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ABSTRACT

The traditional way of classifying chromatin is questioned by seve-
ral recent epigenetic evidences. Some researchers propose one way
of reclassify the chromatin which is the application of high dimensio-
nal Hidden Markov Model (HMM). The results of two models based
on HMM are examined of their biological meaning in this report. To
figure out the optimal cluster number of classifying chromatin, clu-
ster number from 1 to 53 is investigated in the report. Finally, optimal
cluster number is suggested by integrating biological meaning of two
models based on HMM with 53 models based on k medoid clustering.

Contact: fengchongwang@gmail.com

1 INTRODUCTION

Traditionally, chromatin is considered to have two types —hetero-
chromatin and euchromatin (Bolsover et al., 2011). The heteroch-
romatin “tends to remain condensed in the metabolic or interphase
nucleus and in prophase”(Rothwell [1988]) and is transcriptionally
inactive(Swanson et al. [1967],Miglani [2007]) as opposed to euch-
romatin. Cytogenetically, one can distinguish them by keeping in
mind that the heterochromatin is more intensely stained with DNA-
specific stains(Miglani [2007]). Figure 1 shows the heterochromatin
and euchromatin in the fourth chromosome of Drosophila melano-
gaster observed by microscope(Locke [1999]).

However, recent epigenetic evidences indicate that a finer clas-
sification may be more plausible. For instance, the heterochramtin
in Rye (Secale cereale) B chromosomes is found to be transcripti-
onally active(Carchilan et al. [2007]). And evidence in Drosophila
melanogaster shows that the heterochromatin can be divided into
at least two nonoverlapping types which are marked by different
proteins( Hediger and Gasser [2006],Sparmann and Van Lohuizen
[2006],Coop et al. [2008]).

Guillaume ef al do a purely data driven research in Drosophila
melanogaster chromatin classification by applying Hidden Markov
Model(Filion et al. [2010]). They gain the DNA-protein binding

*to whom correspondence should be addressed

Fig. 1. The fourth chromosome of Drosophila melanogaster observed by
microscope. The dark regions in chromosome are the heterochromatin while
the light regions are the euchromatin.

force data of the 53 proteins by applying DNA adenine methyl-
transferase identification (DamID) technology, a technology used
to identify protein-DNA binding loci(Orian et al. [2009]). To give
the readers a quick insight in the raw data, the DamID data of
chromosome 2L (chr2L) of Drosophila melanogaster are shown by
Figure 2. Figure 2 is plotted by using R language(R Development
Core Team [2012a], Seidel). One can see big difference of protein-
DNA binding force of different proteins in the same genomic loci.

Guillaum er al assume that there is a Markov Chain which is rela-
ted to the observed data and that the emission distribution of the
HMM is Student’s distribution. With the initial condition of a two-
state HMM and the application of Baum-Welch Algorithm (Baum
et al. [1970]), optimal state number is estimated to be 5. These five
principal chromatin types revealed by them are called black, blue,
red, green and yellow states. But is this new classification of chro-
matin biologically meaningful? Can one get different classifications
based on HMM or some other methods?

I investigate the relation between their classification and the
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Fig. 2. Location maps of 53 proteins in chr2L. of Drosophila melanogaster. The x axis indicates the genomic loci. The y axis indicates the different protein
names. The binding forced is shown in the graph by colours. Yellow colour means high binding force. Blue colour means low binding force.

known genes in the chromosome. Similarly, a 20-state Hidden Mar-
kov Model is studied which is proposed by Nicolas Stidler, the
postdoc of my supervisor Sach Mukherjee. Finally, 1-cluster to 53-
cluster models based on k medoid clustering are studied to figure
out the optimal number of cluster.

2 METHODS

2.1 Definition

2.1.1 Biologically meaningful In this study, we think a model is bio-
logically meaningful if all or most of the regions that cover a gene belong to
the same state. In the paper, sometimes, we call a model is “good” when it
is biologically meaningful.

This definition is illustrated by an example in Figure 3. In a good classifi-
cation model, most of the genes are like in situation the A and B in Figure 3.
Yet in reality, one cannot expect there exists a classification model in which
all genes are like in the situation A in Figure 3, unless the model is a 1-state
model.

2.1.2  Coverage Proportion c;; The Coverage Proportion c;; of state
j of a certain gene, say the i*" gene, is given by the following equation:
Pi
Cij = — [€))
1] T,L'
in which n is the total number of genes we investigate, r; the total number
of regions in the i** (1 < 4 < m) gene and p; the number of regions in the
it gene belonging to state j.

2.1.3 Coverage Proportion Matrix C Coverage Proportion Matrix
C is a n X k matrix in which cell of 3" row and j*" column in the
Coverage Proportion Matrix C equals Coverage Proportion c;; defined by
Equation (1). k is the total number of states of the model.

2.1.4  maximum Coverage Proportion m; The maximum Coverage
Proportion m; is a n dimensional vector in which the it" element of m;
equals the largest element of row i in the Coverage Proportion Matrix C:

m; = max(ci1, Ci2, - Cir;) ()
Recall: 7; is the total number of regions in the ith (1 < i< n)gene.

2.1.5 average of maximum Coverage Proprotion si The average
of maximum Coverage Proportion sy of a k-state model is given by the
following equation:

1 n
s = — Zmi 3)
iz

in which m; is given in Equation (2).

2.2 Hidden Morkov Model (HMM)

The HMM of a discrete form can be understood in the following
way(Rabiner and Juang [1986]):

A system have several states { s1, s2, ..., S, }. Each time t the system
can only be in a state. The state u; at time t is only dependent on the state at
time (t-1), namely
Plut = sixfug—1 = s5,_,) =

Plug = si=|[(ut—1 = 85, _1,Ut—2 = 85, _5,.-, U0 = $j5)) (4

Though the state cannot be observed directly, an observer can gain some
data by measuring the system at each time t. And there is a certain probablity
distribution controlling the emission from the state to the data. So one can
estimate which state the system is most likely to be in at time t.

Now let us have some denotations in a formal way. Recall that k is the
number of states in the model. The state space is S = {s1, s2, ..., sk} Let
uy be the state of £t observation o; where o¢ is a 53-dimensional vector
in our case. Let A be the number of different o+’s. Let the state transition
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Fig. 3. Three different classification models of two genes. The blue areas represent genes. The yellow areas represent introns in chromosomes. (A)Both genes
are covered with regions that belong to the same state (gene 1 covered by state 1, gene 2 covered by state 4). If the coverage profile of all genes is like of these
two genes, this model is extremely biologically meaningful. (B)Each gene is covered by regions belong to a dominant state (state 2 dominates gene 1 while
state 1 dominates gene 2) though there are some regions belong to other states in the gene. If the coverage profile of all genes is like of these two genes, this
model is biologically meaningful. (C)There is no single dominant state in the gene. The state profile seems to be totally random. If the coverage profile of all

the genes is like of these two genes, the model is not a “good” model.

probability distribution Tr= #r;; where
trij = P(ug+1 = sjlus = 84),1 <4, <k (©)

Let D be a set, that all o¢ ’s can be found in t and D = {d1,do, ...,da}.
Let emission distribution matrix E={e; (1)} where

(ij(l):P(Ot:d”ut:Sj),1§j<k71< I<A (6)
2.3 Baum-Welch Algorithm

Baum-Welch Algorithm was clearly explained in Rabiner’s tutorial(Rabiner
[1989]). The basic ideas of the algorithm are:
According to Rabiner(Rabiner [1989]),

trije;(oe1) fe,ibit,s
k k
izt 2oj=1 trijej (o) feibey,

(O]

P(ut = sj,up41 = 55) =

where
k
fri =Y feorjtrjiei(on), fr; = P(ur = sj)ej(01)  (8)
j=1
known as the forward variable(Baum et al. [1970]) and

k
biy1,5 = th+2,itTjiei(0t+2),bt,j =1 [C)]
i=1
known as the backward variable(Baum et al. [1970]).
estimated P(uy = s;), tr;j and &;(1) as:

One can get the

k
Pluy = s;) = Z P(ug = s, ut41 = s5) (10)
j=1

Soizi Plut = si,uey1 = s;)
L Pus = si,up1 = s5)

an

tr =
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St [0(0s, di) S| Plus = s5, up1 = s4)]

é;i(l) = 12)
’ o Xy Plur = sj,urp1 = s4)
where (o, d;) is the delta function:
_ 1 if ot = dl
801, dr) _{ 0 otherwise
One can begin with initial guess of P(u1 = s;), try; and e;(l) and

substitute it into the Equations ( 10 ) to ( 12 ) iteratively. It can be proven
that the results converge to a model that fits the observed data better than the
initial guess. In the 20-state model done by the postdoc Nicolas Stidler, the
emission distribution is assumed to be normal distribution.

2.4 Viterbi Algorithm

When one gets the HMM of some observed data, one can use Viterbi Algo-
rithm(Viterbi [1967]) to generate the most likely sequence of states which fit
the parameters of the HMM best. So each observation will finally correspond
to a state.

How does Viterbi Algorithm work?

First, let

ay,j =ej(o1)P(u1 = s;) (13)
71,5 =0 (14)
Then calculate the Equation (15) and Equation (16) recursively.
o = ei(ot))maxje[Lk](oztflyjtrji (15)
YVt = GrgMaT;c(i k] (trjiogs;) (16)
This process ends when t reaches the T we want. So the state at T is

sT = argmaz;cy k) (QT,i) 17

Then we can gain optimal state of time t (s¢) by recalling the results of
every recursive step.

St = Vt,sp11 (18)

2.5 k Medoids Algorithm

Here are the steps of k medoids algorithm (ROUSSEEUW [1987], Friedman
et al. [2001], Theodoridis et al. [2010]):

Let there be T observations in total.

(1) k medoids (observations) are chosen to be the initial medoids. We call
the medoids which are chosen {0, , 05, ..., 05, }. the observations that are
not chosen {0;, , 0iy, ..., Oi(T—k)}

(2) Assign each observation 04, t0 a medoid 05, (@ = 1, 2, ..., k) that
minimizes the distance function d(o;,, , 0, ). If there are more than one o;,’s
that can minimize the distance function, assign the observation o;,, randomly
to one of them.

(3)For x in 1 to k

{Foreach o ¢ 0;,,0iy, ..., Oigp_p
{swap o and o;, and compute the cost function}}

(4) Choose k medoids o0;’s that minimize the cost function c.

(5) Do (2) to (4) iteratively until the k medoids o;’s do not change any
more.

Notice: (1)The distance function in our case is defined to be Euclidean
distance. (2)cost function is defined to be

k T—k
c=>_> d(oj,,0i,) (19)
q=1 p=1

The clustering function clara (short for Clustering LARge Applications)
in the R package I use is based on the k medoid algorithm(Kaufman et al.
[1990], R Development Core Team [2012a], Maechler et al. [2012], R
Development Core Team [2012b]).

o
o _]
N
i

>

O O

[ o

L o

>

(on —

()

et

= O
o —
=

—_— 1+ | P17

o -

maximum coverage ratio

Fig. 5. Distribution of maximum coverage proportion in each gene over the
whole genome in 5-state model.

3 RESULTS
3.1 How good the 5-state model is

3.1.1 Heat map of coverage proportion matrix C By observing
heat map of C, one will see immediately some properties of the 5-state model
(Figure 4). If Figure 4 is nearly homochromatic, the model is not biologically
meaningful. Contrarily, if most of the colours in Figure 4 are bright yellow
or dark blue, the model is biologically meaningful. Figure 4 is in accordance
with the second situation, so it is biologically meaningful.

In is shown by Figure 4 that yellow state is the most “popular” in genes
while green state is the most “unpopular” in genes. This will be explored in
detail later.

3.1.2  Distribution of maximum coverage proportion of the 5-state
model The maximum coverage proportion can reflect how small the gene
is fragmented by different states. If the peak of the distribution of maximum
coverage proportion is very high, say almost 1, this means that the model is
very biological meaningful. Otherwise, it is not a very good model.

A remarkably high peak is observed around 1 in Figure 5. This means that
the 5-state model is very biological meaningful.

3.1.3 Investigate by states The classification results of the 5-state
model are studied.

The first interesting thing to investigate is how many cells of a certain
column in the Coverage Proportion Matrix C have a certain range of value.
If the classification is totally random and has no biological meaning, the
value distribution should have a peak at 0.2. If the model is completely bio-
logically meaningful, the values should only equal O and 1.

Figure 6 to Figure 10 are the histograms of the distribution of coverage
proportion in each state. It is happy to see that all the histograms are very
similar to our guess of ideal histogram — the peaks only occur at 1 and 0
while the number of genes of other coverage proportion are very small.
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Fig. 4. Coverage Proportion of each state in each gene in chr2L of the 5-state model. x axis indicates the number of gene. y axis indicates the state name. The
colours in the heat map indicate how much is the coverage proportion of each state in each gene.

This indicate that the 5-state model proposed by Guillaum et al is very
biologically meaningful.

Shown by Figure 9, green state is the rarest in genes — there is almost no
green state in genes. This is in accordance with expectation because green
state is thought to correspond to the classic heterochromatin (Filion et al.
[2010]).

Comparing to other states, yellow state is the most “popular” in genes.
This is in accordance with the fact that yellow state corresponds to classic
euchromatin (Filion et al. [2010]).

An interesting finding is that though red state is thought to correspond to
classic euchromatin (Filion et al. [2010]), it is not abundant in genes.

3.1.4  States on the boundaries of genes Some regions belonging to
a state are just on the boundaries of genes. Figure 11 is the bar plotting of
the boundary-regions.

Figure 11 shows that yellow state is more than twice as high as any
other states. This compelling property of yellow states indicates that the regi-
ons belonging to yellow state might be related to transcription initiation or
termination.

3.2 The 20-state model

3.2.1 Summary of the 20-state model The classification results of the
20-state model are provided by Nicolas Stddler. Unlike the emission distri-
bution of the 5-state model, Stiddler assumes Gaussian distribution to be the
emission distribution.

The average of the DamID data in each state in the 20-state model is
shown in Figure 12. One might notice that proteins which belong to the same
family tend to behave similar in a state. For example, E(Z),PC,PCL,SCE,
which are PcG proteins, unlike proteins of other families, are of high ave-
rage binding value in state 5 and state 7. This indicates that the 20-state
model, in a way, is good.

One can see how much is the coverage proportion of each state in each

black state

the number of genes
2000 4000 6000
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Fig. 6. Number of genes of different ranges of coverage proportion of black
state in the 5-state model.
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Fig. 12. Average of DamID data in each state in the 20-state model. x axis indicates the states. y axis indicate the protein names. Colour of blue indicates low
binding force while yellow indicates high binding force.
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Fig. 7. Number of genes of different ranges of coverage proportion of red
state in the 5-state model.

gene by observing Figure 13. By comparing Figure 13 and Figure 4, one
could see that though 20-state model is biologically meaningful, it is worse
than the 5-state model. This is natural because the less states there are, the
more likely that the coverage proportion will be big. An extreme case is that
if there is just 1 state, the coverage proportion of that state will be 100%
everywhere.

3.2.2  Distribution of maximum coverage proportion of the 20-state
model Figure 14 shows the distribution of maximum coverage proportion
in each gene over the whole genome in the 20-state model. Comparing to the
similar plotting (Figure 5) of the 5-state model, Figure 14 seems worse. And
the pie plot in Figure 14 shows that the maximum coverage proportions that
are larger than 0.5 are less than 50% in all the maximum coverage proportion.
These results shows that this model is less biologically meaningful than the
5-state model.

3.2.3 States on the boundaries of genes Figure 15 shows the state
distribution on the boundaries of genes. We can see that some states have
much higher probability of being on the boundary than other states. State 1,
2, 3, 19 together occupied more than half of the gene boundaries that have
regions on them. This might indicate some unusual properties of these states.

3.3 Clustering analysis result

1did a clustering analysis of the DamID data as an alternative way to classify
the chromatin.

I investigate the situations from 1 state to 53 states (k=1,2, ... 53) and
plot the average of maximum coverage proportion s, against k (Figure 16).

blue state

6000

the number of genes
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0 2000

0.0 0.4 0.8
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Fig. 8. Number of genes of different ranges of coverage proportion of blue
state in the 5-state model.

Theoretically, the curve is likely to be monotonically decreasing if the classi-
fication does not bare much biological meaning. Surprisingly, there are some
rises in the curve when the sy is still high. Figure 16 indicates that 8 or 9
state number might be the optimal classification strategy.

4 DISCUSSION

We have already seen that the 5-state HMM works better than the
20-state model. And the cluster analysis reveals that the state num-
ber of 8 or 9 might be optimal. By taking all these results into
consideration, the optimal state number might not be a very large
number, say less than 10.

Also, we reveal that some states are more prone to be on the boun-
daries of genes than other states. These states might play critical
roles in regulation. Also, the proteins (if there exist such proteins)
that uniquely mark these states might have some regulatory functi-
ons concerning transcription initiation or termination.

Many further interesting researches can be done concerning the
HMM application in classifying the chromatins. One can investi-
gate other assumptions of emission distribution of the HMM or other
initial conditions of the HMM. Moreover, because the Baum-Welch
Algorithm can only locally maximize likelihood (Rabiner [1989]),
more investigations into globally maximized likelihood might be
essential.

Other clustering methods like fuzzy clustering(Bezdek [1981])
might also be reasonable. The fuzzy clustering might be ideal to
reflect the phenomenon that some genes involve only in some parti-
cular stages of the body development while some keep being active
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Fig. 9. Number of genes of different ranges of coverage proportion of green
state in the 5-state model.

all the time. Each clustering might correspond to the stage of life. If
aregion simultaneously belong to more than one clustering, it might
indicate that this region involves in more than one stages of the body
development.

Furthermore, one can investigate the state distribution in introns,
known regulatory domains of DNA, some unique 3 dimensional
domains of DNA, the DNA regions that code microRNA ...

Also, the similar work might be done in the chromatin of other
organisms, say human(Homo sapiens).

Finally, once one gets satisfied enough clustering results, he or
she can do gene ontology analysis (GO) to check whether each clu-
stering correspond to some specific gene functions.
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