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Abstract

Clusters in frustrated systems are studied in the context of the frustrated percolation model.
This model, which contains frustration and connectivity as an essential ingredient, exhibits a
large degree of complexity in both static and dynamics. The bond version of the model maps on
the spin glass model, while the site version can be applied to a large variety of frustrated systems
such as glasses and granular materials. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Clusters concepts have been extremely useful in critical phenomena to elucidate the
mechanism underlying a thermodynamic transition [1–3]. Here we want to review some
ideas which have been developed in the past few years to explore the possibility of
using cluster concepts in frustrated systems. This approach has lead to the development
of a generic model, which may be applied to a large variety of systems where frustration
plays a dominant role. In particular, the model can be implemented to gain insight into
the phenomenology of complex systems such as spin glasses, glasses and granular
materials.
In the ferromagnetic Ising model, the thermodynamical transition can be described in

terms of clusters made of parallel spins connected by “2ctitious” bonds [4]. Using this
cluster formalism, the Ising model can be mapped exactly on to a bond percolation
model [5,6], consequently the correlation length and the connectedness length (the
cluster size linear dimension) coincide and diverge at the Ising critical point. Based
on the properties of these clusters, Swendsen and Wang [7] have implemented a fast
cluster dynamics, which drastically reduces the critical slowing down.
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The same formalism generalized to frustrated spins systems maps exactly the spin
glass (SG) model onto a new bond percolation model [8,9], which contains geometrical
frustration as essential ingredient. This model, which has been called frustrated perco-
lation (FP), exhibits properties which are drastically di@erent from the corresponding
unfrustrated case.
As random percolation has been useful to describe a large variety of problems in

which connectivity plays a major role [10], in the same way the FP model may be
able to describe complex systems where frustration and connectivity are the main in-
gredients.

2. Clusters in the Ising model

Let us brieCy recall the cluster formalism for the Ising model. Consider the Ising
hamiltonian with nearest neighbour interaction.

− H = J
∑

〈ij〉
(SiSj − 1) ; (1)

where Si =±1 and the sum is over the nearest neighbour pairs of spins.
Suitable clusters can be de2ned [4] by putting bonds at random between parallel

spins with a probability p = 1 − exp(−2J=kBT ). A cluster is de2ned as the maximal
set of spins connected by bonds. It can be shown [11] that the weight for a bond
con2guration C to occur, independent on the spin con2guration, is given by

W (C) = p|C|(1− p)|A|qN (C) : (2)

Here q=2; |C| is the number of present bonds, |A| the number of edges of the lattice
without bonds N (C) is the number of clusters. It can also be shown that the partition
function of the Ising model can be expressed in the following Fortuin and Kasteleyn
cluster formalism as

Z =
∑

C

W (C) (3)

while the pair correlation function gij ≡ 〈SiSj〉 coincides with the pair connectedness
function pij

gij = pij ; (4)

where pij is the probability that sites i and j are connected by at least one path of
bonds. Consequently, correlation length and connectedness length coincide and clusters
made of parallel spins connected by bonds percolate at the Ising critical point, with
Ising exponents.
For general q, (3) reproduces the partition function of the q-state Potts model in the

cluster formulation. In particular, taking the limit q=1 one recovers the weight of the
random bond percolation problem.
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3. Clusters in the Ising spin glass model

Consider now the nn± J Ising SG model [12]:

− H = J
∑

〈ij〉
(�ijSiSj − 1) ; (5)

where the nearest neighbour interactions Jij = J�ij = ±J are randomly distributed. A
concept crucial in spin glasses is frustration. A loop is frustrated when the spins cannot
satisfy all pairs of interactions along the loop. It is easy to verify that a loop is frustrated
if and only if the product of the signs of the interactions �ij along the loop equals −1.
For a given set of interactions {Jij}, the partition function is given by

Z{Jij}=
∑

{Si}
e−�H : (6)

For low temperature, the SG phase is characterized by the Edwards–Anderson order
parameter which is di@erent from zero in the SG phase and goes to zero at the SG
temperature Tsg. Above Tsg, one can also de2ne the spin–spin pair correlation function

gij ≡ 〈SiSj〉 ; (7)

where 〈· · ·〉 stand for the thermal average for a 2xed con2guration of interactions Jij.
The length � associated with g2ij (where the bar stands for the average over all the
interaction con2guration) diverges as the SG temperature Tsg is approached.

Dynamically, one 2nds that also the relaxation time diverges at Tsg. However, there
are precursor phenomena already at a temperature much larger than the SG temperature.
In fact a typical autocorrelation function f(t) decays for large t in a non-exponential
form well 2tted by a Kohlrausch–Williams–Watts function also known as “stretched
exponential”, below some temperature T ∗ and as a simple exponential above T ∗. In
3D T ∗ ∼ 4 while Tsg ∼ 1:1. The numerical results of Ogielski [13] is consistent with
T ∗ = Tc where Tc is the critical temperature of the ferromagnetic Ising model. This
result supports the argument of Randeira et al. [14] who suggest the onset T ∗ of the
non-exponential behaviour should be greater than or equal to the GriJths temperature
Tc. This behaviour is caused by the existence of compact ferromagnetic-type clusters
of interactions, the same that are responsible of the GriJths singularity [15].
The presence of non-exponential relaxation in this approach is therefore a direct

consequence of the quenched disorder. Therefore, Randeira’s argument does not ap-
ply to fully frustrated spin models, where due to absence of disorder there is no GriJths
phase. Nevertheless, numerical results [16] have shown the presence of stretched
exponential behaviour in both 2 and 3 dimensions below a temperature T∗ much larger
than the thermodynamical critical temperature of the fully frustrated model.
We will see that the cluster approach to both frustrated spin systems and spin glasses

predicts a percolation temperature where precursor phenomena are expected to occur
even when the GriJths phase is absent.
Now I want to illustrate how the cluster approach for the ferromagnetic Ising model

can be extended to frustrated spin systems and as a particular case to the Ising SG
model [8]. To 2x the ideas, let us consider the spin model (5) for a 2xed realization of
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Fig. 1. Bond con2gurations in the FP problem. Straight and wavy lines indicate positive and negative
interactions, respectively. Present bonds are denoted by heavy lines. Con2gurations of bonds which contain
a frustrated loop are not allowed.

interactions {Jij}. As for the ferromagnetic Ising model, we de2ne clusters by randomly
putting bonds only between those spins that satisfy the interaction, i.e., we put bonds
with probability p = 1 − e−2�J , between only those spins for which �ijSiSj = 1 and a
cluster is de2ned as the maximal set of spins connected by bonds.
An inspection at the bond con2gurations shows a major di@erence compared with

the ferromagnetic case. In fact, since bonds can only be between spins satisfying the
interaction, we can never have bond con2gurations which contains frustrated loops. For
each con2guration of interactions {Jij}, it can be shown that the weight W (C) for a
bond con2guration C to occur, independent on the spin con2guration, is given by

W (C) = p|C|(1− p)|A|qN (C) (8)

if the con2guration of bonds C does not contain any frustrated loop, and

W (C) = 0 otherwise : (9)

Here q=2, |C| is the number of present bonds, |A| is the number of edges of the lattice
without bonds and N (C) is the number of clusters (see Fig. 1). Eq. (9) stems from
the fact that a bond con2guration which contain a frustrated loop can never occur.
It can also be shown that the partition function (6) can be written as

Z{Jij}=
∑

C

W (C) : (10)

Sometimes, it is convenient to express the weight (9) in terms of the bond chemical
potential �b

W (C) = Ae��b|C|qN (C) ; (11)
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where e��b =p=(1−p) and A= (1−p)N, N being the number of the total edges in
the lattice.
By taking the average of ln Z{Jij} over all the realizations of interactions, we obtain

the free energy of the Ising SG model. In this cluster formulation, the partition function
(10) is the analogue of (3) in the ferromagnetic Ising model, except that in the SG
case, due to (9), the sum in (10) runs only over those bond con2gurations which do
not contain frustration.
We note that in this formulation the spin variables have disappeared, and the SG

model is mapped onto a geometrical problem. In particular, the ground state at T = 0
is obtained by packing the maximum number of bonds under the constraint that the
bond con2gurations do not contain a frustrated loop.
Like in the ferromagnetic Ising model, it is possible to express thermal quantities

in terms of connectivity functions. For example, it can be shown [8] that the pair
correlation function gij ≡ 〈SiSj〉 is given by

gij = p+ij − p−ij ; (12)

where p+ij (p−ij ) is the probability that (1) sites i and j are connected by at least one
path of bonds, and (2) the product �ij over all the signs �mn along the path connecting
i and j is +1 (−1). 1 Due to the property that the pair correlation function in (12) is
given by the di@erence of two pair connectedness functions, |gij| is smaller then the
total pair connectedness function pij, which for each interaction con2guration is given
by

pij = p+ij + p
−
ij : (13)

Therefore, in SG there are two lengths: one length � associated with g2ij which
diverges at the SG transition temperature Tsg and a second length �p associated with
pij which diverges at the percolation temperature Tp¿Tsg (in 3D Tp ∼ 3:95 [17]).

In view of the geometrical interpretation of gij, we can understand the SG transition
from a di@erent point of view. This transition, like the quantum percolation transi-
tion [18], occurs at a temperature lower than the usual percolation transition, due to
the interference of paths with di@erent phases. However, at high bond density (low
temperature), the interference e@ects tend to vanish. In fact the number of allowed
con2gurations is extremely reduced and most of the con2gurations in which i and j
are connected will have a common path and, therefore, the same phase. We call this
path a “quasifrozen” path since in a dynamical sequence of con2gurations exploring
the allowed phase space, this path will be present most of the time [9,19].
Therefore, |gij| roughly coincides with the probability that i and j belong to the

same quasifrozen cluster, and the length � associated with g2ij roughly represents the
linear dimension of these clusters. Since � diverges at Tsg, we can interpret the SG
transition as a percolation transition of the quasifrozen clusters.

1 It is possible to show that p+ij (p
−
ij ) coincide also with the probability that i and j are connected and

the spins at i and j are parallel (antiparallel) in the con2gurations of spins and bonds.
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Indeed, numerical simulations on quasi frozen clusters of nearest neighbour of pairs
of spins are consistent with this picture [20,21]. For further interesting developments
see Ref. [22].

4. Bond frustrated percolation

In the previous section, we have introduced the cluster formulation of the partition
function of an Ising SG, which is given by (10) with q= 2. As for the ferromagnetic
case, this partition function can be generalized to any q. The percolation model associ-
ated to the bond con2gurations with weights given by (8), (9) is called bond FP. For
any q the model can be obtained from a hamiltonian formalism [23,9].
Although the model can be derived from a hamiltonian formalism, it may be conve-

nient to de2ne the FP model more directly as a geometrical problem in the following
way:
(1) Given a lattice assign at random, a con2guration of interaction {Jij} on a lattice.
(2) Assign to any con2guration C of bonds a weight W (C) given by (5).
For each con2guration of interactions {Jij}, one has to calculate the partition function

and any other quantity using the weight given by (8), (9) and then average over all
interaction con2gurations.
The static properties of the FP model have been investigated by using the hamiltonian

formalism and solving [24] the model for any q on the hierarchical lattice, introduced
by Mckay et al. [25]. The results corroborated also by computer simulations in 2- and
3-dimensions [26,27] and mean 2eld theory [28] show the existence of two critical
points.
(1) A percolation transition at Tp(q) with critical exponents of the ferromagnetic
q=2-state Potts model.

(2) A glass transition at T0(q) in the same universality class of the SG model.
Each critical point is characterized by a diverging length, associated, respectively,

with the quantities (12) and (13).
The length �p associated with the pair connectedness function diverges at the per-

colation temperature Tp. The second length � associated with g2ij diverges at the lower
transition temperature T0.
The free energy exhibits a singularity not only at T0(q) but also at the percolation

transition, except in the SG case (q=2), where the amplitude of the singularity vanishes
at Tp(2). The critical part of the free energy Fc is thus expected to behave near the
percolation threshold Tp(q) in the following way:

Fc = A(q)(T − Tp(q))2−"(q) ; (14)

where A(q) is an amplitude which vanishes as q → 2 and "(q) is the speci2c heat
exponent of the q=2 ferromagnetic state Potts model.
The FP model can also be extended to the case in which the interactions are 2xed

and not random like in the fully frustrated model, where each plaquette is frustrated.
In this case the second transition is in the same universality class of the spin model



82 A. Coniglio / Physica A 306 (2002) 76–89

with the same distribution of interactions, while the 2rst percolation transition is still
in the universality class of ferromagnetic q=2-state Potts model.
If the interactions do not contain any frustration, the two transitions coincide resulting

in the standard cluster formalism of the ferromagnetic Potts model [4,5,7]. In this case
the amplitude A(q) vanishes in the limit → 1.
Using the cluster formalism, a dynamics can be introduced by removing or adding

a bond in such a way to satisfy detailed balance. This generalizes the algorithm, intro-
duced by Sweeny for the cluster formalism of the ferromagnetic q state Potts model.
With such algorithm, the FP model can be studied numerically for any value of q
including q=1 [26]. Using such dynamics, we have calculated [26] the autocorrelation
functions for q = 2 and found that the onset of stretched exponential is numerically
consistent with Tp for both fully frustrated and random interactions (spin glasses).
Similar results hold also for q= 1.
On the other hand for q=2, we can consider the original spin model (5) and apply

the spin Cip dynamics. It is found numerically that the onset of stretched exponentials
once again coincides with Tp for the fully frustrated hamiltonian, and with the GriJth
temperature Tc which is higher than Tp for the SG model [16,27]. These 2ndings show
that both the percolation transition and the GriJth temperature induces a dynamical
anomalies in the form of e@ective stretched exponentials. In the fully frustrated model,
which exhibits only a percolation transition and not the GriJths singularity, the onset
of stretched exponentials occurs, in fact, at the percolation temperature. However in the
SG model, which exhibits both the percolation transition and the GriJths singularity,
the onset of stretched exponentials appear at the highest of the two temperatures,
namely Tc.

5. Site frustrated percolation

We consider now the site version of the FP model. We start with the following SG
model diluted with lattice gas variables:

H =−J
∑

〈ij〉
(�ijSiSj − 1)ninj − �

∑

i

ni : (15)

Here the occupancy variables ni = 0; 1 have an internal degree of freedom. Si ± 1,
�ij = ±1 are quenched random interactions and � is the chemical potential for the
particles.
This model reproduces the ±J Ising SG in the limit �→ ∞, all sites are occupied

(ni = 1). In the other limit J → ∞ the model describes a frustrated lattice gas. In
fact the 2rst term of Hamiltonian (15) implies that two nearest neighbour sites can be
occupied only if their spin variables satisfy the interaction i.e., if �ijSiSj =1, otherwise
they feel an in2nite repulsion (J =∞). Therefore, the particles must either move apart
or change the relative orientation of the spins. Since in a frustrated loop the spins
cannot satisfy all the interactions, in this model particle con2gurations in which a
frustrated loop is fully occupied are not allowed.
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Fig. 2. A con2guration of particles (2lled circles) and holes (empty circles) in the site FP model.

In the limit J → ∞, the partition function of model Hamiltonian (15), after summing
over the spin variables, can be written in the cluster formalism as

Z =
∑

C

e��n(C)qN (C) ; (16)

where q = 2 and the sum is over all particles con2gurations C which do not contain
a frustrated loop, n(C) is the number of particles and N (C) is the number of clusters
of nearest neighbours particles in the con2guration C (Fig. 2). The partition function
(16) can be generalized to any value of q [9,29] and gives the site version of the
corresponding cluster bond formulation ((10) and (11)).
The connectivity quantities can be related to the thermal ones in the same way as

in the bond case (12), (13) and the corresponding percolation model is called site FP.
Using the cluster formalism, the site FP model can be studied numerically using the
corresponding dynamics of the bond frustrated model. Particles move under the con-
straint that frustrated loops are not allowed. The strong e@ect of frustration on particle
motion can be seen by allowing the particles to di@use such that no frustrated loops
become completely occupied [29]. At low particle densities, motion is not inhibited
by frustration because of the abundance of holes. However, at high densities, a given
particle can di@use through the system only by a large scale, cooperative rearrangement
of many particles. At high density, the properties of the site FP for q=1 are not much
di@erent from higher values of q. Since the case q = 2 can be realised also by the
frustrated lattice gas model, namely by using Hamiltonian (15) in the limit of J =∞,
it is simpler to study the case q = 2 using standard techniques applied to the model
Hamiltonian (15).
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6. Frustrated lattice gas

The static properties of the model (15) have been studied in mean 2eld theory
[31,32,34]. Interestingly enough, the model in the limit of large J exhibits static prop-
erties closely related to the so-called p-spin model [33], which has received much
attention since the mean 2eld version of this model gives a good description of glassy
behaviour of supercooled liquids.
In 2nite dimensions, numerical simulation have shown glassy behaviour at high den-

sity [30,34,35]. More precisely recent large scale simulations in 3D have shown [37]
at high density a SG-like transition in the spin variables, signaled by the divergence of
the non-linear susceptibility, and the presence of a continuous replica symmetry break-
ing in the spin overlap distribution. Moreover, as the critical point is approached from
low density, the relaxation time associated with the equilibrium autocorrelation function
diverges. On the other hand, the density variables seem to be a@ected little by the spin
variable transition, showing no divergence either in the non-linear compressibility, or
in the autocorrelation time.
The freezing of the model is therefore connected with a second-order transition in the

spin variables, more similar to the freezing of the Ising SG than to the mode-coupling
transition of structural glasses. One cannot exclude, however, that the density variables
undergo a glass transition of p-spin-like nature at a higher density, characterized by a
1-step replica symmetry breaking and a discontinuity of the Edwards–Anderson param-
eter de2ned in terms of density variables. This fact is suggested by the development of
a secondary peak in the density overlap distribution at very high chemical potential, as
well as by the measurements of the o@-equilibrium Cuctuation–dissipation ratio [39],
but more work is needed to clarify this point.

7. Frustrated lattice gas with annealed disorder

The frustrated lattice gas model contains quenched interactions, while in supercooled
liquids the disorder, is not quenched. In order to study the e@ect of quenched disorder
compared to annealed disorder, a variant of the model has been considered in which
the interactions evolve in time with a suitable kinetic constraint [36]. Namely, the sign
of the interactions �ij are allowed to change only if the sites i and j and all their
nearest neighbours are empty. Now the model does not exhibit any thermodynamic
transition, however, it shows a dynamical behaviour closely related to some results on
the p-spin model in mean 2eld and Lennard–Jones mixture recently found by Franz
et al. [38]. Here we show the results for the relaxation of the self-overlap, which is
de2ned as

q(t) =
1
N

∑

i

Si(t′)ni(t′)Si(t′ + t)ni(t′ + t) (17)

and for the dynamical susceptibility

#(t) = N [〈q(t)2〉 − 〈q(t)〉e2] ; (18)
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Fig. 3. Self overlap as a function of time in the annealed model, for a system of size 163 and densities
$ = 0:52; 0:53; 0:54; 0:55; 0:56; 0:57; 0:58; 0:59; 0:60; 0:61 (from Ref. [36]).

where the average 〈· · ·〉 is performed over the time t′. In Fig. 3, we show the relaxation
functions of the self-overlap (17), for a system of size 163, for various densities between
$=0:52 and 0.61. Observe that for high density, the relaxation functions clearly develop
a two step relaxation, signaling the existence of two well separated time scales in the
system. The 2rst short time decay of the relaxation functions can be interpreted as due
to the motion of the particles in the quasi-frozen environment, which on this time scales
appear as quenched, while the second decay is due to the evolution of environment. The
form of the relaxation in Fig. 3 can be well 2tted with the functional form predicted
by the mode coupling theory.
In Fig. 4, we show the dynamical non-linear susceptibility (18) for di@erent values

of the density. It has the same behaviour of the p-spin model in mean 2eld and of
the molecular dynamics simulation of the Lennard–Jones binary mixture [38], namely
a maximum #(t∗) that seems to diverge together with the time of the maximum t∗,
when the density grows. Comparing these results to those obtained in the model with
quenched interactions, we conclude that the critical behaviour of the dynamical suscep-
tibility is reminiscent of the thermodynamic transition present in the quenched model,
and signaled by the divergence of the static non-linear susceptibility, therefore, sug-
gesting a similar mechanism also in supercooled glass-forming liquids.

8. Percolation in phase space

The FP model may give some indication of the behaviour of glassy systems in phase
space. In Fig. 5, the mean square displacement for the frustrated lattice gas model is
reported with quenched interactions 〈Pr2〉 = 〈(r(t) − r(0))2〉 where r(t) is a vector
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Fig. 4. Dynamical susceptibility in the annealed model, for the same system size and densities of Fig. 3
(from Ref. [36]).

Fig. 5. Mean square displacement in the site FP model as a function of time on a square lattice with L=32,
for densities (from upper curves to lower ones): $=0:452; 0:586; 0:730; 0:756; 0:766; 0:777; 0:784; 0:785; 0:787
(after Ref. [29]).

whose coordinates coincide with the coordinates of all the particles, at time t. At low
density, the curves show a linear behaviour, which corresponds to normal di@usion. As
the density increases, the mean square displacement shows 2rst a shoulder and then a
plateau corresponding to the localization of particles (as in some molecular dynamic
simulations of supercooled glass forming liquids, see Refs. [40,41]).
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The vector r(t) can also be interpreted as the position in phase space of the point
representing the microscopic state of the system. Due to frustration, there are many
points in phase space which are not allowed. These points correspond to those con-
2gurations which contain at least one frustrated loop. The evolution in time of the
state correspond to a trajectory in such space. As the density of particles increases,
the allowed phase space gets reduced until a critical density is reached below which
the phase space becomes disconnected and the point in phase space gets localized.
This localization problem can be seen like a percolation process in phase space. In
this percolation problem, the connectivity is 2xed by the dynamics. For example, for
a di@usive dynamics the representative point in phase space moves in one step to the
nearest neighbour. But if the dynamics allows to exchange a particle with a hole at
large distances, the representative point can jump to farther nearest neighbours. There-
fore, the connected regions depend on the particular dynamics. A similar picture based
on a percolation process in phase space was originally proposed by Campbell [42], for
spin glasses and glasses. Here the site FP model reproduce exactly such picture since
in a jump from one allowed con2guration to another, there are no energy barrier to
overcome. However, the points in phase space not allowed are not randomly distributed
as in random percolation.

9. Conclusions

In conclusion, I have presented the properties of the FP model. This is a generic
model which may be relevant to many systems where the concept of frustration and
connectivity plays a major role. In fact while the bond FP maps exactly on the SG
model, the site FP has been shown to be relevant to other systems like supercooled
liquids and granular materials [43] where frustration plays a major role.
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