (αS,E,I + βS,E,I + γS,E,I)ρS,E,I (A.5)

A.4 Limit of infinite population

In order to derive the deterministic equation (A.1) from the master equation, we can
expand it in 1/K and take the limit of K → ∞. First, we introduce new variables:
s = S = K, e = E/K and i = I/K and functions αS,E,I = Kα(s,e,i), βS,E,I = Kβ(s,e,i),
γS,E,I = Kγ(s,e,i) and ρ(s,e,i) = ρS,E,I .

The master equation can be formulated easier by introducing the following operator,
acting on a continuous function of s, e and i and expressing it in terms of derivatives:

E±s g(s,e,i) = g(s± 1/K,e,i) =

∞∑
k=0

(±1/K)k

k!

∂kg

∂sk
= e±

d
Kds g(s,e,i) (A.6)

E±e and E±i are defined analogously.
Using the above definitions, the master equation can be reformulated as

dρ(s,e,i)

dt
= (E+

s E
−
e − 1)Kα(s,e,i)ρ(s,e,i) +(

E+
e E
−
i − 1

)
Kβ(s,e,i)ρ(s,e,i) +(

E+
i − 1

)
Kγ(s,e,i)ρ(s,e,i) (A.7)

In the limit of K → ∞, the above equation takes the form of a transport equation
for s, e and i, since the operators can be expanded in 1/K. For example the first term
is

E+
s E
−
e − 1 = e

d
Kds
− d
Kde − 1→

(
d

ds
− d

de

)
/K (A.8)

After expanding all terms and considering an infinite population, the following form
can be obtained:

dρ

dt
= −5 (vρ) (A.9)

where

5 = [
d

ds
,
d

de
,
d

di
] (A.10)

and
v = [−α,α− β,β − γ] (A.11)

corresponding to the following, deterministic equation:

ṡ = −α(s,e,i) , (A.12)

ė = α− β(s,e,i) ,

i̇ = β − γ(s,e,i) ,

r = 1− s− e− i ,
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equivalent to (A.1) since α = ηsi, β = e/τE and γ = i/τI .
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B
Standard metapopulation

B.1 Introduction

In this chapter, I investigated the standard metapopulation model with birth, death and
migration as described in [32]. I used the theoretical results from this article to verify
my metapopulation model before applying its modified version for disease spreading.

The stochastic, individual-based model consists of N patches, with local dynamics
according to the logistic growth law, formulated through the following birth and death
rates b and d, respectively

bi = ri , (B.1)

di = µi+ (r − µ)i2/K ,

where i denotes the population size in a given patch, r the per capita birth rate, µ the
density-independent per capita mortality, and K the carrying capacity of a single patch.
For simplicity, we assume that µ = 1 from now on, corresponding to measuring time in
units of the expected life-time of individuals in the absence of density dependence.

Patches are coupled by migration in the standard model. In the simplest case that
I investigate, individuals migrate independently, with a constant rate m, corresponding
to the following emigration rate:

mi = mi (B.2)

Furthermore, I now consider homogeneous, instantaneous migration: emigrants appear
at a randomly chosen patch.

B.2 Deterministic dynamics

In the limit of infinitely many patches, the stochastic dynamics become deterministic.
If we denote the fraction of patches with a population size i by fi, the following deter-
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ministic dynamics can be obtained:

df

dt
= v(f) (B.3)

where

vj = (bj−1 + I)fj−1 + (dj+1 +mj+1)fj+1 , (B.4)

−(bj + I + dj +mj)fj for j>1 ,

v1 = I(1−
∞∑
k=1

fk) + (d2 +m2)f2 − (b1 + I + d1 +m1)f1.

Here I =
∞∑
k=1

mkfk is the rate of immigration into a given patch and f0 = 1−
∞∑
k=1

fk the

normalizing factor.
In this limit, the population may persist if there exists a stable steady state f∗ such

that it has a positive component f∗j > 0 for some j < 0. It can be shown that, for a
sufficiently large migration rate, the steady state f∗ = 0, corresponding to extinction,
becomes unstable while a second steady state, determined by the following equation,
emerges:

f∗j = f0

j∏
k=1

bk−1 + I∗

dk +mk
(B.5)

where

I∗ =
∞∑
k=1

mkf
∗
k (B.6)

is the rate of immigration in the steady state. It can be shown that this steady state is
stable when I∗ > 0. [32]

B.3 Comparison of distributions

First, I numerically integrated the deterministic dynamics (B.3) using Euler’s method.
Next, I performed stochastic simulations to determine the distribution using rates as
defined in (B.1) and (B.2). Finally, I solved equation (B.5) numerically, by a fixed-point
iteration. The resulting steady-state distributions for two example parameter sets are
shown on figures B.1 and B.2.

Distributions from the different methods show agreement, implying that my simula-
tions correctly model a standard metapopulation.
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Figure B.1: Steady-state distribution of the number of patches in a given state calculated
using three different methods, K = 25, b = 1.05 and m = 0.1. The stochastic simulation
consisted of 500 patches.

Figure B.2: Steady-state distribution of the number of patches in a given state calculated
using three different methods, b = 1.05 and m = 0.015.
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